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Towards Real-Time Eyeblink Detection in the Wild:
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Abstract— Effective and real-time eyeblink detection is of
wide-range applications, such as deception detection, drive
fatigue detection, face anti-spoofing. Despite previous efforts,
most of existing focus on addressing the eyeblink detection prob-
lem under constrained indoor conditions with relative consistent
subject and environment setup. Nevertheless, towards practical
applications, eyeblink detection in the wild is highly preferred,
and of greater challenges. In this paper, we shed the light to
this research topic. A labelled eyeblink in the wild dataset (i.e.,
HUST-LEBW) of 673 eyeblink video samples (i.e., 381 posi-
tives, and 292 negatives) is first established. These samples are
captured from the unconstrained movies, with the dramatic
variation on face attribute, head pose, illumination condition,
imaging configuration, etc. Then, we formulate eyeblink detection
task as a binary spatial-temporal pattern recognition problem.
After locating and tracking human eyes using SeetaFace engine
and KCF (Kernelized Correlation Filters) tracker respectively,
a modified LSTM model able to capture the multi-scale temporal
information is proposed to verify eyeblink. A feature extraction
approach that reveals the appearance and motion characteristics
simultaneously is also proposed. The experiments on HUST-
LEBW reveal the superiority and efficiency of our approach. The
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comparisons with the existing state-of-the-art methods validate
the advantages of our manner for eyeblink detection in the wild.

Index Terms— Eyeblink detection, eyeblink in the wild,
spatial-temporal pattern recognition, LSTM, appearance and
motion.

I. INTRODUCTION

EYEBLINK detection is of essential research value for
the application scenarios of deception detection [1], drive

fatigue detection [2], face anti-spoofing [3], dry eye syn-
drome recovery [4], etc. During the past decades, numerous
efforts [5]–[12] have already been paid to this. Nevertheless,
most of them are proposed without considering the case
of eyeblink in the wild. Meanwhile, the existing eyeblink
detection datasets [3], [13]–[15] are generally captured under
the constrained indoor conditions with the relative consistent
subject and environment setup. However, towards some practi-
cal application scenarios eyeblink detection in the wild is more
preferred. For instance, during the phase of deception detection
the eyeblink visual data may be surreptitiously collected using
the hidden cameras, under the unconstrained indoor or outdoor
conditions [1]. In this case, the effective and real-time eyeblink
detection approach in the wild is essentially required to ensure
the performance.

To this end, we first establish a challenging labelled eye-
blink in the wild dataset termed HUST-LEBW. It consists
of 673 eyeblink video clip samples (i.e., 381 positives, and
292 negatives) that captured from the unconstrained movies
to reveal the characteristics of “in the wild”. Each positive
sample covers one whole eyeblink process that corresponds to
the eye status sequence of “eye open→eye close→eye
open”. To our knowledge, HUST-LEBW is the first eyeblink
in the wild dataset that involves the spatial-temporal sequence
information. Fig. 1 shows some snapshots of the eyeblink
samples within it. we can see that, there exits dramatic
variations on human attribute, human pose, illumination, imag-
ing viewpoint, and imaging distance. For instance, from the
human attribute perspective the subjects involved in HUST-
LEBW are of different ages, genders, races, skin colors and
makeups. Meanwhile, the humans may or may not wear
glass. This actually imposes great challenges to accurate
eyeblink detection, both for eye localization and eyeblink
verification.

Next, we propose to formulate eyeblink detection in the
wild task as a binary spatial-temporal pattern recognition
problem. In particular, a data-driven based real-time eyeblink
detection approach that involves 2 stages of eye localization
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Fig. 1. The essential challenges towards eyeblink detection in the wild.
The shown snapshots within HUST-LEBW dataset are captured from uncon-
strained movies.

and eyeblink verification is proposed by us. During the spatial
eye localization phase, the eye region is first detected using
the off-the-shelf SeetaFace face parsing engine [17], and then
tracked by KCF (Kernelized Correlation Filters) tracker [18]
to ensure the high running speed. Then towards eyeblink
verification, Long Short Term Memory (LSTM) neural net-
work is employed to model the temporal sequential procedure
of eyeblink. Due to the issue that eyeblink may happen
with the different time durations, we modify LSTM’s archi-
tecture to consider the multi-scale temporal information of
eyeblink.

