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Abstract

The recently developed event cameras can directly sense
the motion by generating an asynchronous sequence of
events, i.e., an event stream, where each individual event
(x, y, t) corresponds to the space-time location when a
pixel sensor captures an intensity change. Compared with
RGB cameras, event cameras are frameless but can capture
much faster motion, therefore have great potential for rec-
ognizing gestures of fast motions. To deal with the unique
output of event cameras, previous methods often treat event
streams as time sequences, thus do not fully explore the
space-time sparsity and structure of the event stream data.
In this work, we treat the event stream as a set of 3D points
in space-time, i.e., space-time event clouds. To analyze
event clouds and recognize gestures, we propose to lever-
age PointNet, a neural network architecture originally de-
signed for matching and recognizing 3D point clouds. We
adapt PointNet to cater to event clouds for real-time ges-
ture recognition. On the benchmark dataset of event cam-
era based gesture recognition, i.e., IBM DVS128 Gesture
dataset, our proposed method achieves a high accuracy of
97.08% and performs the best among existing methods.

1. Introduction

Hand gestures are widely used in human-machine inter-
action [5, 13, 15, 24, 26], sign-language recognition [28]
and gaming [4, 6]. Motion blur makes rapid gesture recog-
nition a challenging task when using a 30 frames per second
RGB or depth camera [10]. A common solution to capture
high-speed motions is to increase frame rate. The succes-
sive frames contain enormous amounts of redundant infor-
mation. Processing all the frames wastes memory access,
computational power and time. Thus, real-time analysis of
the big trunk of video data becomes another challenge.

Instead of capturing synchronized frames, event cameras
directly sense the motions in the scene as an asychrounous
sequence of events. As shown in figure 1(a), conventional

Figure 1. (a) Conventional RGB camera captures all pixel inten-
sities at a fixed frame rate. (b) Event camera captures intensity
changes caused by the moving objects asynchronously.

camera captures all pixel intensities at a fixed frame rate.
It captures a clear shape of stationary object (red ball) and
a blurred shape of a fast moving object (blue ball). As
shown in figure 1(b), event camera only captures an asy-
chrounous sequence of intensity changes caused by the fast
moving blue ball while information of stationary objects
(red ball and background) will not be recorded. Each in-
tensity change is referred as an event encoding the spa-
tial coordinates (x, y) of a pixel reporting a change and a
precise timestamp t indicating when that change happened.
Recent explorations achieve amazing results on using event
cameras for trajectory and motion estimation [8, 16], simul-
taneous localization and mapping (SLAM) [11] and steer-
ing prediction for self-driving cars [14]. Compared with
conventional methods using RGB camera or depth cam-
era [7, 22, 23, 25, 27] for gesture recognition, event cam-
eras can easily capture movements which only cameras with
more than 1000 frames per second can capture. On the other
hand, only the local pixel-level changes are transmitted at
the time they occur. Event cameras address limitations of
conventional cameras easily by its output-by-demand na-



ture. These properties make event-based cameras a per-
fect complementary in real-time and embedded applications
with limited computation resources and power budget.

In conventional event-camera based classification sys-
tems, event streams are usually treated as temporal se-
quences. Events are accumulated within fixed time inter-
vals to form a virtual frame for feature learning. However,
treating event streams as a sequence of virtual frames can-
not fully utilize the spatio-temporal sparsity of event data.
Meanwhile short-term spatio-temporal structure captured
by the event camera within each time interval is lost when
all events are accumulated over time. To address these lim-
itations, we propose a novel representation to interpret an
event sequence as a 3D point clouds in space and time. In
our proposed method, each event becomes a point in a three-
dimension continuum represented as (x, y, t). Each gesture
generates a distinctive cloud of events in (x, y, t) coordi-
nate system and we call it space-time event clouds. By in-
terpreting event streams as space-time event clouds, spatial
features and temporal features are fused in a 3D space-time
continuum. Therefore, the recognition of a gesture becomes
the recognition of geometric distribution of the event clouds
generated by that gesture, which is in spirit similar to 3D
object recognition.

