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Abstract. We study how well different types of approaches generalise in
the task of 3D hand pose estimation under single hand scenarios and hand-
object interaction. We show that the accuracy of state-of-the-art methods
can drop, and that they fail mostly on poses absent from the training set.
Unfortunately, since the space of hand poses is highly dimensional, it is
inherently not feasible to cover the whole space densely, despite recent
efforts in collecting large-scale training datasets. This sampling problem
is even more severe when hands are interacting with objects and/or
inputs are RGB rather than depth images, as RGB images also vary with
lighting conditions and colors. To address these issues, we designed a
public challenge (HANDS’19) to evaluate the abilities of current 3D hand
pose estimators (HPEs) to interpolate and extrapolate the poses of a
training set. More exactly, HANDS’19 is designed (a) to evaluate the
influence of both depth and color modalities on 3D hand pose estimation,
under the presence or absence of objects; (b) to assess the generalisation
abilities w.r.t . four main axes: shapes, articulations, viewpoints, and
objects; (c) to explore the use of a synthetic hand models to fill the
gaps of current datasets. Through the challenge, the overall accuracy
has dramatically improved over the baseline, especially on extrapolation
tasks, from 27mm to 13mm mean joint error. Our analyses highlight the
impacts of: Data pre-processing, ensemble approaches, the use of the
MANO model, and different HPE methods/backbones.
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1 Introduction

3D hand pose estimation is crucial to many applications including natural
user-interaction in AR/VR, robotics, teleoperation, and healthcare. The recent
successes primarily come from large-scale training sets [40], deep convolutional
neural networks [10, 22], and fast optimisation for model fitting [15, 23]. State-
of-the-art methods now deliver satisfactory performance for viewpoints seen
at training time and single hand scenarios. However, as we will show, these
methods substantially drop accuracy when applied to egocentric viewpoints for
example, and in the presence of significant foreground occlusions. These cases are
not well represented on the training sets of existing benchmarks [5, 20, 21]. The
challenges become even more severe when we consider RGB images and hand-
object interaction scenarios. These issues are well aligned with the observations
from the former public challenge HANDS’17 [39]: The state-of-the-art methods
dropped accuracy from frontal to egocentric views, and from open to closure hand
postures. The average accuracy was also significantly lower under hand-object
interaction [5].

Given the difficulty to interpolate and extrapolate poses from the training set,
one may opt for creating even larger training sets. Unfortunately, an inherent
challenge in 3D hand pose estimation is the very high dimensionality of the
problem, as hand poses and shapes and camera viewpoints have a large number
of degrees-of-freedom that can vary independently. This complexity increases
even more when we consider the case of a hand manipulating an object. Despite

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 1: Frames from the three tasks of our challenge. For each task, we show the
input depth or RGB image with the ground-truth hand skeleton (top) and a
rendering of the fitted 3D hand model as well as a depth rendering of the model
(bottom). The ground-truth and estimated joint locations are shown in blue and
red respectively.
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the recent availability of large-scale datasets [40], and the development of complex
calibrated multi-view camera systems to help the annotation or synthetic data [13,
28, 44], capturing a training set that covers completely the domain of the problem
remains extremely challenging.

In this work, we therefore study in depth the ability of current methods to
interpolate and extrapolate the training set, and how this ability can be improved.
To evaluate this ability, we consider the three tasks depicted in Fig. 1, which vary
the input (depth and RGB images) or the camera viewpoints, and introduce the
possible manipulation of an object by the hand. We carefully designed training
and testing sets in order to evaluate the generalisation performance to unseen
viewpoints, articulations, and shapes of the submitted methods.

HANDS’19 fostered dramatic accuracy improvement compared to a provided
baseline, which is a ResNet-50 [10]-based 3D joint regressor trained on our training
set, from 27mm to 13mm. This paper provides an in-depth analysis of the
different factors that made this improvement possible.