Meanwhile, a feature extraction approach able to capture
the appearance and motion information of eyeblink simulta-
neously is also proposed. In particular, uniform Local Binary
Pattern (LBP) [19] visual descriptor is extracted to reveal
the appearance property of local eye region. And, the feature
difference between the LBPs from 2 consecutive frames is
used to encode the motion characteristics of eyeblink. The
appearance and motion feature are concatenated as the input of
LSTM.

Extensive experiments are then carried out on HUST-
LEBW. The comparison with the state-of-the-art approaches
demonstrates the superiority of our method on eyeblink detec-
tion in the wild, and its real-time running capacity.

The main contributions of this paper include:
• HUST-LEBW: the first eyeblink detection dataset that

involves temporal sequential information towards “in the
wild” cases. It contains 673 video samples (i.e., 381 pos-
itives, and 292 negatives);

• A modified LSTM architecture abling to capture multi-
scale temporal information of eyeblink is proposed;

• A uniform LBP-based eyeblink feature extraction method
is proposed. It captures the appearance and motion infor-
mation simultaneously.

HUST-LEBW and the source code of our work can be
downloaded at https://thorhu.github.io/Eyeblink-in-the-wild/.

The remaining of this paper is organized as follows. Sec. II
discusses the related work. The established HUST-LEBW
dataset is introduced in Sec. III. Then, the proposed eyeblink
detection method in the wild is illustrated in Sec. IV. The
essential implemetation details of the proposed eyeblink detec-
tion method are given in Sec. V. Experiments and discussions
are conducted in Sec. VI. Sec. VII concludes the whole paper.

Fig. 2. Some eyeblink sample frames from the existing ZJU [3],
Eyeblink8 [13], Talking face [14], and Researchers’ nights datasets [16].

II. RELATED WORK

In this section, we will introduce and discuss the related
work towards eyeblink detection in the wild in terms of
dataset, eyeblink verification and eye localization respectively.

A. Eyeblink Detection Dataset

Although numerous efforts have already been paid to
address eyeblink detection problem, the available public
datasets are still not abundant. ZJU [3], Eyeblink8 [13],
Talking face [14], Silesian5 [15] and Researchers’ nights [16]
are the representative ones with the spatial-temporal video
information. Nevertheless, all of the 5 datasets above generally
targets on the constrained indoor cases as shown in Fig. 2.
The involved samples are captured from the limited number
of volunteers, with the relatively consistent scene, subject,
illumination and imaging setup. As consequence, they cannot
reveal the “in the wild” characteristics faced by some chal-
lenging application scenarios. And, the reported performance
on these datasets is somewhat saturated (e.g., the detection
rate of 99% on ZJU and Silesian5). To facilitate the research
on eyeblink detection in the wild, a more challenging dataset
is indeed required. Accordingly, we propose to construct
HUST-LEBW dataset in the way of collecting samples from
the unconstrained live movies to essentially involve richer
“in the wild” eyeblink information. Compared to ZJU, Eye-
blink8, Talking face Silesian5 and Researchers’ nights [16],
the samples in HUST-LEBW are of much higher diversity
towards scene, subject, illumination and imaging conditions.
The detailed comparison among them is listed in Table I to
verify this, in attributes of “person number”, “person race”,
“person age”, “person sex”, “person sight”, “scene”, “illumi-
nation”, “imaging view”, and “imaging distance” respectively.
Meanwhile, video clip amount and resolution is also listed.
Hence, the severe attribute variation within HUST-LEBW will
impose great challenges to accurate eyeblink detection.

