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Abstract. Despite the great progress in human motion prediction, it
remains a challenging task due to the complicated structural dynam-
ics of human behaviors. In this paper, we address this problem in three
aspects. First, to capture the long-range spatial correlations and tem-
poral dependencies, we apply a transformer-based architecture with the
global attention mechanism. Specifically, we feed the network with the
sequential joints encoded with the temporal information for spatial and
temporal explorations. Second, to further exploit the inherent kinematic
chains for better 3D structures, we apply a progressive-decoding strat-
egy, which performs in a central-to-peripheral extension according to the
structural connectivity. Last, in order to incorporate a general motion
space for high-quality prediction, we build a memory-based dictionary,
which aims to preserve the global motion patterns in training data to
guide the predictions. We evaluate the proposed method on two challeng-
ing benchmark datasets (Human3.6M and CMU-Mocap). Experimental
results show our superior performance compared with the state-of-the-art
approaches.

Keywords: 3D motion prediction, transformer network, progressive de-
coding, dictionary module

1 Introduction

Human motion prediction aims to forecast a sequence of future dynamics based
on an observed series of human poses. It has extensive applications in robotics,
computer graphics, healthcare and public safety [20, 24, 26, 41, 40], such as hu-
man robot interaction [25], autonomous driving [35] and human tracking [18].
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Fig. 1: Left: Overview of our proposed network architecture for 3D mo-
tion prediction. Given a sequence of 3D human poses, we apply Discrete Cosine
Transform (DCT) to encode the temporal information of each joint into fre-
quency coefficients. The DCT coefficients of sequential joints are then fed into
the transformer-based architecture for progressive predictions. Additionally, we
use memory-based dictionary to incorporate the global motion knowledge into
the model. We apply inverse DCT (IDCT) to convert the predicted DCT coeffi-
cients back to the temporal domain. Right: Progressive decoding strategy.
We predict the DCT coefficients of the target joints progressively, which per-
forms in a central-to-peripheral manner in accordance with the kinematic chains
(bottom left), with the encoded context feature C and the dictionary information
F.

Due to the inherent temporal nature of this task, many existing methods [33,
14, 43] resort to recurrent neural networks (RNN) and their variants for tempo-
ral modeling. However, simply relying on the temporal coherence is not enough,
since the bio-mechanical dynamics of human behavior are extremely compli-
cated, which not only correspond to temporal smoothness, but also highly relate
to spatial joint dependencies. To address this issue, previous work attempted
to embed the spatial configurations into the modeling space, so as to enhance
the validity of the 3D structures. For instance, Li et al. [28] relied on a convolu-
tional filter to capture the dependencies across the spatial and temporal domains.
The range of such dependencies, however, is strongly limited by the size of the
convolutional kernel. Mao et al. [32] applied Discrete Cosine Transform (DCT)
to encode temporal information and designed a Graph Neural Network (GNN)
to model spatial correlations. Although achieving good results, it forgoes the
prevailing sequential decoding architecture and thus cannot explicitly leverage
context features that may lead to further improvement.

Based on these observations, we aim to efficiently capture long-range spatial-
temporal dependencies while also incorporating the advantage of sequential mod-
eling. In particular, motivated by substantial performance gains achieved by
transformer-based networks [42, 12, 37, 11] in Natural Language Processing (NLP),
we propose to apply the transformer architecture to simultaneously model the
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spatial and temporal dependencies of human motion. A key benefit of the trans-
former is that it can capture the global dependencies among the input and output
sequences with the help of the attention mechanism. Note that instead of directly
feeding sequential poses into the network, following [32] we encode the temporal
trajectories of each joint into the frequency domain, before transferring these
embedded temporal features to the network. In this way, the model essentially
works in the trajectory domain while simultaneously drawing global attention
among different joints, as well as between the input historical trajectories and
the output predictions.

Moreover, we would like to point out that simply using the transformer for
motion prediction does not fully exploit the kinematic chains of body skeletons,
yet these are important since they underlie the motions in human behavior. For
instance, absolute displacement of a wrist is often mediated by initial movement
of the shoulder, followed by the elbow. Inspired by spatial explorations in 3D
human pose estimation [27, 8], we propose to exploit the structural configura-
tions by predicting the joint trajectories progressively in a central-to-peripheral
manner. More precisely, as depicted in Figure 1 (bottom left), we first estimate
the future dynamics of the central body as seed points, and then sequentially
propagate the joint predictions based on the kinematic connections.