2 HANDS 2019 Challenge Overview

The challenge consists of three different tasks, in which the goal is to predict
the 3D locations of the hand joints given an image. For training, images, hand
pose annotations, and a 3D parametric hand model [26] for synthesizing data are
provided. For inference, only the images and bounding boxes of the hands are
given to the participants. These tasks are defined as follows:

Task 1: Depth-Based 3D Hand Pose Estimation: This task builds on Big-
Hand2.2M [40] dataset, as for the HANDS 2017 challenge [38]. No objects appear
in this task. Hands appear in both third person and egocentric viewpoints.

Task 2: Depth-Based 3D Hand Pose Estimation while Interacting with
Objects: This task builds on the F-PHAB dataset [5]. The subject manipulates
objects with their hand, as captured from an egocentric viewpoint. Some object
models are provided by [5].

Task 3: RGB-Based 3D Hand Pose Estimation while Interacting with Objects:
This task builds on the HO-3D [8] dataset. The subject manipulates objects with
their hand, as captured from a third person viewpoint. The objects are used from
the YCB dataset [35]. The ground truth wrist position of the test images is also
provided in this task.

The BigHand2.2M [40] and F-PHAB [5] datasets have been used by 116
and 123 unique institutions to date. HANDS’19 received 80 requests to access
the datasets with the designed partitions, and 17, 10 and 9 participants have
evaluated their methods on Task 1, Task 2 and Task 3, respectively.

3 Evaluation Criteria

We evaluate the generalisation power of HPEs in terms of 4 ”axes”: Viewpoint,
Articulation, Shape, and Object. For each axis, frames within a dataset are auto-
matically annotated by using the ground-truth 3D joint locations and the object
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Fig. 2: Left: The 6 evaluation criteria used in the challenge. For each axis (View-
point, Articulation, Shape, Object), we indicate if hand poses from the frames in
an evaluation criterion are also available (green) in the training set or not (red).
Right: MJE comparison of the best methods for the Extrapolation, Interpolation,
and Shape criteria, on each task.

information to annotate each frame in each axis. The annotation distribution of
the dataset for each axis are used are used to create a training and a test set.
Using the frame annotations on each axis, the sets are sampled in a structured
way to have the test frames that are similar to the frames in the training data
(for interpolation) and also the test frames where axes’ annotations are never seen
in the training data (for extrapolation). More details on the dataset are given in
Section 4. To measure the generalisation of HPEs, 6 evaluation criteria are further
defined with the 4 main axes: Viewpoint, Articulation, Shape and Object
are respectively used for measuring the extrapolation performance of HPEs on
the frames with articulation cluster, viewpoint angle, hand shape and object
type (axis annotations) that are not present in the training set. Extrapolation
is used to measure the performance on the frames with axis annotations that
do not overlap/present in the training set. Lastly, Interpolation is defined to
measure the performance on the frames with the axis annotations present in the
training set.

The challenge uses the mean joint error (MJE) [23] as the main evaluation
metric. Results are ranked according to the Extrapolation criterion which
measures the total extrapolation power of the approaches with MJE on all axes.
We also consider success rates based on maximum allowed distance errors for
each frame and each joint for further analysis.

Fig. 2 (left) summarises the 6 evaluation strategies, and Fig. 2 (right) shows
the accuracies obtained by the best approaches, measured for the three evaluation
criteria that could be evaluated for all 3 tasks. Articulation and viewpoint criteria
are only considered for Task 1 since the joint angles are mostly fixed during
object interaction and hence the Articulation criteria is not as meaningful as in
Task 1 for the other tasks. The Viewpoint criteria is not meaningful for Task
2 which is for egocentric views since the task’s dataset constrains the relative
palm-camera angle to a small range. For Task 3, the data scarcity is not helping
to sample enough diverse viewpoints. The extrapolation errors tend to be three
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Fig. 3: Distributions of the training and test datasets for Task 1 (top), Task 2
(bottom left), and Task 3 (bottom right). The splits are used to evaluate the
extrapolation power of the approaches and decided based on the viewpoints, the
articulation clusters of the hand pose, the hand shape, and the type of the object
present.

times larger than the interpolation errors while the shape is a bottleneck among
the other attributes. Lower errors on Task 3 compared to Task 2 are likely due
to the fact that the ground truth wrist position is provided for Task 3.