To robustly differentiate point clouds and recognize cor-
responding gestures, we propose to leverage recent machine
learning approaches that help recognize 3D objects. Point-
Net [20] is a neural network architecture originally designed
to for 3D object classification and segmentation problems.
We propose to adapt PointNet to analyze event-camera data,
i.e., event clouds. The event cloud is hierarchically analyzed
using a PointNet-based architecture to capture the essen-
tial spatio-temproal structure of the hand motion, then the
learned feature is used for classification. The feature learn-
ing and classification are in an end-to-end way. To achieve
real-time gesture recognition, we developed a rolling buffer
framework. To achieve fast response in real-time, a sliding
window is used to capture events in a small time interval to
update events rolling buffer. The events rolling buffer stor-
ing most recent event clouds enables the network to make
use of past information efficiently. The output rolling buffer
is used to store prediction results and a decision filter is ap-
plied to remove unreliable predictions. We evaluate the pro-
posed framework by comparing its end-to-end accuracy and
latency with existing methods. The proposed framework
achieves 97.08% accuracy in IBM DVS128 Gesture dataset
and 118ms latency, which outperforms existing methods
[1].

2. Related Work
In event-camera based classification system, how to ex-

tract useful information and features from the sparse and
asynchronous event data is a key challenge. Intuitively,

event streams can be cast back to frames to form grayscale
or binary images and conventional feature extraction tech-
niques can be applied. Chen et al. [3] proposed a bio-
inspired hierarchical line segment extraction unit to perform
size and position invariant human posture categorization
on the binary event images. Inspired by the idea of using
tempotron classifier [9] to recognize spatio-temporal neu-
ron spiking patterns, Pérez-Carrasco et al. [19] proposed
an event-driven convolutional neural network to consume
event data. In this approach, sensor plane of event cam-
era is viewed as an array of neurons in leaky integrate-and-
fire (LIF) model, each event is treated as an input spike to
fire corresponding neuron. O’Connor et al. [17] proposed
a spiking deep belief network (SDBN) to perform feature
extraction, information fusion, and classification at event
level, which is robust to noise, scaling, translation and rota-
tion. In [18], events are treated as LIF for motion detection.
A probability-based method is proposed to combined spe-
cialty and popularity of events occurrence according to their
addresses on the image plane. Lee et al. [12] were the first
to develope an event-based gesture recognition system with
an event camera and to show a postprocessing step with LIF.
It achieved recognition rates well over 90% under a variety
of variable conditions with static and dynamic backgrounds.
In most recent work [1], they pointed out that the advan-
tages of event cameras are diluted if their event streams
must be cast back into synchronous frames for the benefit
of conventional processors downstream. Conventional pro-
cessors (e.g. CPUs and GPUs) are designed to efficiently
process dense, synchronously delivered data structures, not
sparse, asynchronous event streams. They solved this prob-
lem by combine an event camera with an event-based neuro-
morphic processor TrueNorth to perform real-time gesture
recognition using CNN approach. It achieved an accuracy
of 96.49% in IBM DVS128 Gesture Dataset.

3. Proposed Method
In conventional vision system, intensity information of

all pixels are captured at each time. The temporal change
captured is determined by the frame rate varying from tens
of to thousands of frames per second. Thus, conventional
video streams are dense in spatial domain but sparse in
time domain. In event-camera based vision system, event
camera outputs an event whenever the intensity change of
a certain pixel exceeds the threshold. Each event carries
only the spatial coordinates (x, y) of a pixel reporting a
change and a timestamp t indicating when that change hap-
pened [1]. Event streams are asynchronous and have a much
higher temporal resolution from microseconds to nanosec-
onds level. Thus event streams are sparse in spatial domain
and dense in temporal domain. Although there are many
different approaches to extract features from the unique
type of asynchronous event streams, they all treat the event



Figure 2. (a)Treat event streams as temporal sequence and cast
events back to frames. (b)Treat events as space-time event clouds.

streams as temporal sequences. The concept of temporal
sequences and matrix of pixels inherited from conventional
video analysis of frames is applied to event streams in a
similar way. However, treating event streams as tempo-
ral sequences does not fully utilize the spatial sparsity of
event streams, meanwhile the dense temporal information
captured is diluted. In this work, we think out of the con-
ventional concept of temporal sequences and view the event
streams in a three dimensional space continuum. In con-
ventional 3D space, a point is denoted as (x, y, z) while in
the world of event cameras, a point (event) in 3D space is
denoted as (x, y, t). The continuous event stream forms a
cloud of points (events) in 3D space thus we call it space-
time event clouds.