In addition, the typical approach for most encoder-decoder frameworks, when
decoding the motion predictions, is to mainly focus on the single source video
that is being processed. This may not be the optimal, since partial motions of
many actions follow certain types of general patterns (e.g. walking feet, waving
hands and bending knees), which may appear in multiple videos with similar but
not identical context. Thus, we further propose to incorporate a general motion
space into the predictions. Specially, inspired by the memory scheme that is
widely utilized in Question Answering (QA) [39, 46], we design a memory-based
dictionary to store the common actions across different videos in training data.
From the dictionary, we can query the historical motions C and construct the
future dynamics F to guide the predictions, as shown in Figure 1 (left).

In summary, our contributions of this work are threefold:

• We propose to leverage the transformer-based architecture to simultaneously
exploit the spatial correlations and the temporal smoothness of human mo-
tion, by treating the sequential joints with the encoded temporal features as
the input of the network.

• To further exploit the structural connectivity of human skeletons, we deploy
a progressive decoding strategy to predict the future joint dynamics in a
central-to-peripheral manner in accordance with the kinematic chains of a
human body.

• To incorporate the general motion space for high quality results, we build a
memory-based dictionary to guide the predictions, which preserves the cor-
respondences between the historical motion features and the representative
future dynamics.
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We conducted comprehensive experiments on two widely-used benchmarks for
human motion prediction: the Human3.6M dataset and the CMU-Mocap dataset,
and our proposed method improves state-of-the-art performance in both datasets.

2 Related Work

Human motion prediction. Human motion predictions have been extensively
studied in the past few years. Early approaches tackled this problem with Hidden
Markov Model [4], linear dynamics system [36], and Gaussian Process latent vari-
able models [44], etc., which commonly suffer from the computational resources
and can be easily stuck in non-periodical actions. Recently, due to the success of
the sequence-to-sequence inference, RNN-based architectures have been widely
used in state-of-the-art approaches [17, 14, 5, 2, 45]. For instance, Fragkiadaki et
al. [14] proposed a Encoder- Recurrent-Decoder (ERD) framework, which maps
pose data into a latent space and propagates it across the temporal domain
through LSTM cells. To facilitate more realistic human motions, Gui et al. [19]
introduced an adversarial training and Wang et al. [43] employed imitation learn-
ing into the sequential modeling. While pushing the boundaries of the motion
predictions, many of these RNN-based models directly use a fully-connected
layer to learn the representation of human pose, which to some extent overlook
the inherent spatial configurations of human body.

Structural-aware Prediction. Several recent works [32, 22, 27, 1, 29, 31, 30]
tried to embed the spatial articulations of human body to enhance the validity of
the 3D structures. For example, Jain et al. [22] proposed to encode the spatial and
temporal structure of the pose via a manually designed spatio-temporal graph.
Although taking structural configurations into account, these graphs, however,
have limited flexibility for discovering long-range interactions between different
joints. To address this issue, Mao et al. [32] leveraged GNN-based architectures,
where all joints are linked together for full explorations. While achieving good
results, this method does not explicitly utilize the kinematic chains of body struc-
ture. In contrast, to leverage the long-range connections while also exploiting the
structural connectivity of body skeletons, we apply a transformer-based archi-
tecture to capture the long-range spatial and temporal dependencies of human
motion. Additionally, we propose to progressively propagate the joint predictions
in a central-to-peripheral manner to further exploit the spatial configurations.

Transformer Network. The transformer has become the state-of-the-art ap-
proach in Natural Language Processing (NLP), with extensive architectures such
as Bert [12], GPT [37], XLNet [11]. Recently, it is also investigated in Computer
Vision, such as Image GPT[10] and Object Detection[9]. Compared with the
traditional recurrent neural network (RNN) that explicitly models the compati-
bility of adjacent tokens, the transformer takes an entirely different global atten-
tion mechanism, which allows to capture the long-term dependencies between
the input and the output sequences. Inspired from this, we propose to lever-
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Fig. 2: Left: The architecture of the conventional transformer [42], where
the far left side is the transformer-encoder that encodes the input into context
features C, while the relatively right side is the decoder that recursively gener-
ates the output sequence with the encoded context features. Right: Query and
reconstruction procedure in memory-based dictionary for joint j. The
input is the observed context features encoded from the historical trajectories,
and the output is the constructed features for predicting future dynamics.

age transformer-based architecture to capture the spatio-temporal correlations
of human motion. Particularly, instead of directly taking the sequential poses as
the input, we follow [32] to apply DCT to encode the trajectory of each joint.
The sequential joints with encoded temporal patterns are then fed into the net-
work for global explorations.

