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Abstract. Because of the ambiguous definition of anomaly and the com-
plexity of real data, video anomaly detection is one of the most chal-
lenging problems in intelligent video surveillance. Since the abnormal
events are usually different from normal events in appearance and/or
in motion behavior, we address this issue by designing a novel convolu-
tion autoencoder architecture to separately capture spatial and temporal
informative representation. The spatial part reconstructs the last indi-
vidual frame (LIF), while the temporal part takes consecutive frames as
input and RGB difference as output to simulate the generation of opti-
cal flow. The abnormal events which are irregular in appearance or in
motion behavior lead to a large reconstruction error. Besides, we design
a deep k-means cluster to force the appearance and the motion encoder
to extract common factors of variation within the dataset. Experiments
on some publicly available datasets demonstrate the effectiveness of our
method with the state-of-the-art performance.

Keywords: video anomaly detection; spatio-temporal dissociation; deep
k-means cluster

1 Introduction

Video anomaly detection refers to the identification of events which are deviated
to the expected behavior. Due to the complexity of realistic data and the limited
labelled effective data, a promising solution is to learn the regularity in normal
videos with unsupervised setting. Methods based on autoencoder for abnormality
detection [3, 8, 31, 34, 38, 39], which focus on modeling only the normal pattern
of the videos, have been proposed to address the issue of limited labelled data.

Since abnormal events can be detected by either appearance or motion, [23]
uses two processing streams, where the first autoencoder learns common ap-
pearance spatial structures in normal events and the second stream learns its
corresponding motion represented by an optical flow to learn a correspondence
between appearances and their associated motions. However, optical flow may
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not be optimal for learning regularity as they are not specifically designed for
this purpose [8, 21]. Moreover, optical flow estimation has a high computational
cost [33]. To overcome this drawback, we build a motion autoencoder with the
stacked RGB difference [36] to learn motion information, where the RGB differ-
ence cue can be obtained much faster than the motion cue of optical flow.

In this paper, we decouple the spatial-temporal information into two sub-
modules to learn regularity in both spatial and temporal feature spaces. Given
the consecutive frames, the spatial autoencoder operates on the last individual
frame (LIF) and the temporal autoencoder conducts on the rest of video frames.
In our architecture, the temporal part produces the RGB difference between the
rest of video frames and the LIF to get motion information. The spatial part, in
the form of individual frame appearance, carries information about scenes and
objects depicted in the video.

Fig. 1. Overview our video anomaly detection architecture. We dissociate the recon-
struction of spatial-temporal information into two independent parts. The spatial part
reconstructs the LIF, and the temporal part generates the RGB difference between
the rest of video frames and the LIF. Two deep k-means clusters separately force the
spatial encoder and the temporal encoder to obtain a more compressed data repre-
sentation. The orange area represents our variance based attention module which can
automatically assign an importance weight to the moving part of video clips in the
motion autoencoder.

As shown in Figure 1, our two sub-modules can independently learn appear-
ance and motion features, thus no matter the event is irregular in appearance
feature space or motion feature space, the reconstruction of the input consecu-
tive frames will get a large reconstruction error. Based on the characteristic that
most part of the surveillance video is still and outliers have a high correlation
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to fast moving, we exploit a variance based attention module to automatically
assign an importance weight to the moving part of video clips, which is helpful
to accelerate the convergence of motion autoencoder.

In addition, we exploit two deep k-means clusters to separately force the
spatial encoder and the temporal encoder to obtain a more compressed data
representation and extract the common factors of variation within the normal
dataset. By minimizing the distance between the data representation and cluster
centers, normal examples are closely mapped to the cluster center while anoma-
lous examples are mapped away from the cluster center.

In brief, our approach considers both appearance and motion features based
on the perception that compared with normal behaviors, an abnormal behavior
differs in their appearance and motion patterns. In summary, this paper makes
the following contributions:

– We propose a novel autoencoder architecture to capture informative spa-
tiotemporal representation to detect anomaly in videos by building a novel
motion autoencoder, which takes consecutive frames as input and RGB dif-
ference as output to simulate the generation of optical flow. Hence the pro-
posed method is much faster than the previous optical flow-based motion
representation learning method, where the average running time of our ap-
proach is 32fps.

– We exploit a variance attention module to automatically assign an impor-
tance weight to the moving part of video clips, which is useful to improve
the convergence performance of the motion autoencoder.