4 Datasets

Given a task, the training set is the same and the test frames used to evaluate
each criterion can be different or overlapped. The number of training frames are
175k, 45k and 10k for Task 1, 2 and 3 respectively. The sizes of the test sets for
each evaluation criterion are shown in Table 1.

Table 1: Detailed analytics on the number of frames provided
on the training and test sets for the different tasks.

#Frames

Dataset Task id Total Ext. Int. Art. View. Sha. Obj. #Subjects #Objects #Actions #Seq.

Test
1 125K 20% 16% 16% 32% 16% 7 10 7 7 7
2 25K 14% 32% 7 7 37% 17% 4 37 71 292
3 6.6K 24% 35% 7 7 14 27% 5 5 1 5

Training
1 175951 5 7 7 7
2 45713 4 26 45 539
3 10505 3 4 1 12

Fig. 3 shows the
distributions of the
training and test data
for each task. The
viewpoints are defined
as elevation and az-
imuth angles of the
hand w.r.t . the cam-
era using the ground-
truth joint annotations. The articulation of the hand is defined and obtained
by clustering on the ground-truth joint angles in a fashion similar to [18], by
using binary representations (open/closed) of each finger e.g . ’00010’ represents
a hand articulation cluster with frames with the index finger closed and the
rest of the fingers open, which ends up with 25 = 32 clusters. A visualization of
the articulation clusters is provided in the supplementary document. Note that
the use of low-dimensional embedding such as PCA or t-SNE is not adequate
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here to compare the two data distributions, because the dimensionality of the
distributions is very high and a low-dimensional embedding would not be very
representative. Fig. 3 further shows the repartition in terms of subjects/shapes,
where five seen subjects and five unseen subjects are present. Similarly, the data
partition was done on objects. This way we can control the data to define the
evaluation metrics.
Use of 3D Hand Models for HPEs. A series of methods [1, 3, 7, 9, 41] have
been proposed in the literature to make use of 3D hand models for supervision
of HPEs. Ge et al. [7] proposed to use Graph CNNs for mapping RGB images to
infer the vertices of 3D meshes. Hasson et al. [9] jointly infers both hands and
object meshes and investigated the effect of the 3D contact loss penalizing the
penetration of object and hand surfaces. Others [1, 3, 41] attempted to make use of
MANO [26], a parametric 3D hand model by learning to estimate low-dimensional
PCA parameters of the model and using it together with differentiable model
renderers for 3D supervision. All the previous works on the use of 3D models
in learning frameworks have shown to help improving performance on the given
task. Recently, [16] showed that fitting a 3D body model during the estimation
process can be accelerated by using better initialization of the model parameters
however, our goal is slightly different since we aim to explore the use of 3D
models for better generalisation from the methods. Since the hand pose space
is huge, we make use of a 3D hand model to fill the gaps in the training data
distribution to help approaches to improve their extrapolation capabilities. In
this study, we make use of the MANO [26] hand model by providing the model’s
parameters for each training image. We fit the 3D model for each image in an
optimization-based framework which is described in more details below.
Gradient-based Optimization for Model Fitting. We fit the MANO [26]
models’ shape s = {sj}10j=1, camera pose c = {cj}8j=1, and articulation a =

{aj}45j=1 parameters to the i-th raw skeletons of selected articulations z = {zi}Ki=1,
by solving the following equation:

(si∗, ci∗,ai∗) = arg min
(s,c,a)

O(s, c,a, zi)),∀i ∈ [1,K] , (1)

where our proposed objective function O(s, c,a, zi) for the sample i is defined as
follows:

O(s, c,a, zi) = ||freg(V (s, c,a))− zi||22 +

10∑
j=1

‖sj‖22 +RLap(V (s, c,a)) . (2)

V (s, c,a) denotes the 3D mesh as a function of the three parameters s, c,a.
Eq. (2) is composed of the following terms: i) the Euclidean distance between
3D skeleton ground-truths zi and the current MANO mesh model’s 3D skeleton
values freg(V (s, c,a))1; ii) A shape regularizer enforcing the shape parameters s
to be close to their MANO model’s mean values, normalized to 0 as in [26], to
maximize the shape likelihood; and iii) A Laplacian regularizer RLap(V (s, c,a))
to obtain the smooth mesh surfaces as in [14]. Eq. (1) is solved iteratively by

1 freg geometrically regresses the skeleton from the mesh vertex coordinates. It is
provided with the MANO model and the weights are fixed during the process.
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(a) (b) (c)

Fig. 4: Depth renderings of the hand model for different iterations in gradient-based
optimization fitting. Target image (joints) (a), optimization iterations 0, 100, 300, 400,
600, 700 (b), final fitted hand pose at iteration 3000 (c).

using the gradients from Eq. (2) as follows:

(st+1, ct+1,at+1) = (st, ct,at)− γ · ∇O(st, ct,at, z
i),∀t ∈ [1, T ] , (3)

where γ = 10−3 and T = 3000 are empirically set. This process is similar to the
refinement step of [32, 1], which refines estimated meshes by using the gradients
from the loss. In Fig. 4, both the target and the fitted depth images during the
process described by Eq. (3) are depicted. Minor errors of the fitting are not a
problem for our purpose given that we will generate input and output pairs of
the fitted model by exploiting fitted meshes’ self-data generation capability while
ignoring original depth and skeletons. Here the aim of fitting the hand model
is to obtain a plausible and a complete articulation space. The model is fitted
without optimizing over depth information from the model and the input depth
image since we did not observe an improvement on the parameter estimation.
Moreover, the optimization needs to be constrained to produce plausible hand
shapes and noise and other inconsistencies may appear in the depth image.

5 Evaluated Methods

In this section, we present the gist of selected 14 methods among 36 participants
(17 for Task 1, 10 for Task 2, 9 for Task 3) to further analyze their results
in Section 6. Methods are categorized based on their main components and
properties. See Tables 1, 2 and 3 of the supplementary document provided with
this work for a glance of the properties of the methods in HANDS’19.
2D and 3D supervision for HPEs. Approaches that embed and process 3D
data obtain high accuracies but less efficient [39] in terms of their complexity
compared to 2D-based approaches. 3D-based methods use 3D convolutional
layers for point-clouds input similar to NTIS which uses an efficient voxel-based
representation V2V-PoseNet [19] with a deeper architecture and weighted sub-
voxel predictions on quarter of each voxel representations for robustness. Some
other approaches adopts 3D as a way of supervision similar to Strawberryfg [33]
which employs a render-and-compare stage to enforce voxel-wise supervision for
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model training and adopts a 3D skeleton volume renderer to re-parameterize an
initial pose estimate obtained similar to [30]. BT uses a permutation invariant
feature extraction layer [17] to extract point-cloud features and uses a two branch
framework for point-to-pose voting and point-to-latent voting. 3D supervision
is employed by point-cloud reconstruction from a latent embedding in Task 1
whereas 3D hand model parameters are estimated and used in a differentiable
model renderer for 3D supervision for the other tasks.