3 Methodology

3.1 Overview

Figure 1 gives an overview of our proposed network architecture. Given a series
of human motion poses X1:T = [x1,x2, ...,xT ], where xt denotes the pose at
frame t, our target is to generate a corresponding prediction XT+1:T+Tf

for the
future Tf frames. To achieve this goal, different from most existing work that
employ RNN-based architectures to model the temporal information of human
motions, we leverage the transformer network to capture the long-range spa-
tial and temporal correlations of human motions with the help of the attention
mechanism. Specifically, we apply Discrete Cosine Transform (DCT) to encode
the temporal information of each joint into frequency space and feed the net-
work with the sequential joints with encoded temporal patterns. Additionally,
motivated by the inherent structural connectivity of body skeletons, we explic-
itly stagger the decoding into predefined progressive steps. This is performed
in a central-to-peripheral manner according to the kinematic chains, with a to-
tal update at the final stage (see Figure 1 bottom-left). To create a generalized
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and full-spectrum human motion space across the different videos in training
data, we further introduce a dictionary as an auxiliary decoder to enhance the
prediction quality. The whole model is trained in an end-to-end manner with
backpropagation. Next, we describe the individual components in detail.

3.2 Revisiting Transformer

The transformer architecture is a core pillar underpinning of many state-of-the-
art methods in Natural Language Processing (NLP) since [12], showing superior
performance compared to conventional RNN-based structures. This is mainly
because RNNs have difficulties in modelling long-term dependencies, while the
transformer overcomes this limitation by leveraging the global attention mecha-
nism to draw the dependencies between the entire input and output sequences,
without regard to their distances. In particular, as shown in Figure 2 (left),
the transformer employs an attention-based encoder-decoder framework, where
the encoder applies self-attention to extract the useful context from the input
sequence, and the decoder consecutively produces the prediction based on the
global dependencies between the context features and the previous output se-
quences. To make use of the sequential order, the transformer additionally inserts
a “positional encoding” module to the embeddings at the bottom of the encoder
and decoder stacks, assigning each dimension of each token with a unique en-
coded value.

3.3 Transformer for Pose Prediction

Motivated by the substantial performance gain induced by the transform archi-
tecture in NLP, we propose to solve the pose prediction problem with the help
of a transformer-based network. A straightforward way is to take the human
pose at each time step as corresponding to a “word” in the machine translation
task, and then predict the pose at the next time step as akin to predicting the
next word. However, doing so blindly ignores the spatial dependencies between
joints, which have proven to be highly effective in state-of-the-art methods for
pose estimation [8, 27, 29, 13, 15, 16] and pose prediction [28, 32].

To tackle this issue and leverage both the spatial and temporal dependencies
of human poses, following [32] we encode the temporal information of each joint
into frequency space. Specifically, we first replicate the last pose xT for Tf times
to generate a temporal sequence of length T + Tf , and then compute the DCT
coefficients of each joint. In this way, the task becomes that of generating an out-
put sequence X̂1:T+Tf

from an input sequence X1:T+Tf
, with our true objective

to predict XT+1:T+Tf
.

We then feed the obtained DCT coefficients into the transformer-based net-
work, so as to capture the spatial dependencies with the help of the attention
mechanism. A key benefit of this design is that the network essentially works
in the trajectory space while simultaneously modeling the spatial dependencies
among the input and the output joint sequences. Moreover, thanks to the posi-
tional encoding, the joint index can be explicitly injected into motion features,
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allowing the network to not only learn the trajectory of each joint, but also incor-
porates the joint identities into this process. To encourage smoothness between
the input and output trajectories, we also apply the residual scheme at the end
of the decoding (see Figure 1 right).

3.4 Progressive Joint Propagation

The conventional transformer decoder works auto-regressively during inference,
that is, conditioning each output word on previously generated outputs. In terms
of pose prediction, we observe that human motion is naturally propagated se-
quentially based on the kinematic chains of body skeletons. For instance, a person
may initiate movement of the left shoulder, which then drives the movement of
the left elbow and eventually that of the left wrist.