– We design a deep k-means cluster to force the autoencoder network to gen-
erate compact motion and appearance descriptors. Since the cluster is only
trained on normal events, the distance between the cluster and the abnor-
mal representations is much higher than between the normal patterns. The
reconstruction error and the cluster distance are together used to assess the
anomaly.

2 Related work

2.1 Video Anomaly Detection with Two Stream Networks

Recently, many deep convolutional neural networks [10, 25, 35, 27, 40] have been
proposed to extract high-level feature by learning temporal regularity on the
video clips. To integrate spatial and temporal information together for video
tasks, [30] firstly exploits a two-stream network, i.e. a separate RGB-stream and
a optical flow-stream, in which the two streams are combined by late fusion for
action classification. [38] introduces the two-stream architecture for anomaly de-
tection. Still image patches and dynamic motion represented by optical flow are
employed as input for two separate networks to respectively capture appearance
and motion features, and the anomaly scores of these two streams are combined
by late fusion for final evaluation. [26] utilizes two generator networks to learn
the normal patterns of the crowd behavior, where a generator network takes
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the input frames to produce optical flow field images, and the other generator
network reconstructs frames from the optical flow. However, the time cost of
optical flow estimation is expensive [33]. In contrast, we used a RGB-difference
strategy to simulate motion information, which is much faster than optical flow.

2.2 Data Representation and Data Clustering

Many anomaly detection methods [2, 18, 28, 29, 24] aim to find a “compact de-
scription” within normal events. Recently, several atuto-encoder based methods
combine feature learning and clustering together. [5] jointly trains a CNN au-
toencoder and a multinomial logistic regression model to the autoencoder latent
space. Similarly, [11] alternates the representation learning and clustering where
a mini-batch k-Means is utilized as the clustering component. [37] proposes a
Deep Embedded Clustering (DEC) method, which simultaneously updates the
cluster centers and the data points’ representations that are initialized from
a pre-trained autoencoder. DEC uses soft assignments which are optimized to
match stricter assignments through a Kullback-Leibler divergence loss. IDEC
was subsequently proposed in [7] as an improvement of DEC by integrating the
autoencoder’s reconstruction error in the objective function. [13] proposes a su-
pervised classification approach based on clustering the training samples into
normality clusters. Based on this characteristic and inspired by the idea of [4],
we design a deep k-means cluster to force the autoencoder network to generate
compact feature representations for video anomaly detection.

3 Methods

To address the issues in video based anomaly detection, we introduce a clustering-
driven autoencoder to map the normal data into a compact feature representa-
tion. Since the abnormal events are different from the normal events in appear-
ance and/or in motion behavior, we decouple our model into two sub-modules,
one for spatial part and one for temporal part.

Our proposed autoencoder is composed of three main components: (1) the
appearance autoencoder network Ea and Da, (2) the motion autoencoder net-
work Em and Dm, and (3) the deep k-means cluster. The spatial part, in the
form of individual frame appearance, carries information about scenes and ob-
jects depicted in the video. The temporal part, feded the consecutive frames to
generate the RGB difference, brings the movement information of the objects.
The deep k-means cluster minimizes the distance between the data representa-
tion and cluster centers to force both the appearance encoder and the motion
encoder networks to extract common factors within the training sets. The main
structure of our network is shown in Figure 1.

3.1 Spatial Autoencoder

Since some abnormal objects are partially associated with particular objects, the
static appearance by itself is a useful clue [30]. To detect abnormal object with
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spatial features such as scenes and appearance, we feed the last frame of input
video clips into the sptial autoencoder network. In our model, the appearance
encoder is used to encode the input to a mid-level appearance representation
from the original image pixels. The appearance autoencoder is trained with the
goal of minimizing the reconstruction error between the input frame xa and
the output frame x̄a, therefore, the bottleneck latent-space za contains essential
spatial information for frame reconstruction.

Given an individual frame, the appearance encoder converts it to appearance
representation, denoted as za, and the appearance decoder reconstructs the input
frame from the appearance representation, denoted as x̄a:

za = Ea(xa; θae ) (1)

x̄a = Da(za; θad) (2)

where θae represents the set of the encoder’s parameters, θad denotes the set of
the decoder’s parameters.