B. Eyeblink Verification

Towards the existing eyeblink verification approaches,
we will introduce them from the perspectives of pattern
recognition model, and feature extraction method respectively.
First aiming to solve a binary pattern recognition problem,
the existing eyeblink verification methods can be categorized
into the heuristic and data-driven paradigms. Specifically,
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TABLE I

THE ATTRIBUTE COMPARISON AMONG THE PROPOSED HUST-LEBW DATASET AND THE EXISTING EYEBLINK DETECTION RELATED DATASETS

the heuristic way executes eyeblink verification mainly accord-
ing to the pre-defined decision rules. For instance, when
human face has been detected in advance a variance map of the
sequential images is extracted to reveal the motion information
in [12]. Eyeblink verification is then carried out via executing
thresholding operation on it, in spirit of computing the salient
motion pixel ratio. Template matching is first executed to esti-
mate the eye state in [9]. In the way of observing the correla-
tion coefficient change in time, eyeblink is identified when the
correlation coefficient is below a pre-defined threshold. KLT
trackers are placed over the eye region to extract the motion
information of eyeblink in [13]. Eyeblink is consequently
determined using the state machine with numerous of pre-
defined threshold parameters. After acquiring the “open” and
“close” status of eye using SVM, eyeblink is then confirmed
according to the temporal contextual relationship between the
resulting eye status in [20]. With continuous eye tracking,
eyeblink is recognized by observing whether the eyes are
covered by eyelids in [21]. Actually, the effectiveness of most
of these approaches above highly relies on the adaptability
of the pre-defined thresholds for decision making. As conse-
quence, they tend to be sensitive to subject and environment
variation. To enhance the generalization capacity, some other
researchers resort to data-driven manner. Being incorporated
with the discriminative measures on eye status, Conditional
Random Field (CRF) is employed to model the eyeblink
procedure for verification in [3]. By extracting the EAR feature
to characterize the eye opening degree using eye landmarks,
SVM is finally used to verify the occurrence of eyeblink
in [22]. Actually compared to the heuristic manner, data-driven
approach is relatively seldom studied. And, our proposition
falls into the data-driven paradigm to use LSTM framework
with strong sequential information processing capacity to
model the spatial-temporal procedure of eyeblink.

Besides the patter recognition model, another essential
issue for eyeblink verification is feature extraction. Generally
speaking, appearance feature (e.g., EAR [22], LBP [23],
Haar [24], or HOG [25]) or motion feature (e.g., KTL tracker
motion [22] or pixel-wise frame difference between the con-
secutive 2 frames [9]) are extracted to this end. Nevertheless,

few approaches take appearance and motion information into
consideration simultaneously. To address this, we propose to
use uniform LBP as appearance feature and its difference
between the consecutive 2 frames as motion feature to jointly
characterize eyeblink.

C. Eye Localization

Accurate eye localization is the key step for eyeblink
detection within spatial domain. Some existing approaches [5],
[6], [8] resort to using color or spectral characteristics
to locate eye. Another way is to use motion informa-
tion [26] to detect and track eye. Nevertheless, their perfor-
mance is not promising. Most of the state-of-the-art methods
[9], [22], [27]–[29] resort to detect facial landmark to this
end, in the way of face parsing. To achieve the balance
between effectiveness and efficiency, we choose use SeetaFace
engine [17] for eye detection first, and then track eye using
KCF [18] for high running efficiency.

III. HUST-LEBW: A LABELLED DATASET FOR

EYEBLINK DETECTION IN THE WILD

As shown in Fig. 1, eyeblink detection in the wild suf-
fers from the challenges of variation on human attribute,
human pose, illumination, imaging view and distance, etc.
Nevertheless, the existing eyeblink detection datasets (e.g.,
ZJU [3], Talking face [14], Eyeblink8 [13], Silesian5 [15], and
Researchers’ nights [16]) cannot reveal the “in the wild” char-
acteristics well as indicated in Table I and Fig. 2. To address
this, we propose to build a new labelled dataset for eyeblink
detection in the wild (termed HUST-LEBW) to shed the light
into this research field not well studied before. The essential
difference between HUST-LEBW and the existing eyeblink
detection datasets is that, we choose to collect eyeblink video
clips from the unconstrained movies instead of from the lim-
ited number of volunteers under the indoor scene conditions.
After capturing the eyeblink video clips from the movies,
towards each frame the face region, point-wise eye location,
and local eye region will be annotated as shown in Fig. 3. Next,
we will illustrate the construction procedure and characteristics
of HUST-LEBW in details.
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Fig. 3. The main construction pipeline of HUST-LEBW dataset.