Motivated by this, we propose to progressively express the 3D pose predic-
tions in a similar manner. In particular, as shown in Figure 1 bottom-left, we
treat the central eight joints as the seed joints, and estimate their future motions
first, based on their historical motions. Next we sequentially propagate the joint
predictions from center to periphery, according to the structural connectivity of
the body skeleton. Figure 1 (right) depicts the details of the progressive decoding
process: we iteratively predict the residual DCT coefficients of the joints, given
the encoded context feature C = [c1, c2, ..., cJ ] and the auxiliary information
F = [f1, f2, ..., fJ ] from the dictionary, where J is the number of joints. Math-
ematically, for the sth progressive decoding, we formulate the computational
process as:

X
(s)
in = [X̂p;X

(s)
h ], (1)

X̂
(s)
out = X

(s)
h + Decoder(X

(s)
in ,C,F

(s)), (2)

X̂p = [X̂p; X̂
(s)
out], (3)

where X
(s)
in denotes the input of the progressive decoder at stage s, which is

a combination of the previously predicted joint sequence X̂p and the historical

motion of the target joints X
(s)
h . X̂

(s)
out is the output of the sth decoder, which

summarizes the historical motions X
(s)
h and the generated residual DCT coeffi-

cients. F(s) refers to the auxiliary information used for stage s, containing the
guided future dynamics of the target joints at stage s. Note that each time we
generate the estimation of certain joints X̂out, we merge them into the previ-
ously predicted joint sequence X̂p for the next iteration. In this way, we ensure
that the estimation is propagated along the structural connectivity and the en-
tire body prediction is constructed in the order of the kinematic chains via the
progressive joint propagation. To further refine the full-body prediction, we add
a total updating stage at the end of the progressive decoder.

3.5 Dictionary

One potential limitation of the encoder-decoder framework (e.g. the transformer,
the RNN-based modeling) is that the decoder mainly focuses on one input se-
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quence that is currently being processed while decoding. However, partial mo-
tions of many actions follow certain common patterns (e.g. walking feet, bending
knees), which may appear in multiple videos with similar but not identical con-
text features. To incorporate this generalized motion prior knowledge for better
prediction quality, we design a memory-based dictionary to guide the motion
prediction, inspired by the memory scheme [39, 46, 47] leveraged to preserve a
knowledge base for comprehensive understanding. The dictionary is built to store
the full spectrum of correspondences between the observed motion features and
the representative future dynamics of each joint across different videos in train-
ing data. Note that although the correspondences are mainly constructed for
each joint, the global motion of the full body is also taken into account, due to
the self-attention mechanism of the transformer encoder.

We propose to learn this dictionary via query and construction processes.
This dictionary D is defined as:

D =
{(

Dkey
j ,Dvalue

j

)
| j = 1, 2, . . . , J

}
, (4)

where Dkey
j ,Dvalue

j ∈ RN×M are the key and the value matrices respectively for
joint j, N is the number of memory cells / clusters for each joint, and M is the
dimension of a feature stored in a memory cell. As shown in Figure 2 (right),
the key matrix is used to score an observed motion query of each memory cell
so as to better combine the value elements. Mathematically, given an encoded
context motion feature cj ∈ RM of joint j, the query process can be written as:

qj = softmax
(
Dkey

j cj

)
, (5)

where qj is the query result in the memory network for joint j. Then we define
the construction process as

fj =
(
Dvalue

j

)T
qj , (6)

where fj is the feature vector constructed by the memory network for joint
j, representing the future dynamics summarized from the learned generalized
motion space. In our implementation, we set N as 100 and M as 512.

3.6 Training Strategy

Since the construction of the dictionary relies on the context features from the
transformer encoder, we first train the whole network without the dictionary
module. Then we learn the dictionary and finetune the whole model subse-
quently. For the first stage, we employ the following loss function, which aims to
minimize the differences between the predicted sequential poses converted from
the DCT coefficients and the corresponding ground truth:

L =

S∑
s=1

λs
∑
j∈Js

T+Tf∑
t=1

P(x̂j,t, x
GT
j,t ) (7)
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Here x̂j,t refers to the prediction of the jth joint in frame t and xGT
j,t is the

corresponding ground truth. S is the number of the progressive decoding stages,
Js is the set of joints to be predicted at stage s, λs is the weight for each stage, T
and Tf represent the length of observed frames and predicted frames respectively.
P is a distance function that uses L1 loss for joint angle representation and L2

loss for 3D joint coordinates, both of which are typical representations in motion
prediction literature. Following [32], we sum the errors over both future and
observed time steps, to provide more signals for the learning process.