3.1. From Temporal Sequences to Space-time Event
Clouds

In human vision system, we see the world as three di-
mensions of space plus one dimension of time. Similarly,
camera vision systems see the world as two dimensions of
image space plus one dimension of time. In Newtonian
view of space and time, time is a measurement separated
from the space dimensions and it is an independent variable
flowing on its own. In conventional video analysis, algo-
rithms are intuitively developed under Newtonian idea of
time, where time is considered as a measurement of dura-
tion, sequential order or frequency of motions. Thus, both
frames from conventional cameras and event streams from
event cameras are treated as temporal sequences. When
treating event streams as temporal sequences, an event ei
is denoted as

ei = ((xi, yi), ti) (1)

The event streams are time series data recording intensity
changes in image space in a chronological order.

In modern physics, scientists fuse the three dimensions

of space and the one dimension of time into a single four-
dimensional continuum, where time is a dimension identi-
cal to the other three dimensions. Inspired by the modern
physics’ understanding of time, here, we fuse the two di-
mensions of image space and the one dimension of time
into a three-dimension continuum in the event-based vision
system. Time t is identical to x, y spaces and measured by
a numerical number with physical meaning. In proposed
approach, an event ei is denoted as

ei = (xi, yi, ti) (2)

An event becomes a point in a 3D space and event streams
form 3D space-time event clouds.

In conventional event-camera based classification sys-
tem, event streams are divided into multiple segments for
feature extraction. Temporal segmentation divides events
by fixed time intervals or fixed number of events, while
soft segmentation adaptively obtain segments according to
some certain predefined rules [18]. In a selected time inter-
val T, assume a total number of n events are generated by
an event camera with a N ×M resolution. When treating
event streams as temporal sequences, a set of events within
time interval T is expressed as:

ST
temporal = {ei = (xi, yi)|ti ∈ T, i = 1, 2, ..., n)} (3)

When treating event streams as 3D space-time event
clouds, a set of events within time interval T is expressed
as:

ST
3D = {ei = (xi, yi, ti)|ti ∈ T, i = 1, 2, ..., n)} (4)

In conventional time sequence approach, no matter mod-
eling events as postsynaptic potentials for neural spiking
pattern classification [19] or interpreting event streams as
bag of events for joint probability distribution classification
[18], feature extraction is conducted on set ST

temporal and
events are accumulated over time on the image plane. Thus,
an N × M array is required to store the spiking patterns
or probability patterns as shown in Figure 2(a). Processing
of event sequences becomes the processing of dense arrays
as what we do in conventional video analysis. The event
streams are extremely sparse in spatial domain. In DVS128
Gesture Dataset [1], only around 10% of the array are oc-
cupied by valid data. The advantage of spatial sparsity is
largely diluted and memory cost is increased. The accu-
mulation of events over a short time interval also dilutes
the dense temporal information captured by event cameras.
The temporal orders among events within that interval is
lost during integration.

In proposed approach, event streams are treated as space-
time event clouds, which are sets of points (events) in 3D
space. Spatial features and temporal features are fused in



Figure 3. (a)PointNet consumes point clouds for object classifica-
tion. (b)In this work, PointNet is adapted to consume space-time
event clouds for gesture recognition in event-camera based classi-
fication system.

the 3D space-time continuum as shown in Figure 2(b). Pro-
cessing of event streams becomes set operation over ST

3D.
It fully utilizes the spatial sparsity and achieves an effective
usage of memories. As each event is a point in 3D space de-
noted with coordinates (x, y, t), there is no integration over
time any more. Thus the dense time information is also well
preserved and is transformed to geometric information. As
conventional neural network models are no longer suitable
to process sparse set data, a network architecture to learn
geometric distribution features of event clouds in 3D space
is needed. Finally, the recognition of a hand gesture be-
comes the recognition of geometric distribution of the 3D
space-time event clouds generated by that gesture.