TABLE II

THE MAIN ATTRIBUTE INFORMATION OF THE 20 DIFFERENT
MOVES FOR HUST-LEBW CONSTRUCTION

A. Movie Data Source

To reveal the “in the wild” characteristics, the eyeblink
samples in HUST-LEBW are collected from 20 different
commercial movies. Their main attribute information (i.e.,
name, filming location, style and premiere time) is listed
in Table II. It can be observed that, the attributes of these
movies are actually of high diversity. Essentially, this helps to
ensure the eventful “in the wild” variation among the captured
eyeblink samples in items of human attribute, human pose,
scene / illumination condition, and imaging configuration as
discussed in Table I. For instance, the employed 20 movies
are shot in 8 countries from Asia, America, and Europe
with the variational indoor and outdoor filming locations.
Thus compared to the fixed indoor shooting condition of the
existing eyeblink detection datasets [3], [13]–[16], acquiring
eyeblink samples from these movies is of much stronger
scene variation and challenges. Meanwhile, the discrepancy
on movie style and premiere time also helps to promote the
human attribute variation, which is more close to the practical
applications. For example, the person races in HUST-LEBW
include Asian, Caucasian and Melanoderm simultaneously.
This actually cannot be met by the other datasets.

Fig. 4. The eyeblink video clip samples that correspond to the indoor
and outdoor cases in HUST-LEBW dataset. Each eyeblink sample covers the
whole eye status sequence of “eye open→eye close→eye open”.

Fig. 5. The eye appearance variation among the 172 different persons within
HUST-LEBW dataset.

Fig. 6. The eye appearance variation that corresponds to the change on
illumination and imaging distance within HUST-LEBW dataset.

B. Capture Eyeblink in the Wild Sample

From the 20 selected movies above, we then choose to
capture the eyeblink in the wild samples in the form of
video clip that covers the whole eye status sequence of “eye
open→eye close→eye open” as shown in Fig. 4.
Finally, we acquire 381 eyeblink video clips as the posi-
tive samples. Meanwhile, 292 non-eyeblink samples are also
collected as the negative ones. As consequence, the yielded
HUST-LEBW dataset consists of 673 samples in all (i.e.,
381 positives, and 292 negatives).

Due to the high divergence of the employed movie data
source, the captured eyeblink in the wild samples actually
reveal dramatic variation on human attribute, human pose,
scene condition, imaging view, and imaging distance as illus-
trated in Fig. 1 and Table II. These “in the wild” factors
essentially impose great challenges to effective eyeblink detec-
tion. For example, 172 persons of variational human attributes
and poses are involved in HUST-LEBW dataset. Their eye
appearance is actually of striking discrepancy as shown
in Fig. 5. Meanwhile, even within the same eyeblink sample
the eye appearance may also be of dramatic variation due to
the change on illumination and imaging distance as shown
in Fig. 6. When concerning the variation of human attribute,
human pose, scene and imaging condition simultaneously,
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Fig. 7. The statistical result of temporal duration that corresponds to the
381 raw captured eyeblink video clips within HUST-LEBW dataset. The
average frame rate is around 24 FPS.

Fig. 8. The examples of eyeblink sample annotation work on face localiza-
tion, eye localization, and local eye image extraction.

accurately locating human eyes and characterizing the eye
status for eyeblink detection in the wild is indeed not an easy
task.