The loss function la for the appearance autoencoder is defined as Eq.(3):

la = ‖xa − x̄a‖2 (3)

3.2 Motion Autoencoder

Most two-stream based convolutional networks utilize warped optical flow as the
source for motion modeling [30] [32]. Despite the motion feature is very useful,
expensive computational cost of optical flow estimation impedes many real-time
implementations. Inspired by [36], we build a motion representation without us-
ing optical flow, i.e., the stacked difference of RGB between consecutive frames
and the target frame. As shown in Figure 2, it is reasonable to hypothesize that
the motion representation captured from optical flow could be learned from the
simple cue of RGB difference [36]. Consequently, by learning temporal regular-
ity and motion consistency, the motion autoencoder can learn to predict the
RGB residual, and motion autoencoder can extract the data representation that
contains essential motion information about the video frames.

We define xclips to denote the consecutive frames, zm to represent the mo-
tion representations, and xdiff to represent the RGB difference between the
consecutive frames and the LIF, i.e., xdiff = xclips − xa. Given the consecutive
frames, the motion encoder converts them to motion representations, and each
motion representation is denoted as zm. The motion decoder produces the RGB
difference x̄diff from the appearance representations:

zm = Em(xclips; θ
m
e ) (4)

x̄diff = Dm(zm; θmd ) (5)
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Fig. 2. Some examples of RGB video frames, RGB difference and optical flow.

where θme represents the set of the encoder’s parameters, θmd represents the
set of the decoder’s parameters. The loss function lm for the motion autoencoder
is given in Eq.(6):

lm = ‖xdiff − x̄diff‖2 (6)

3.3 Variance attention module

It is obvious that most part of the surveillance video is still, and the abnormal
behaviors are more likely to have larger movement changes, thus we aim to learn
a function to automatically assign the importance weight to the moving part of
video clips. Based on this characteristic, we design a variance-based attention
in temporal autoencoder to automatically assign the importance weight to the
moving part of video clips. Accordingly, the abnormal object, e.g. pedestrian
running fast at the subway entrance, will get larger motion loss which is help-
ful for fast moving abnormal events detection. Since input video clips contain
irrelevant backgrounds, we utilize a temporal attention module to learn the im-
portance of video clips. Given the representation of an input video clip x, the
attention module feeds the embedded feature into a convolutional layer:

fn(h,w) = Wg ∗ x(h,w) (7)

where h ∈ (0, H] and w ∈ (0,W ]. H and W denote the number of rows and
columns of feature maps respectively. Wg represents the weight parameters of
convolutional filter. We calculate the variance along the feature dimension fol-
lowed by operating the l2 normalization along spatial dimension to generate the
corresponding attention map gn:

v(h,w) =
1

D

D∑
d=1

∥∥∥∥∥fn(h,w, d)− 1

D

D∑
d=1

fn(h,w, d)

∥∥∥∥∥
2

(8)
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att(h,w) =

∥∥∥∥∥ exp(v(h,w))∑H,W
h=1,w=1 exp(v(h,w))

∥∥∥∥∥
2

(9)

where v(h,w) denotes the variance of feature maps at spatial location (h,w).

3.4 Clustering

The role of clustering is to force both the appearance encoder and motion encoder
networks to extract the common factors of variation within the dataset. We
utilize a deep k-means cluster method to minimize the distance between the
data representation and the cluster centers. K is the number of clusters, ck is
the representation of cluster k , 1 < k < K, and C = {c1, ..., cK} is the set of
representations.

For the motion representation ri ∈ RD extracted from spatial location i ∈
{1, ..., N}, we first compute the Euclidean distance between the embeddings
descriptors RD and the corresponding cluster center. To constitute a continuous
generalization of the clustering objective function, we adopt the soft-assignment
to calculate the distance between the data representation ri and the cluster
centers C, where the distance is computed by Eq.(10):

Dm(ri) =

K∑
k=1

e−α‖ri−ck‖2∑K
k=1 e

−α‖ri−ck‖2
‖ri − ck‖22 (10)

where the first part in Eq.(10) represents the soft-assignment of representa-
tion ri to each cluster center ck, α is a tunable hyper-parameter.