3.2. PointNet for Space-time Event Clouds Based
Gesture Recognition

3.2.1 PointNet

PointNet [20] is a neural network architecture that directly
takes point clouds as input and it learns to summarize the
geometric features of the input point clouds. A point cloud
is denoted as a set of 3D points S = {pi|i = 1, ..., n},
where each point pi is a vector of its coordinates (x, y, z).
The architecture of PointNet is shown in Figure 3(a). Each
input point pi is processed by a shared multi-layer percep-
tron network and it is trained to capture different properties
of the input set. As points in the set are unordered, the input
sequence of points should not affect the output. A single
symmetric function, max pooling, is applied. The network
learns a set of optimization functions to select informative
points of the input set of points. The fully connected lay-
ers aggregate these learnt optimal values into a global de-
scriptor of the entire shape of point clouds for classifica-
tion. Although simple, PointNet architecture demonstrates

universal approximation ability of continuous set functions.
A Hausdorff continuous symmetric function f : 2x → R can
be arbitrarily approximated by PointNet as

|f(S)− γ(MAX
pi∈S

{h(pi)})| < ε (5)

where p1, ..., pn are elements in S ordered arbitrarily, h and
γ are continuous functions approximated multi-layer per-
ception networks, and MAX is an element-wise max pool-
ing operator.

Considering that PointNet is highly efficient and demon-
strates strong performance in point clouds classification,
PointNet is adapted and trained for space-time event clouds
classification in this work. As shown in Figure 3(b), our in-
put is a set of event clouds within time interval T denoted
as ST = {ei|i = 1, ..., n}, where each event ei is a vec-
tor of its coordinates (x, y, t). The universal approximation
becomes

|f(ST )− γ(MAX
ei∈ST

{h(ei)})| < ε (6)

where e1, ..., en are elements in ST ordered arbitrarily, h
and γ are continuous functions approximated multi-layer
perception networks, and MAX is an element-wise max
pooling operator. PointNet architecture models set fuctions
that directly take a set of events ST as input and output a
global feature of the input event cloud.

3.2.2 PointNet++: a PointNet-based Hierarchic Fea-
ture Extraction Architecture

PointNet learns to summarize a global feature of the input
event clouds. It is not able to capture local structures in-
duced by the metric space points live in, limiting its abil-
ity to recognize fine-grained patterns or nonuniform points
distributions. The event clouds generated by movements
are not uniform and are largely dependent on the speed
of movements. The event clouds generated by hand ges-
tures involving two hands are more complex. These two
challenges make the global feature learned by PointNet less
discriminative. PointNet++ [21] is an advanced version of
PointNet that applies PointNet recursively on a nested par-
titioning of the input set. In this work, PointNet++ archi-
tecture is trained to aggregate local and global features of
event clouds. A hierarchical feature extraction architecture
is shown in Figure 4. Given the input event cloud of time
interval T denoted as ST = {e1, e2, ..., en}, farthest point
sampling (FPS) is used to select N1 number of events as
the central point of N1 sub-regions. Ball query finds out
all the neighboring events within radius r1 and a fixed K1

events is sampled. Thus, the input event cloud is portioned
into N1 sub-event clouds and each sub event cloud contains
K1 events. A basic PointNet network is trained to learn



Figure 4. A PointNet-based hierarchic feature learning architecture, PointNet++, is trained to learn local and global features of event clouds
generated by hand gestures

local feature of each sub event clouds. The learned fea-
ture summarizes the geometric distribution of events within
each sub-region and each learned feature becomes a point in
higher dimensionM1. They form a new event cloud in met-
ric space which is again partitioned into smaller sub event
clouds. A basic PointNet network learns the local feature
of each newly selected sub-region. The local features are
learned and aggregated layer by layer. The feature in the
final layer contains both local and global features of the in-
put event cloud and the fully connected layers are applied
to classify entire distribution of the event clouds generated
by movements.