Having trained the transformer encoder and decoder, we next learn the dic-
tionary module. Specifically, given the observed motion features C, we seek to
query for similar historical motion patterns and produce the auxiliary informa-
tion F containing future dynamics for each joint. The auxiliary information is
typically concatenated with the features generated from the decoder and sent
into the final linear layer of the progressive decoder (see Figure 1 right), so as to
produce the prediction of each joint. Formally, we train the dictionary by penaliz-
ing the difference between the produced joint predictions and the corresponding
ground truth:

Ld =

J∑
j=1

T+Tf∑
t=1

P(x̂j,t, x
GT
j,t ) (8)

where J is the number of joints.

Finally, we finetune the whole model in an end-to-end manner, with the same
loss function (Equation (7)) as proposed in the first training stage.

4 Experiments

4.1 Implementation details

In our experiments, we chose the conventional transformer proposed in [42], with
8 headers and 512 hidden units for each module. Both the encoder and the pro-
gressive decoder contain a stack of K = 4 identical layers. To accelerate the con-
vergence, we applied the scheduled sampling scheme [3] during training, which
randomly replaces part of the previous joint predictions with the ground truth in
the input to the progressive decoder. The whole model was implemented within
the PyTorch framework. For the first training stage described in Section 3.6, we
set λs = 1, and trained for 40 epochs with the Adam optimizer [23]. The learning
rate started from 5e-4, with a shrink factor of 0.96 applied every two epochs.
For the second stage, we learned the dictionary for 20 epochs with the learning
rate of 5e-4. Finally, the whole network was finetuned in an end-to-end manner,
using a relatively small learning rate of 5e-5. All experiments were conducted on
a single NVIDIA Titan V GPU, with a batch size of 128 for both training and
evaluation.
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Table 1: Short-term prediction results in Mean Angle Error (MAE) on Hu-
man3.6M for the main actions due to limited space. The best result is marked
in bold. The full table can be found in supplementary.

Walking Eating Smoking Directions Greeting Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

zero-velocity [33] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.39 0.59 0.79 0.89 0.54 0.89 1.30 1.49 0.40 0.78 1.07 1.21
Residual sup. [33] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.36 0.67 1.02 1.15
convSeq2Seq [28] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.38 0.68 1.01 1.13
AGED w/o adv [19] 0.28 0.42 0.66 0.73 0.22 0.35 0.61 0.74 0.30 0.55 0.98 0.99 0.26 0.46 0.71 0.81 0.61 0.95 1.44 1.61 0.32 0.62 0.96 1.07
AGED w/ adv [19] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.23 0.39 0.63 0.69 0.56 0.81 1.30 1.46 0.31 0.54 0.85 0.97
Imitation [43] 0.21 0.34 0.53 0.59 0.17 0.30 0.52 0.65 0.23 0.44 0.87 0.85 0.27 0.46 0.81 0.89 0.43 0.75 1.17 1.33 0.31 0.57 0.90 1.02
GNN [32] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.27 0.51 0.83 0.95

ours 0.17 0.30 0.51 0.55 0.16 0.29 0.50 0.61 0.21 0.40 0.85 0.78 0.22 0.39 0.62 0.69 0.34 0.58 0.94 1.12 0.25 0.49 0.83 0.94

Table 2: Short-term prediction results in Mean Per Joint Position Error
(MPJPE) on Human3.6M for the main actions due to limited space. The best
result is marked in bold. A 3D suffix to a method indicates that the method
was directly trained on 3D joint positions. Otherwise, the results were obtained
by converting the joint angle to 3D positions. The best result is marked in bold
and the full table can be found in supplementary.