The cluster center matrix may suffer from redundancy problem if any two
cluster centers getting too close. To address this issue, we introduce a penaliza-
tion term to maxmimize the distance between each cluster. Inspired by [16], we
construct a redundancy measure which is defined as dot product of the cluster
center matrix C and its transpose CT , and then subtracting the product by an
identity matrix I:

R =
∥∥CCT − I∥∥

F
(11)

where ‖‖F denotes the Frobenius norm of a matrix. This strategy encourages
each cluster center to keep the distance from the other cluster centers and punish
redundancy within the cluster centers. The objective function of our deep k-
means cluster is defined as:

Lcluster =

N∑
i=1

Dm(zmi , Cm) +

N∑
i=1

Da(zai , Ca) + λ(Rm +Ra) (12)

where Dm and Da separately represents the distance between motion represen-
tations and their cluster centers, and the distance between appearance represen-
tations and their cluster centers. Rm and Ra respectively denotes the regularity
on the motion cluster center matrix the and appearance cluster center matrix.
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Since we optimize the deep k-means cluster on the training sets which contain
only normal events, the anomaly events on the test set will not affect the cluster
centers. During anomaly event detection, the cluster center will no longer be
optimized. Hence the cluster centers can be deemed as a certain kind of normality
within the training datasets.

3.5 Training objective

To learn the model parameters, we combine all the loss functions into an ob-
jective function to train two autoencoders simultaneously: the spatial loss La
constrains the model to produce the normal single frame; the motion loss Lm
constrains the model to compute the RGB difference between the input video
frames and the LIF; the cluster loss Lcluster forces both motion and spatial au-
toencoder to minimize the distance between the data representation and the
cluster centers:

Loss = La(xa, x̄a) + Lm(xdiff , x̄diff ) + λr ∗ Lcluster (13)

3.6 Anomaly score

We train the model only in normal events, the reconstruction quality of video
clips x̄clips generated by x̄a+xdiff can be used for anomaly detection, hence we
compute the Euclidean distance between the xclips and the x̄clips of all pixels to
measure the quality of reconstruction. The distance between data representation
and the closest cluster center is another assessment to qualify the anomaly. For
a given test video sequence, we define an anomaly score as:

s =
1

Dm ∗Da ∗ ‖xclips − x̄clips‖22
(14)

High score indicates the input video clips are more likely to be normal. Fol-
lowed by [8], after calculating the score of each video over all spatial locations,
we normalize the losses to get a score S(t) in the range of [0,1] for each frame:

S(t) =
s−mint(s)

maxt(s)−mint(s)
(15)

We use this normalized score S(t) to evaluate the probability of anomaly events
contained in video clips.

4 Experiments

4.1 Video anomaly detection datasets

We train our model on three publicly available datasets: the UCSD pedestrian
[22], the Avenue [19], and the ShanghaiTech dataset [17]: (1) The UCSD Pedes-
trian 2 (Ped2) dataset contains 16 training videos and 12 testing videos with 12
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abnormal events. All of these abnormal cases are about vehicles such as bicycles
and cars. (2) The Avenue dataset contains 16 training videos and 21 testing
videos in front of a subway station. All of these abnormal cases are about throw-
ing objects, loitering and running. (3) The ShanghaiTech dataset contains 330
training videos and 107 testing ones with 130 abnormal events. All in all, it
consists of 13 scenes and various anomaly types.

Fig. 3. Some samples including normal and abnormal frames in the CUHK Avenue,
the UCSD and the ShanghaiTech datasets are used for illustration. Red boxes denote
anomalies in abnormal frames.

4.2 Implementation Details

We resize all input video frames to 256 × 256 and use the Adam optimizer
[15] to train our networks. To initialize the motion and spatial cluster centers,
we jointly train the spatial and motion autoencoders in normal dataset without
the cluster constraint at first by Eq. 3 and Eq. 6. At this stage, we set the
learning rate as 1e-4, and train the spatial and motion autoencoders with 50
epochs for the UCSD Ped2 dataset, and 100 epochs for the Avenue dataset and
the ShanghaiTech dataset. Then we freeze the spatial and motion autoencoders,
and calculate the cluster centers via K-means to separately cluster the motion
representation and spatial representation.

After initialization, the training process of our proposed model performs an
alternate optimization. We first freeze the cluster centers and train the autoen-
coder parameters θ via Eq. 13. Then we freeze the spatial and motion autoen-
coders and optimize the cluster centers by Eq. 12. For the autoencoder part, we
initialize the learning rate to 1e-4 and decrease it to 1e-5 at epoch 100. And we
set the learning rate as 1e-5 to update the cluster centers. At this stage, we al-
ternately train different part of our network with 100 epoch for the UCSD Ped2
dataset, and 200 epochs for the Avenue dataset and the ShanghaiTech dataset.