Since some existing eyeblink detection approaches
(e.g., [22]) and our proposed LSTM-based manner require
the input eyeblink video clips to be of the same length,
we choose to polish the raw captured eyeblink samples
to be of the fixed temporal size. To this end, statistics on
temporal duration of the raw eyeblink samples is executed
as shown in Fig. 7. It can be observed that, the eyeblink
temporal duration (frame) generally follows the Gaussian
distribution with the mean value (μ) of 6.18 and standard
deviation (σ ) of 1.54. To alleviate the outlier effect caused
by human labelling bias, we set the fixed temporal duration
of eyeblink sample as 10 frames according to the Pauta
criterion (i.e., 3σ criterion) [30] also as revealed in Fig. 7.
In particular, during the eyeblink sample polish phase we will
place the fully-closed eye frame around the middle of the
eyeblink sample. Then, if the raw eyeblink sample is less than
10 frames the first and last frame will be copied uniformly for
extension iteratively. Oppositely, if the raw eyeblink sample
is more than 10 frames the excess frames will be cut from
the left and right hand uniformly. Meanwhile since some
eyeblink detection approaches (e.g., [22]) require the input
sample to be of 13 frames, we will also extend or cut the raw
eyeblink samples to 13 frames to make HUST-LEBW dataset
to be adapted to them.

C. Eyeblink Sample Annotation Work

After acquiring the 673 eyeblink and non-eyeblink samples,
we then execute annotation work on localizing face, localizing
eye and extracting local eye images on each frame for perfor-
mance evaluation towards practices. Next, we will introduce
the annotation work in details.

1) Face Localization: For each of the 8749 sample frames,
we first use SeetaFace face parsing engine [17] to localize
human face in terms of bounding box. Then, manual refine-
ment is executed to ensure that the face bounding box can
cover both of the right and left eye when they appear.

2) Eye Localization: After face localization, we then man-
ually localize the eye center at the point level frame by frame.
If only one eye is visible, the coordinate of the invisible eye
will be labelled as (−1,−1).

3) Local Eye Image Extraction: Using the acquired face
bounding box and eye center position information, the local
eye images are consequently extracted as follows. For one
person, if both of the left and right eye are visible with
labelled centers the height and width of the local eye image
are calculated as

Eyehgt = 0.4 × M H
(
Ple f t , Pright

)
, (1)

and

Eyewd = 0.4 × M H
(
Ple f t , Pright

)
, (2)

where Ple f t and Pright indicate the position of left and right
eye center; M H

(
Ple f t , Pright

)
represents the computation of

Manhattan distance [31] between Ple f t and Pright . Meanwhile,
if only one eye is visible the height and width will be
determined using the face size information, following the
principle proposed in [32]. That is, the height and width of
the local eye image are set as the 1/9 of the face width. Some
examples of eyeblink sample annotation are shown in Fig. 8.

It is worthy noting that, to ensure that the eyeblink sample
annotation result is applicable to all the methods in exper-
iments we will only localize the eyes and extract the local
eye images visible for 13 frames. As consequence, we finally
acquire 667 right eye samples and 644 left eye samples.

D. Dataset Split

After the HUST-LEBW dataset has been built, we then split
it into the training and test set. In particular, the training
set consists of 448 samples. Among them, 254 samples are
positives with 253 labelled right eyes and 243 labelled left
eyes; 190 samples are negatives with 190 labelled right eyes
and 181 labelled left eyes.

The test set consists of 225 samples. Among them, 127 sam-
ples are positives with 126 labelled right eyes and 122 labelled
left eyes; 98 samples are negatives with 98 labelled right eyes
and 98 labelled left eyes.

It is worthy noting that, the samples from the same movie
will not appear in the training and test set simultaneously.

IV. EYEBLINK IN THE WILD DETECTION METHOD:
A REAL-TIME SPATIAL-TEMPORAL MANNER

To address eyeblink detection in the wild, eye localization
is first executed at the spatial domain. Then, appearance
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Fig. 9. The main technical pipeline of the proposed eyeblink in the wild
detection approach.

Fig. 10. The main structure of LSTM unit.

and motion feature based on uniform LBP is simultaneously
extracted per frame from the corresponding local eye images to
characterize eyeblink. Multi-scale (MS) LSTM network able
to handle multi-scale temporal information is consequently
proposed to deal with the time series eyeblink characterization
feature to address eyeblink verification. The main technical
pipeline of the proposed eyeblink in the wild detection method
is shown in Fig. 9. Next, we will illustrate it in details.