Walking Eating Smoking Directions Greeting Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Residual sup. [33] 21.7 38.1 58.9 68.8 15.1 28.6 54.8 67.4 20.8 39.0 66.1 76.1 27.9 44.8 63.5 78.2 29.3 56.0 110.2 125.6 27.9 51.6 88.9 103.4
Residual sup. 3D [33] 23.8 40.4 62.9 70.9 17.6 34.7 71.9 87.7 19.7 36.6 61.8 73.9 36.5 56.4 81.5 97.3 37.9 74.1 1390 158.8 30.8 57.0 99.8 115.5
convSeq2Seq [28] 21.8 37.5 55.9 63.0 13.3 24.5 48.6 60.0 15.4 25.5 39.3 44.5 26.7 43.3 59.0 72.4 30.4 58.6 110.0 122.8 24.9 44.9 75.9 88.1
convSeq2Seq 3D [28] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 22.0 37.2 59.6 73.4 24.5 46.2 90.0 103.1 19.6 37.8 68.1 80.2
GNN [32] 11.1 19.0 32.0 39.1 9.2 19.5 40.3 48.9 9.2 16.6 26.1 29.0 11.2 23.2 52.7 64.1 14.2 27.7 67.1 82.9 13.5 27.0 54.2 65.0
GNN 3D [32] 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 12.1 25.0 51.0 61.3

Ours 9.6 18.0 33.1 39.1 9.1 19.5 40.2 48.8 7.2 14.2 24.7 29.7 9.3 22.0 51.6 63.2 15.4 30.7 71.8 82.8 11.9 26.1 53.2 64.5
Ours 3D 7.9 14.5 29.1 34.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 11.1 22.7 48.0 58.4 13.2 28.0 64.5 77.9 10.7 23.8 50.0 60.2

Table 3: Short and long-term prediction of 3D joint positions in MPJPE on
CMU-Mocap dataset.

Basketball Basketball Signal Directing Traffic Jumping Running
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. 3D [33] 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1 36.0 68.7 125.0 145.5 195.5 15.6 19.4 31.2 36.2 43.3
GNN 3D [32] 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6 25.5 36.7 39.3 39.9 58.2

Ours 3D 11.6 21.7 44.4 57.3 90.9 2.6 4.9 12.7 18.7 75.8 6.2 12.7 29.1 39.6 149.1 12.9 27.6 73.5 92.2 176.6 23.5 34.2 35.2 36.1 43.1

Soccer Walking Washwindow Average
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. 3D [33] 20.3 39.5 71.3 84 129.6 8.2 13.7 21.9 24.5 52.2 8.4 15.8 29.3 35.4 61.1 16.8 30.5 54.2 63.6 99.0
GNN 3D [32] 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3 11.5 20.4 37.8 46.8 96.5

Ours 3D 9.2 18.4 39.2 49.5 93.9 6.7 10.7 21.7 27.5 37.4 5.4 11.3 29.2 39.6 79.1 9.8 17.6 35.7 45.1 93.2

4.2 Datasets and Evaluation Metrics

We evaluated our method on two publicly available datasets: the Human3.6M
dataset [21] and the CMU-Mocap dataset7 for 3D human motion prediction.

Human3.6M: The Human3.6M dataset [21] is a large-scale and commonly
used dataset for human motion prediction, which consists of 7 subjects perform-
ing 15 actions, such as “Walking”, “Sitting” and “Smoking”. Following the stan-
dard setup in [33, 28, 19, 43, 32], the global rotations, translations and constant
joints were excluded from our experiments. We down-sampled each sequence to
25 frames per second and applied the evaluation on subject 5 (S5), as proposed
in [32, 28, 33].

7 Available at http://mocap.cs.cmu.edu/
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(a)“Walking” in Human3.6M

(b) “Soccer” in CMU-Mocap

Fig. 3: (a) Qualitative comparison of long-term prediction on Human
3.6M dataset. From top to bottom, we show the ground truth, the results of
Residual sup.[33], GCN [32] and our method. The results show that our approach
generates more realistic and accurate results.(b) Qualitative analysis for the
impact of the dictionary. From top to bottom, we show the ground truth,
the results without and with the dictionary module. We see that adding the
dictionary facilitates more descriptive future dynamics.

CMU-Mocap: To show the generalization ability of our proposed method, we
also evaluated our performance on the CMU mocap dataset (CMU-Mocap). Fol-
lowing [32, 28], we selected eight actions for evaluation, including “basketball”,
“baseball”, “soccer”, etc. The data processing is the same as for Human3.6M.