3.3. Online Real-time Gesture Recognition

Many real time interaction tasks desire very low latency.
Some researches show that a good real-time gesture inter-
action application needs a response time within 100ms to
200ms [2]. This means that decision must be given within
200ms after starting of the gesture. As a 100-200ms du-
ration including processing time only contains a very short
snippet of the gesture, past information is combined with
current input for a better classification of a gesture in this
work. As shown in Figure 5, a rolling buffer mechanism
is applied to store past events of a predefined time duration
T . The events rolling buffer is updated every ∆t, which
means that the latest ∆t events will be popped into the
events rolling buffer each time while the earlier ∆t events
will be flopped. For each classification, the latest ∆t in-
put events are fused with past events stored in the events
rolling buffer to form the input event clouds to the trained
network for classification and down-sampling technique is
applied. To improve the classification performance, a deci-

Figure 5. Rolling buffer framework for real time recognition

sion rolling buffer is used to store classification results for
consecutiveLwindows and a majority decision filter is used
to make final classification for the input window captured
(L+ 1)

2
×∆t before. This decision filter outputs the class

with maximum frequency in decision buffer to remove un-
reliable classification results. The latency of this framework

is
(L+ 1)

2
×∆t+tc, where tc is the average processing time

of down-sampling and classification. By this rolling buffer
mechanism with a decision filter, a high classification accu-
racy can be achieved within a response time around 100ms.
The proposed event-clouds based online processing frame-
work with low memory requirement is suitable for many
portable platforms with limited memory budget.



Figure 6. Two-second snippets of 10 classes in DVS128 Gesture Dataset.

4. Experiments

The experiments are divided into two parts. First,
we evaluate the classification ability of proposed classi-
fier against different classifiers for event streams in of-
fline test. For comparison, a LSTM-based classifier is
used to handle event streams as pure temporal sequences.
Both PointNet-based and PointNet++-based classifiers are
trained to demonstrate the contribution of the hierarchical
feature extraction architecture. Second, we show the fast
response real-time hand gesture recognition system, where
a well-trained classifier is embedded in the rolling buffer
framework. We compare the proposed system with state-of-
the-art event-camera based hand gesture classification sys-
tem.

4.1. Dataset

The DVS128 Gesture Dataset [1] from IBM is used in
this paper. This dataset is captured by the iniLabs DVS128
camera with a 128×128 resolution. Thus, the spatial coor-
dinates x, y are within the range of [1, 128], where x, y ∈ N.
This dataset includes 1,342 instances of 11 classes of hand
and arm gestures, grouped in 122 trials collected from 29
subjects under different lighting conditions including natu-
ral light, fluorescent light, and LED light. Snippets of first
ten classes are shown in Figure 6. The 11th class is labeled
as random gestures excluding first ten classes. As provided
in the dataset [1], 23 subjects are used as the training set and

6 subjects are reserved for out-of-sample validation. The
dataset is available at http://research.ibm.com/dvsgesture/.

4.2. Classifiers Training

Different from conventional 3D point clouds, event
clouds are continuous video streams. To train the classifiers
with the appropriate signals, we first preprocess the dataset
by segmenting raw event streams through a fixed size slid-
ing window that shapes the input to classifiers. The slid-
ing window size determines input length of an event stream
segment used for one classification, which equals to the to-
tal length of event streams stored in the event rolling buffer.
In this experiment, the sliding window size is selected as a
fixed time interval T = 1s, 0.5s, 0.25s and each window is
labeled accordingly. The step size is chosen to be the half
of sliding window size when generating the training input.