A. Eyeblink Verification Using Multi-Scale LSTM

Eyeblink can be regarded as the facial activity that involves
sequential eye statuses. Long Short-term Memory Network
(LSTM) [34] has been demonstrated to be one of the most
successful deep learning models to deal with sequential data.
It has already been applied to human body activity recog-
nition [35] with promising performance. Inspired by this,
we propose to apply LSTM to eyeblink verification.

LSTM is derived from Recurrent Neural Network
(RNN) [36] to model the long-term dependency within time
series data. As shown in Fig. 11, LSTM unit consists of a
memory cell (ct ), an input gate (σi ), a forget gate (σ f ), and
an output gate (σo). σi , σ f , and σ f work collaboratively to
prevent memory contents from being perturbed by irrelevant
inputs and outputs to ensure long-term memory storage in
ct , in the way of controlling the information flow into and
out of the LSTM unit. Meanwhile, the gradient vanishing
and exploding problem met by RNN can also be alleviated
in LSTM accordingly [34]. However, intuitively applying the
original LSTM model to eyeblink verification is not optimal.
The insight is that eyeblink actually happens with the different

Fig. 11. The main structure of the proposed MS-LSTM model.

Fig. 12. The visual comparison between eyeblink from the same person.

temporal duration as revealed in Fig. 7, although they have
been manually fixed to the same size within HUST-LEBW
dataset. Essentially, the raw LSTM model cannot deal with
the multiple temporal case within time series data well [37].
To alleviate this, multi-scale LSTM (MS-LSTM) model is
proposed by us from 2 perspectives as follows.

First instead of only using the output (i.e. the hidden state
variable ht in Fig. 11) of the last LSTM unit to be the input
feature of softmax layer as for human body activity recogni-
tion [38], [39], we choose to employ the outputs of the last T
LSTM units jointly by concatenation to involve richer multiple
temporal scale information for eyeblink characterization.

Secondly inspired by the conclusion drawn in [37] that the
stacked RNN architecture can help to alleviate the multiple
temporal scale problem, we transfer this idea to LSTM case
by building L stacked LSTM layers within MS-LSTM. Similar
to stacked RNN [37], within the proposed MS-LSTM model
the output of the previous LSTM layer will be employed as the
input of the next LSTM layer in the parallel manner. Overall,
the main structure of the proposed MS-LSTM model1 is shown
in Fig. 11.

After the multiple temporal scale feature has been acquired
within MS-LSTM, softmax layer will finally judge the type of
input samples (eyeblink or non-eyeblink) as shown in Fig. 9.
However, we argue that the original softmax loss [40] is
not discriminative enough for eyeblink verification since it is
essentially a fine-grained visual recognition problem. To reveal
this, we show one eyeblink sample and one non-eyeblink
sample from the same person in Fig. 12. It can be observed
that, most of the frames within these 2 samples look similar
except for the eye close part. This phenomenon may lead to
the fact that, the eyeblink and non-eyeblink samples are not
easy to distinguish in feature space. To further verify this,
we exhibit the distribution of the eyeblink and non-eyeblink

1Within MS-LSTM, L and T are set as 2 using 3-fold cross-validation on
training set.
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Fig. 13. The feature distributions of the eyeblink and non-eyeblink samples
within HUST-LEBW dataset, corresponding to the left and right eye respec-
tively. They are drawn using t-SNE [33].

samples within HUST-LEBW dataset in Fig. 13, using the
appearance and motion feature illustrated in Sec. IV-B. We can
see that both in the left and right eye cases the eyeblink and
non-eyeblink samples distribute with serious overlap, which
is difficult to well discriminate. To enhance the discriminative
power towards eyeblink verification, we propose to use the
angular softmax (A-Softmax) loss [40] with the promising
performance for face verification. The intuition is that, face
verification can also be regarded as a fine-grained visual
recognition problem. Next, we will briefly introduce the key
idea of A-Softmax loss.