Evaluation Metric: The evaluation was performed under two metrics. Fol-
lowing [33, 28, 19, 43, 32], we first report the Euclidean distance between the pre-
dicted and the ground-truth joint angles in Euler angle representation, which
can be referred to as Mean Angle Error (MAE). In [32], an alternative metric
of Mean Per Joint Position Error (MPJPE) in millimeters is adopted, which is
also widely used in 3D pose estimation field [13, 34, 27, 8, 7, 6, 15, 38, 48]. Com-
pared with MAE, MPJPE has been noted to be more effective in measuring the
predicted human poses due to the inherent ambiguity in angle space, where two
different sets of angles can yield the same 3D pose. To show this, we measured
the MPJPE in two ways: directly using 3D coordinates to train the network (via
DCT/IDCT), and converting Euler angles into 3D joint locations.
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Table 4: Long-term prediction of 3D joint po-
sitions in MPJPE on Human 3.6M dataset.
Our method using 3D coordinates yields the
best performance.

Walking Eating Smoking Discussion Average
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

Residual sup. [33] 79.4 91.6 82.6 110.8 89.5 122.6 121.9 154.3 93.3 119.8
Residual sup. 3D [33] 73.8 86.7 101.3 119.7 85.0 118.5 120.7 147.6 95.2 118.1
convSeq2Seq [28] 69.2 81.5 71.8 91.4 50.3 85.2 101.0 143.0 73.1 100.3
convSeq2Seq 3D [28] 59.2 71.3 66.5 85.4 42.0 67.9 84.1 116.9 62.9 85.4
GNN [32] 55.0 60.8 68.1 79.5 42.2 70.6 93.8 119.7 64.8 82.6
GNN 3D [32] 42.3 51.3 56.5 68.6 32.3 60.5 70.5 103.5 50.4 71.0

Ours 51.8 58.7 59.3 76.5 40.3 76.8 82.6 107.7 58.5 79.9
Ours 3D 36.8 41.2 58.4 67.9 29.2 58.3 74.0 103.1 49.6 67.6
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Fig. 4: Average 3D position error
of each predicted frame for all
actions on Human 3.6M dataset.
The error accumulates much faster
with the temporal model and
our proposed progressive spatio-
temporal method achieves the best
results.

4.3 Comparison with the State-of-the-art Methods

For fair comparison, we report both short-term (10 frames in 400 milliseconds)
and long-term predictions (25 frames in 1 second) for the two datasets, given
the input of consecutive 10-frame human poses.

Results on Human3.6M: For short term predictions, we evaluated our re-
sults under both MAE (Table 1) and MPJPE (Table 2) protocols, in compari-
son to state-of-the-art baselines [33, 28, 19, 43, 32]. As previously mentioned, for
MPJPE we can either directly use 3D coordinates or convert angles to 3D joint
locations. As can be seen, our proposed method consistently outperformed all the
state-of-the-art methods on most actions for both MAE and MPJPE protocols.
The improvement is more obvious when measuring with the MPJPE metric, for
which the best performance was achieved when directly using 3D joint locations
during training. Moreover, we would like to point out that a high error in angle
space (e.g. Phoning Action under MAE protocol) does not necessarily generate
worse results in 3D (Phoning under MPJPE protocol). This can be explained
by the inherent ambiguity of the angle representation, since two different sets of
angles can generate the same 3D human pose. Based on this observation, for the
following experiments, we mainly report our results under the MPJPE metric,
using the 3D coordinates for training.

Besides the short term predictions, we also compared our results with the
state-of-the-art methods [32, 33, 28] in long-term scenarios. For fair comparison,
we report our results for 4 main classes used in the previous work, including the
“Walking”, “Eating”, “Smoking” and“Discussion” actions under MPJPE eval-
uation. As shown in Table 4, similar to the short-term results, our results sur-
passed all other state-of-the-art methods, reducing the average errors to 49.6mm
in 560ms and 67.6mm in 1000ms predictions when directly training and evalu-
ating with the 3D joint locations.

For qualitative analysis, we provided visual comparisons with the state-of-
the-art approaches [32, 33] for long-term (Figure 3 (a)) scenario, which fur-
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Table 5: Influence of the spatial temporal explorations and the progressive-
decoding strategy on 4 actions of Human3.6M. For fair comparison, we exclude
the dictionary module for all models.