2D CNN-based approaches has been a standard way for learning regression
models as used by Rokid [42] where they adopt a two stage regression models.
The first regression model is used to predict an initial pose and the second
model built on top of the first model. A2J [36] uses a 2D supervised method
based on 2D offset and depth estimations with anchor points. Anchor points
are densely set on the input image to behave as local regressors for the joints
and able to capture global-local spatial context information. AWR [11] adopts
a learnable and adaptive weighting operation that is used to aggregate spatial
information of different regions in dense representations with 2D convolutional
CNNs. The weighting operation adds direct supervision on joint coordinates
and draw consensus between the training and inference as well as enhancing the
model’s accuracy and generalisation ability by adaptively aggregating spatial
information from related regions. CrazyHand uses a hierarchically structured
regression network by following the joints’ distribution on the hand morphology.
ETH NVIDIA adopts the latent 2.5D heatmap regression [12]; additionally an
MLP is adopted for denoising the absolute root depth. Absolute 3D pose in
scale-normalized space is obtained with the pinhole camera equations. NLE [25]
first performs a classification of the hand into a set of canonical hand poses
(obtained by clustering on the poses in the training set), followed by a fine
class-specific regression of the hand joints in 2D and 3D. NLE adopts the only
approach proposing multiple hand poses in a single stage with a Region Proposal
Network (RPN) [24] integration.

Detection, regression and combined HPEs. Detection methods are based
on hand key-points and producing a probability density maps for each joint. NTIS
uses a 3D CNN [19] to estimate per-voxel likelihood of each joint. Regression-
based methods estimate the joint locations by learning a direct mapping from
the input image to hand joint locations or the joint angles of a hand model [29,
43]. Rokid uses joint regression models within two stages to estimate an initial
hand pose for hand cropping and estimates the final pose from the cleaned hand
image. A2J adopts regression framework by regressing offsets from anchors to
final joint location. BT ’s point-wise features are used in a voting scheme which
behaves as a regressor to estimate the pose.

Some approaches take advantage of both detection-based and regression-based
methods. Similarly, AWR, Strawberryfg estimates probability maps to estimate
joint locations with a differentiable soft-argmax operation [30]. A hierarchical ap-
proach proposed by CrazyHand regresses the joint locations from joint probability
maps. ETH NVIDIA estimates 2D joint locations from estimated probability
maps and regresses relative depth distance of the hand joints w.r.t . a root joint.
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NLE first localizes the hands and classifies them to anchor poses and the final
pose is regressed from the anchors.
Method-wise ensembles. A2J uses densely set anchor points in a voting stage
which helps to predict location of the joints in an ensemble way for better
generalisation leveraging the uncertainty in reference point detection. In a similar
essence, AWR adaptively aggregates the predictions from different regions and
Strawberryfg adopts local patch refinement [34] where refinement models are
adopted to refine bone orientations. BT uses the permutation equivariant features
extracted from the point-cloud in a point-to-pose voting scheme where the votes
are ensembled to estimate the pose. NLE ensembles anchor poses to estimate
the final pose.

(a) Real
Cropped

Hand

(b) Synthetic
Depth

Rendering

(c) Real +
Synthetic

Mixed Hand

Fig. 5: Visualization of synthetic
depth images by Rokid [42]: (a) in-
put depth image, (b) rendered depth
image using 3D hand model, (c) the
mixed by using the pixels with the
closest depth values from real and
synthetic images.

Ensembles in post-processing. Rather
than a single pose estimator, an ensem-
ble approach was adopted by multiple en-
tries by randomly replicating the meth-
ods and fusing the predictions in the post-
prediction stage, e.g . A2J , AWR, NTIS ,
NLE and Strawberryfg .