The final anomaly detection results are directly calculated based on both the
reconstruction loss and the cluster distance according to Eq. 15.
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4.3 Evaluation Metric

Following the prior works [17] [19] [21] [22], we evaluate our method via the
area under the ROC curve (AUC). The ROC curve is obtained by varying the
threshold of the anomaly score. A higher AUC value represents a more accu-
rate anomaly detection result. To ensure the comparability between different
methods, we calculate AUC for the frame-level prediction [43] [8] [21].

Fig. 4. Parts of the temporal regularity score of our method on the Avenue, UCSD
Ped2 and ShanghaiTech datasets. The regularity score implies the possibility of normal,
and the blue shaded regions are the anomaly in groundtruth.

4.4 Results

In this section, we compare the proposed method with different hand-crafted
feature based methods [14] [22] [9] and deep feature based state-of-the-art meth-
ods including a 2D convolution autoencoder method (Conv2D-AE) [8], a 3D
convolution autoencoder method (Conv3D-AE) [43], a convolution LSTM based
autoencoder method (ConvLSTM-AE) [20], a stacked recurrent neural network
(StackRNN) [21], and a prediction based method [17]. To be consistent with [17],
we set T = 5. Specifically, our model takes 4 consecutive frames as the motion
input and the last frame as the spatial autoencoder’s input. We set both the
motion cluster number and spatial cluster number to 32 for all datasets.
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Table 1 shows the AUC results of our proposed method and the state-of-the-
art approaches. We can see that our method outperforms all of them. In the
upper part, compared to the hand-crafted feature based methods [14, 22], the
result of the proposed method is at least 4.3% more accurate (96.5% vs 92.2%) on
the UCSD Ped2 dataset. In the below part, compared to the deep feature based
approaches [8, 43, 20, 21, 17, 6], our method also performs best on all the three
datasets. Particularly, the performance of our algorithm is respectively 1.1%,
1.1%, and 0.5% better than [17] on the UCSD Ped2 dataset, the Avenue dataset,
and the ShanghaiTech dataset. Besides, compared to the latest approach [23],
the accuracy of our method is still 0.3% higher on the UCSD Ped2 dataset.

Table 1. AUC of different methods on the Ped2 ,Avenue and ShanghaiTech datasets.

Algorithm UCSD Ped2 Avenue ShanghaiTech

MPPCA [14] 69.3% - -
MPPCA+SFA [22] 61.3% - -
MDT [22] 82.9% - -
MT-FRCN [9] 92.2% - -

Conv2D-AE [8] 85.0% 80.0% 60.9%
Conv3D-AE [43] 91.2% 77.1% -
ConvLSTM-AE [20] 88.1% 77.0% -
StackRNN [21] 92.2% 81.7% 68.0%
Abati [1] 95.41% -% 72.5%
MemAE [6] 94.1% 83.3% 71.2%
Liu [17] 95.4% 84.9% 72.8%
Nguyen and Meunier [23] 96.2% 86.9% -
Our method 96.5% 86.0% 73.3%

Figure 4 shows some qualitative examples of our method. We can find that
for a normal frame, the predicted future frame tends to be close to the actual
future prediction. For an abnormal frame, the predicted future frame tends to
be blurry or distorted compared with the actual future frame.

4.5 Ablation study

In this subsection, we focus on investigating the effect of each component de-
scribed in Section 3, including the variance attention mechanism, deep k-means
clusters, and the combination of spatial information and temporal information.
We combine different part of our components to conduct experiments on the Av-
enue dataset. For the first two parts, we consider only the motion loss and the
spatial reconstruction loss. The anomaly score calculation is similar to Eq. 15.
For the third part, we consider the reconstruction loss with the variance atten-
tion module. For the last part, we consider the full proposed model. Table 2
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validates the effectiveness of each component. We can see that compared with
the appearance information, the temporal regularity is more important for video
anomaly detection. When combining the RGB difference with the spatial recon-
struction, the performance improves by 2.9%. When the deep k-means cluster
constraint is introduced, the spatiotemporal reconstruction multiplied by their
cluster distance can further enhance the performance by 3.1%.