As event cameras generate data on output-by-demand
nature, event rate per second is not fixed and is largely de-
termined by the range and frequency of movements. Given
a sliding window of 1s, the number of events varies from 5k
to 300k in the dataset [1] used in this experiment. In [20], it
has been proved that PointNet learns to summarize a shape
by a sparse set of critical points, which means that it is not
necessary to input all the events (points) generated in order
to obtain a reliable prediction. In our experiment, we ran-
domly sampled a subset of events ST

3D,n=256,512,1024 from
the original event stream ST

raw within each sliding window
as critical points input to the classifiers.



Experiment Sliding window
(model,classes,events) T=0.25s T=0.50s T=1.00s
LSTM,10,256 80.96 85.58 84.10
LSTM,10,512 88.17 86.55 82.28
PointNet,10,256 87.85 89.63 88.54
PointNet,10,512 88.67 90.20 89.61
PointNet,10,1024 88.77 89.68 89.92
PointNet++,10,256 95.28 95.59 95.54
PointNet++,10,512 95.39 96.34 95.61
PointNet++,10,1024 94.93 95.89 95.97
PointNet++,11,256 91.92 93.38 93.61
PointNet++,11,512 92.23 94.10 93.83
PointNet++,11,1024 91.87 91.91 92.63

Table 1. Classifers test results. Accuracy is reported in percentage.

As the event streams can be treated as temporal se-
quences, a two-hidden-layer-stacked LSTM model with 256
hidden neurons each layer is trained to consume event
streams as temporal sequences. For a fair comparison, the
input event sequence ST

temporal,n to the LSTM-based model
is the same set of events in ST

3D,n but treating them as a tem-
poral sequence of n events. The detailed setting of PointNet
classifier is MLP (64; 64; 64; 128; 1024) → FC(512) →
FC(256; 0.7) → FC(K). The detailed setting of Point-
Net++ (SSG) classifier is SA(256; 0.2; [64; 64; 128]) →
SA(64; 0.4; [128; 128; 256]) → SA([256; 512; 1024]) →
FC(512; 0.5)→ FC(256; 0.5)→ FC(K). All the classi-
fiers are trained on Linux system with single GPU.

4.3. Classification ability of different classifers

Classification ability of classifiers are evaluated with
different sliding window length (T = 0.25s, 0.5s, 1s)
and different number of down-sampled events (n =
256, 512, 1024). The out-of-sample test results of different
classifiers are shown in Table 1. LSTM-based models con-
sume event streams as pure temporal sequences and learn
the temporal features from the events. Lacking sufficient
spatial information makes LSTM-based models achieve the
lowest accuracy. PointNet summarizing a global feature of
the input event clouds achieves a accuracy 4%− 5% higher
than the LSTM-based approach. PointNet++ with a hier-
archical feature learning architecture demonstrates a clas-
sification accuracy 6% − 7% higher than PointNet. When
including random gestures in PointNet++ classifier, the ac-
curacy decreases 2%− 3%.

The confusion matrices of different classifiers with the
same experiment setup are shown in Figure 7. For LSTM
classifier, the error rates among class 0/7/8/9 are high.
PointNet classifier mainly reduces the misclassification rate
of class 7. PointNet++ classifier reduces misclassification
rate significantly. When adding the interference of random

Figure 7. Confusion matrices of different classifiers on the
same test setup, where 512 events are down-sampled from a
0.5s sliding window. Only non zero percentages are shown.
(a)LSTM, 10 classes (b)PointNet, 10 classes (c)PointNet, 10
classes (d)PointNet++, 11 classes

gestures (class 10), it affects moslty the classification of
class 8 and class 9. In summary, trained networks are more
likely to be confused among these two-hands gestures (class
0/7/8/9). PointNet++ shows a significant increase on classi-
fication ability of two-hands gestures due to the hierarchical
feature learning and aggregation process.