A2J ensembles predictions from 10 dif-
ferent backbone architectures in Task 1
like AWR (5 backbones) and augments test
images to ensemble the predictions with
different scales and rotations as similar to
rotation augmentation adopted by NLE .
NTIS uses predictions obtained from the
same model at 6 different training epochs.
A similar ensembling is also adopted by A2J in Task 2. NTIS adopts a dif-
ferent strategy where N most confident sub-voxel predictions are ensembled
to further use them in a refinement stage with Truncated SVDs together with
temporal smoothing (Task 2). NLE takes advantage of ensembles from multiple
pose proposals [25]. Strawberryfg employs a different strategy and ensembles the
predictions from models that are trained with various input modalities.
Real + synthetic data usage. The methods Rokid in Task 1 and BT in Tasks
2 and 3 make use of the provided MANO [26] model parameters to synthesize
more training samples. Rokid leverages the synthesized images and combines
them the real images—see Fig. 5—to train their initial pose regression network
which effectively boosts accuracies—see Table 5. However, the amount of syn-
thetic data created is limited to 570K for Rokid and 32K in Task 2, 100K in
Task 3 for BT . Considering the continuous high-dimensional hand pose space
with or without objects, if we sub-sample uniformly and at minimum, for in-
stance, 102(azimuth/elevation angles)×25(articulation)×101(shape)×101(object)
= 320K, the number is already very large, causing a huge compromise issue
for memory and training GPU hours. Random sampling was applied without a
prior on the data distribution or smart sampling techniques [4, 2]. BT generates
synthetic images with objects and hands similar to [20] by randomly placing the
objects from [8] to nearby hand locations without taking into account the hand
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and object interaction. The rest of the methods use the provided real training
data only.
Multi-modal inputs for HPEs. BT adopts [37] in Task 3 to align latent
spaces from depth and RGB input modalities and to embed the inherit depth
information in depth images during learning. makes use of multi-inputs where each
is obtained from different representations of the depth image, e.g . point-cloud,
3D point projection [6], multi-layer depth map [27], depth voxel [19].
Dominating HPE backbones. ResNet [10] architectures with residual connec-
tions have been a popular backbone choice among many HPEs e.g . A2J , AWR,
NTIS , Strawberryfg , CrazyHand , ETH NVIDIA, NLE or implicitly by BT within
the ResPEL [17] architecture. Rokid adopts EfficientNet-b0 [31] as a backbone
which uniformly scales the architecture’s depth, width, and resolution.

6 Results and Discussion

We share our insights and analysis of the results obtained by the participants’
approaches: 6 in Task 1, 4 in Task 2, and 3 in Task 3. Our analyses highlight
the impacts of data pre-processing, the use of an ensemble approach, the use
of MANO model, different HPE methods, and backbones and post-processing
strategies for the pose refinement.
Analysis of Submitted Methods for Task 1. We consider the main properties
of the selected methods and the evaluation criteria for comparisons. Table 2
provides the errors for the MJE metric and Fig. 6 show that high success rates are
easier to achieve in absence of an object for low distance d thresholds. 2D-based
approaches such as Rokid , with the advantage of additional data synthesizing, or
A2J , with cleverly designed local regressors, can be considered to be best when the
MJE score is evaluated for the Extrapolation criterion. AWR performs comparable
to the other 2D-based approaches by obtaining the lowest MJE errors on the
Interpolation and Articulation criteria. AWR performs best for the distances
less than 50mm on Extrapolation as well as showing better generalisation to
unseen Viewpoints and Articulations, while excelling to interpolate well. A
similar trend is observed with the 3D-voxel-based approach NTIS . However, the
other 3D supervised methods, Strawberryfg and BT show lower generalisation
capability compared to other approaches while performing reasonably well on
the Articulation, Shape, and Interpolation criteria but not being able to show a
similar performance for the Extrapolation and Viewpoint criteria.

Table 2: Task 1 - MJE (mm) and ranking
of the methods on five evaluation criteria.
Best results on each evaluation criteria are
highlighted.

Username Extrapolation Interpolation Shape Articulation Viewpoint

Rokid 13.66 (1) 4.10 (2) 10.27 (1) 4.74 (3) 7.44 (1)
A2J 13.74 (2) 6.33 (6) 11.23 (4) 6.05 (6) 8.78 (6)
AWR 13.76 (4) 3.93 (1) 11.75 (5) 3.65 (1) 7.50 (2)
NTIS 15.57 (7) 4.54 (3) 12.05 (6) 4.21 (2) 8.47 (4)

Strawberryfg 19.63 (12) 8.42 (10) 14.21 (10) 7.50 (9) 14.16 (12)
BT 23.62 (14) 18.78 (16) 21.84 (16) 16.73 (16) 19.48 (14)

Table 3: Task 2 - MJE (mm) and
ranking of the methods on four eval-
uation criteria.