Table 2. Evaluation of different components of our architecture on the Avenue dataset.
Results show that the combination of all components gives the best performance.

motion
√

-
√ √ √ √

appearance -
√ √ √ √ √

variance attention - - -
√

-
√

deep k-means - - - -
√ √

AUC 79.9% 71.2% 81.4% 82.8% 83.5% 86.0%

Table 3. AUC of the proposed method with different cluster numbers on the UCSD
Ped2 dataset.

Algorithm UCSD Ped2

without k-means 94.5%
4 95.6
8 95.5%
16 96.0%
32 96.5%
64 96.4%

4.6 Exploration of cluster numbers

To evaluate the performance of the deep k-means cluster strategy on detecting
abnormal events in videos, we conduct experiments on removing deep k-means
cluster and changing the number of cluster centers. We use the UCSD-Ped2
datatset for testing and show the AUC results in Tabel 3. We separately set the
number of the spatial cluster center and the motion cluster center to be 4, 8, 16,
32. Since the AUC value obtained by the autoencoder is already high at 94.5%,
the cluster constraint can boost the performance by 1.1%. The AUC results of
different size of cluster centers demonstrate the robustness of our method.

4.7 Attention visualization

For a deeper understanding on the effect of our variance attention module, we
visualize the motion encoder layer of the attention map. For comparison, we
also show the input frames. Figure 5 shows two examples from the Avenue
dataset. The left part of Figure 5 is the normal example, where people walking
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Fig. 5. The first row shows the input video frames, and the second row shows the
reconstructed frames. The third row shows the visualization of the attention map in
jet color map. The higher attention weight area is represented closer to red while
the lower area is represented closer to blue. The forth row shows the RGB difference
generated from the motion autoencoder.

Fig. 6. AUC performance and running time on the UCSD Ped2 dataset. Compared
with our “RGB+RGB difference” to the “RGB+FlowNet” method, the computational
time of us is about 2 times faster, and the AUC performance is improved by 2.1%.

normally. In the normal scene, the changing part of video sequence is relatively
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small, hence the attention weight of each location is quite consistent. On the
other hand, the abnormal event contains a person throwing a bag, the variance
attention module produces higher attention weight in areas where the movement
is fast. The corresponding attention map shows that the value in the thrown bag
area is much higher than the values in other areas. Since the variance attention
module can automatically assign the importance weight to the moving part of
video clips, the anomaly events such as running are more likely to cause higher
reconstruction error. The experiments conducted in Section 4.5 demonstrate the
effectiveness of the variance attention module.

4.8 Comparison with Optical Flow

We compare the performance and running time of RGB difference with the op-
tical flow on the UCSD Ped2 dataset. One traditional optical flow algorithm
TV-L1 [41] and one deep learning based optical flow method FlowNet2-SD [12]
are selected for comparison. As shown in Figure 6, our method is about 2.3 times
faster than FlowNet2-SD [12]. Specifically, for one video frame, the FlowNet2-SD
algorithm costs 0.071 seconds while our RGB difference strategy only needs 0.031
seconds. Furthermore, the accuracy of “RGB+RGB difference” is respectively
2.1% and 2.6% more than “RGB+FlowNet2-SD” and “RGB+TV-L1”. We im-
plement our method with an NVIDIA GeForce Titan Xp graphics card. It takes
0.0312 seconds to detect abnormal events per one video frame, i.e. 32fps, which
is on par or faster than previous state-of-the-art deep learning based methods.
For example, the fps of [17], [21], and [42] are respectively 25fps, 50fps, and 2fps
(Where the results are copied from the original corresponding papers).

5 Conclusion

In this paper, we propose a novel clustering-driven deep autoencoder technique
to generate the compact description within normal events. To learn regularity
in both spatial and temporal feature spaces, we decouple the spatial-temporal
information into two sub-modules. Given the consecutive frames, the spatial
autoencoder operates on the last individual frame, and the temporal autoen-
coder processes on the rest of video frames to learn the temporal regularity
by constructing the RGB difference. To force both the spatial encoder and the
temporal encoder to obtain a more compact data representation, we minimize
the distance between the data representation and cluster centers via two deep
k-means clusters. Since the cluster is only trained on the normal events, the
distance between the cluster and the representations of anomaly events is much
higher than between the normal patterns. We use both the reconstruction error
and the cluster distance to evaluate the anomaly. Extensive experiments on three
datasets demonstrate that our method achieves the state-of-the-art performance.
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