4.4. Online gesture recognition system

We embed the trained PointNet++ based event clouds
classifier into the proposed rolling buffer framework. The
performance of our online real-time gesture recognition
framework is evaluated with different events rolling buffer
length T and different decision buffer length L. The overall
results are summarized in Table 2. Given the same dataset,
Amir et al [1] using CNN approach achieved a system ac-
curacy of 96.49% without interference of random gestures
and a system accuracy of 94.59% when including random
gestures. Our work using event clouds approach achieved
a system accuracy of 97.08% without interference of ran-
dom gestures and 95.32 %. In [1], the average latency from
tstart to tdecision are 104.6ms and 120.6ms respectively.
In our approach, the average latency from tstart to tdecision
are 93ms (L=5), 118ms (L=7) and 143ms (L=9). For both
tests of 10 classes and 11 classes, we achieved better than



This work
Events rolling buffer length No.of events System acc. (10 classes) System acc. (11 classes)

(= sliding window) L = 5 L = 7 L = 9 L = 5 L = 7 L = 9

T = 1.00s
n=1024 96.96 96.69 96.81 92.71 92.83 93.17
n= 512 96.42 96.42 96.61 94.12 93.96 94.27
n= 256 96.53 96.53 96.58 94.28 94.81 94.59

T = 0.50s
n=1024 96.84 96.89 96.84 92.45 92.58 92.47
n= 512 96.93 96.81 96.80 94.33 94.47 94.73
n= 256 96.91 97.08 96.97 94.68 95.08 95.32

T = 0.25s
n=1024 95.70 95.78 95.90 92.12 91.92 92.07
n= 512 96.54 96.63 96.83 92.65 93.03 93.31
n= 256 96.27 96.42 96.47 93.33 93.87 94.03

Benchmark accuracy [1] 96.49 94.59

Table 2. System test results compared with state-of-the-art results. Accuracy is reported in percentage.

state-of-the-art accuracy with comparable system latency.

4.5. Robustness and efficiency of our method

As shown in Figure 6, it can be found that there are
many outliers in the event clouds, which are not triggered
by the target movements. It can be sensor noise or inten-
sity changes caused by the background or light condition
changes. In [20], it has been proved that PointNet itself is
robust to extra noise points. Thus, in our approach, bet-
ter than state-of-the-art result is achieved without using ex-
tra noise removal technique. Moreover, PointNet learns to
summarize a shape by a sparse set of critical points without
sacrificing the classification accuracy. It enables us to down
sample a small subset of critical events from the large num-
ber of raw events as classifier input, which largely reduce
the data to be processed by the classifier.

Compared with CNN-based approach, the data scale pro-
cessed in proposed framework is particularly small. As
shown in Figure 8, for a region of interest with 128×128
resolution, when casting the events back to virtual frames,
each frame contains 16k pixels. The data processed by the
CNN-based classifier per second is 16k×frame rate, where
the frame rate is usually greater than 30fps. In our ap-
proach, the input to classifier is not more than 1k when
down-sampling to 256 events per sliding window and the
number of sliding window is set as 40. The data processed
by the proposed classifier per second is around 1k×40,
which is more than 10 times smaller than the CNN-based
approach. It indicates that many real-time applications with
strict timing and memory requirements are possible to be
conquered by space-time event clouds concept with the pro-
posed framework.

5. Conclusions
In real-time gesture recognition, event cameras success-

fully address the issues of motion blur and large scale redun-

Figure 8. Efficiency of proposed framework (a)casting events back
into virtual frames takes in 16k input (b)event clouds-based ap-
proach takes in 1k input

dant data inherent in conventional cameras by its output-by-
demand nature. However, it is still challenging to think out
of the conventional view of space and time when dealing
with sparse and asynchronous event data. To the best of our
knowledge, this is the first work to interpret event streams as
space-time event clouds for gesture recognition problems.
We leverage PointNet++ in 3D object recognition to analyze
space-time event clouds. Our method achieves the best ever
accuracy of 97.08% on IBM DVS128 Gesture dataset [1].
Our results show that the proposed event clouds concept is
an effective representation to characterize the event streams
from event cameras. It preserves both spatial and temporal
information to analyze the event streams and is end-to-end
learnable. As verified in our experiments, event clouds can
be benefit from down-sampling too. We believe that space-
time event clouds are promising to conquer other real-time
multimedia and computer vision tasks with limited memory
and computation power.
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