Username Extrapolation Interpolation Object Shape

NTIS 33.48 (1) 17.42 (1) 29.07 (2) 23.62 (2)
A2J 33.66 (2) 17.45 (2) 27.76 (1) 23.39 (1)

CrazyHand 38.33 (4) 19.71 (4) 32.60 (4) 26.26 (4)
BT 47.18 (5) 24.95 (6) 38.76 (5) 32.36 (5)
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Fig. 6: Task 1 - Success rate analysis (a-e) and MJE analysis on extrapolation
and interpolation using shapes (f), viewpoints (g, h) and articulations (i). Solid
colors depict samples of extrapolation and transparent colors depict interpolation
samples in plots (f-i).

Analysis of Submitted Methods for Task 2. We selected four submitted
methods to compare on Task 2, where a hand interacts with an object in an
egocentric viewpoint. Success rates illustrated in Fig. 7 highlight the difficulty
of extrapolation. All methods struggle to show good performance on estimating
frames with joint errors less than 15mm. On the other hand, all methods can
estimate 20% to 30% of the joints correctly with less than 15mm error for the
other criteria in this task.

NTIS (a voxel-based) and A2J (weighted local regressors with anchor points)
perform similarly when MJEs for all joints are considered. However, NTIS obtains
higher success rates on the frame-based evaluation for all evaluation criteria with
low distance error thresholds (d), see Fig. 7. Its performance is relatively much
higher when Extrapolation is considered, especially for the frames with unseen
objects, see Fig. 7. This can be explained by having a better embedding of the
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Fig. 7: Task 2 - Success rate analysis (a,b,c) and interpolation (seen, transparent)
and extrapolation (unseen, solid) errors for subject (d) and object (e).

occluded hand structure with the voxels in the existence of seen/unseen objects.
NTIS interpolates well under low distance thresholds.

Note that the first three methods, NTIS , A2J , and CrazyHand perform very
similar for high error thresholds e.g . d > 30mm. CrazyHand uses a structured
detection-regression-based HPE where a heatmap regression is employed for the
joints from palm to tips in a sequential manner which is highly valuable for
egocentric viewpoints, helps to obtain comparable results with A2J where the
structure is implicitly refined by the local anchor regressors.

Analysis of Submitted Methods for Task 3. We selected 3 entries, with
different key properties for this analysis. It is definitively harder for the partic-
ipants to provide accurate poses compared to the previous tasks. None of the
methods can estimate frames that have all joints estimated with less than 25mm
error, see Fig. 8. The 25mm distance threshold shows the difficulty of estimating
a hand pose accurately from RGB input modality even though the participants
of this task were provided with the ground-truth wrist joint location.

The task is based on hand-object interaction in RGB modality. Therefore,
the problem raises the importance of multi-modal data and learn from different
modalities. Only BT uses the MANO parameters provided by the organizers to
synthesize 100K images and adds random objects near the hand. This approach
supports the claim on the importance of multi-modality and filling the real data
gaps with synthetic data with its close performance to the two higher ranked
methods in MJE.
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Fig. 8: Task 3 - Success rate analysis on the evaluation criteria (a,b,d,e) and MJE
error analysis on the seen/unseen subjects (c) and objects (f). For (c) and (f),
solid and transparent colors are used to depict extrapolation and interpolation.

The generalisation performance of BT in Task 3 compared to the team’s
approaches with similar gist in Tasks 1 and 2 supports the importance of multi-
model learning and synthetic data augmentation. The close performance of
the method to generalise to unseen objects compared to ETH NVIDIA and to
generalise to unseen shapes compared to NLE also supports the argument with
the data augmentation. The approach is still outperformed in MJE for this task
although it performs close to the other methods.