Walking Eating Smoking Discussion Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

temporal 28.9 47.2 69.7 77.8 17.2 31.6 58.3 69.0 18.8 35.7 65.4 76.1 27.9 53.1 82.0 87.9 23.2 41.9 68.9 77.7
non-progressive spatial-temporal 10.5 17.1 31.9 35.7 10.1 21.2 40.7 47.5 8.6 15.9 26.5 30.4 10.6 24.1 47.5 51.3 9.9 19.5 36.6 41.2

progressive spatial-temporal (proposed) 8.3 15.1 30.3 35.2 8.8 19.3 39.0 46.1 7.1 14.0 24.9 28.1 8.9 22.1 44.3 49.1 8.3 17.6 34.6 39.6

Table 6: Impact of the propagating directions on Human3.6 M dataset under
the MPJPE protocol. The outward direction performs in the proposed central-
to-peripheral extension while the inward direction contrastly propagate the pre-
dictions from the outside to inside body.

Walking Eating Smoking Discussion Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Inward Propagation 8.9 15.8 30.5 34.9 8.9 19.5 38.9 46.7 7.6 15.0 25.0 29.2 9.4 23.0 45.3 49.9 8.7 18.3 34.9 40.2
Outward Propagation(proposed) 7.9 14.5 29.1 33.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0 7.8 16.8 33.6 38.5

Table 7: The impact of the dictionary module on Human3.6M dataset under the
MJMPE metric.

Walking Eating Smoking Discussion Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

w/o dictionary 8.3 15.1 30.3 35.2 8.8 19.3 39.0 46.1 7.1 14.0 24.9 28.1 8.9 22.1 44.3 49.1 8.3 17.6 34.6 39.6
w/ dictionary(proposed) 7.9 14.5 29.1 33.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0 7.8 16.8 33.6 38.5

ther underscored how our method generates more realistic results, matching
the ground truth better.

Results on CMU-Mocap: Table 3 compared the performance of our approach
with the previously reported results [32, 33] on the CMU-Mocap dataset. For
fair comparison, all methods were directly trained with 3D joint coordinates and
evaluated under the MPJPE protocol. It can be seen that compared with the
state-of-the-art methods, our approach achieved the best results on average and
over most of the action classes.

4.4 Ablation Study

Advantages of spatio-temporal correlation & joint propagation. We first
quantify the importance of leveraging both spatial and temporal correlations
and assess the effectiveness of the progressive-decoding strategy. For fair com-
parisons, we excluded the dictionary from the model and ablated our proposed
method (progressive spatio-temporal) with the following baselines: 1) tempo-
ral: We used the straightforward way of applying the transformer network, which
treats a pose at each time step as a “word” in machine translation task and se-
quentially generates the pose prediction of each frame; 2) non-progressive
spatio-temporal: We used DCT to encode the temporal information of each
joint and fed the sequential joints into the transformer network, so as to cap-
ture the spatial and temporal dependencies. However, the decoder generates the
whole body predictions at one step, without progressively producing the results.
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As shown in Table 5, compared with the temporal baseline, exploiting both the
spatial and temporal correlations (non-progressive spatio-temporal) considerably
improved the performance by a large margin, reducing the average MPJPE er-
ror from 77.7 mm to 41.2 mm in 400ms prediction. This result can be further
enhanced by applying our proposed progressive-decoding strategy, dropping the
MPJPE error to 39.6mm in 400ms prediction. Moreover, as illustrated in Fig-
ure 4, the 3D errors accumulated much faster with the temporal model than
the spatio-temporal approaches, and the proposed progressive joint propagation
consistently outperformed the non-progressive counterpart across all time steps.

Impact of the propagating direction. Despite the overall effectiveness of
progressive joint propagation, we wanted to investigate how the propagation
direction impacts the results. To address this, we employed the progressive-
decoding in two directions: the outward (proposed) direction that propagates
from the body center to the periphery, and the inward (opposite) direction that
propagates from outside to the center. As shown in Table 6, the outward prop-
agation yielded superior performance, indicating the benefit of guiding joint
extension with the more stable motion cues from the center body.

Impact of using the dictionary. We examined the impact of the dictionary
quantitatively and qualitatively. As presented in Table 7, adding the dictionary
consistently reduced the 3D errors among the four main action classes on the
Human 3.6M dataset, which quantitatively shows the effectiveness of dictionary
module. To gain more insight into what the dictionary has learned and how
the dictionary enhances the prediction quality, in Figure 3 (b), we qualitatively
compared our method with or without the dictionary. As can be seen, when
adding the dictionary for general motion guidance, we produce more plausible
and descriptive future dynamics, such as “smooth running” after kicking a ball
when playing soccer.
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