NLE ’s approach shows the impact of learning to estimate 2D joints+3D
joints (28.45mm) compared to learning 3D joints alone (37.31mm) on the Object
as well as improvements for the Interpolation. Object performance is further
improved to 23.22mm with PPI integration. Further insights put by NLE ’s own
experiments on the number rotation augmentations (n) in post-processing helps
to better extrapolate for unseen shapes (17.35mm, 16.77mm, 15.79mm where
n = 1, 4, 12, respectively).
Analysis on the Usage of Synthetic Images. The best performing method
of Task 1 (Rokid) in MJE uses the 3D hand model parameters to create 570K

Table 4: Task 3 - MJE (mm) and rank-
ing of the methods on four evaluation
criteria.

Username Extrapolation Interpolation Object Shape

ETH NVIDIA 24.74 (1) 6.70 (3) 27.36 (2) 13.21 (1)
NLE 29.19 (2) 4.06 (1) 18.39 (1) 15.79 (3)
BT 31.51 (3) 19.15 (5) 30.59 (3) 23.47 (4)

Table 5: Impact of synthetic data re-
ported by Rokid [42] with learning from
different ratios of synthetic data and the
Task 1 training set. 100% = 570K.

Synthetic Data % - 10% 30% 70% 100%

Extrapolation MJE (mm) 30.11 16.70 16.11 15.81 15.73
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synthetic images by either perturbing (first stage) the model parameters or not
(second stage). Synthetic data usage significantly helps in training the initial
model (see Fig. 5). Table 5 shows the impact of different proportions of the 570K
synthetic data usage to train the model together with the real training images.
Using synthetic data can boost such a simple 3D joint regressor’s performance
from MJE of 30.11mm to 15.73mm, a ∼ 50% improvement. Moreover, Rokid ’s
experiments with a regression model trained for 10 epochs shows the impact of
the mixed depth inputs, Fig. 5, to lower the total extrapolation error (26.16mm)
compared to the use of raw depth renderings (30.13mm) or the renderings
averaged (31.92mm) with the real input images. BT uses synthetic images in a
very small amount of 32K and 100K in Tasks 2 and 3 since 3D reconstruction
is difficult to train at a larger scale. However, favorable impact the data can be
observed by comparing performances in Tasks 1 and 2.

Please refer to the supplementary document provided with this work for
qualitative results and also for more results and discussions on the performance
of the approaches on each axis, backbone architectures, ensembling and post-
processing techniques and joint success rates obtained by the participants.

7 Conclusion

We carefully designed structured training and test sets for 3D HPEs and organized
a challenge for the hand pose community to show state-of-the-art methods
still tend to fail to extrapolate on large pose spaces. Our analyses highlight
the impacts of using ensembles, the use of synthetic images, different type of
HPEs e.g . 2D, 3D or local-estimators and post-processing. Ensemble techniques,
both methodologically in 2D and 3D HPEs and in post-processing, help many
approaches to boost their performance on extrapolation. The submitted HPEs
were proven to be successful while interpolating in all the tasks, but their
extrapolation capabilities vary significantly. Scenarios such as hands interacting
with objects present the biggest challenges to extrapolate by most of the evaluated
methods both in depth and RGB modalities.

Given the limited extrapolation capabilities of the methods, usage of synthetic
data is appealing. Only a few methods actually were making use of synthetic
data to improve extrapolation. 570K synthetic images used by the winner of
Task 1 is still a very small number compared to how large, potentially infinite,
it could be. We believe that investigating these possibilities, jointly with data
sub-sampling strategies and real-synthetic domain adaptation is a promising and
interesting line of work. The question of what would be the outcome if we sample
‘dense enough’ in the continuous and infinite pose space and how ’dense enough’
is defined when we are limited by hardware and time is significant to answer.
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