For the binary pattern recognition problem of eyeblink
verification, the decision boundary of the original softmax loss
is defined as

(W1 − W2) x + b1 − b2 = 0, (3)

where x indicates the input feature vector; Wi and bi represent
the weights and bias. With the constrain of �W1� = �W2� = 1
and b1 = b2 = 0, the decision boundary will be

�x� (cos (θ1) − cos (θ2)) = 0, (4)

where θi is the angle between Wi and x . As a result, the new
2-class decision boundary is only related to θi . Actually,
the modified softmax loss in Eqn. 4 enables the neural network
to learn the angle-based decision boundary. However, it cannot
ensure the strong discriminative power and generalization
capacity. To alleviate this, A-Softmax loss introduces a integer
m (m ≥ 1) to control angular margin between the 2 classes.
Accordingly, the decision boundaries for the 2 classes are
defined as

�x� (cos (mθ1) − cos (θ2)) = 0, (5)

and

�x� (cos (θ1) − cos (mθ2)) = 0, (6)

respectively. In summary, A-Softmax loss is to project the
samples from Euclidean feature space to angular feature space
and guarantees the angular margin between the 2 classes
as shown in Fig. 14. In this way, the discriminative power
and generalization capacity can be enhanced towards fine-
grained eyeblink verification task. The detailed definition of
A-Softmax loss can be found in [40].

Fig. 14. The visual comparison betweenthe original softmax loss and
A-softmax loss.

Fig. 15. The correlation coefficients between the current and the
next frame from the appearance and motion feature perspectives respec-
tively, corresponding to the eyeblink and non-eyeblink samples shown
in Fig. 12.

B. Low-Level Appearance and Motion Feature Extraction for
Eyeblink Characterization

Inspired by the two-stream (i.e., appearance and motion
stream) human body activity recognition paradigm [41],
we propose to extract low-level appearance and motion feature
simultaneously per frame as the input of MS-LSTM for
eyeblink characterization. Concerning the real-time running
issue, the lightweight uniform LBP visual descriptor [19]
is used instead of the high-cost deep Convolutional Neural
Network (CNN) [42] and optical flow [43] as in [41]. Another
main reason for why we use uniform LBP is that it is rotation-
insensitive [44], which is beneficial for eyeblink verifica-
tion in the wild. As shown in Fig. 5, the eyeblink in the
wild samples are often of different rotation angles due to
the variational human poses or imaging views as revealed
in Fig. 1.

Specifically, towards each frame uniform LBP is extracted
from the local eye image as the appearance feature. Besides,
we also propose to calculate the difference between the
uniform LBPs from 2 consecutive frames as the motion feature
to reveal the eye status evolution during eyeblink. Intuitively,
the appearance and motion feature is of the same dimension-
ality. They are concatenated as the input of MS-LSTM for
spatial-temporal eyeblink characterization, corresponding to
each frame except the first one.

To reveal the discriminative capacity of the proposed fea-
ture extraction method, the uncentered feature correlation
coefficient [45] between the current and the next frame
towards the eyeblink and non-eyeblink samples in Fig. 12 is
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Fig. 16. The main technical pipeline for local eye image extraction.

calculated as

corr (fc,fn) = fc · fn

�fc� �fn� , (7)

where fc and fn indicate the extracted eyeblink feature vec-
tor from the current and the next frame. The correlation
coefficients of the different frames are shown in Fig. 15,
from the appearance and motion feature perspectives respec-
tively. We can see that, generally the frames from the eye-
blink sample are of lower correlation coefficients. Meanwhile,
the non-eyeblink sample frames possess the relatively con-
sistent correlation coefficients. The phenomena above reveals
that, our feature extraction approach can essentially capture
the dynamic appearance and motion characteristics within
eyeblink.

C. Local Eye Image Extraction

As illustrated in Fig. 8 and Sec. IV-B, appearance and
motion feature is extracted from the local eye images for
eyeblink characterization. Thus, the effective and efficient
local eye image extraction is crucial for real-time eyeblink
detection. To this end, we choose to localize the center
position of left eye (Ple f t ) and right eye (Pright ) using off-
the-shelf SeetaFace face parsing engine [17] at the first frame.
Then, the local eye images are extracted using Ple f t and
Pright according to Eqn. 1 and 2. Regarding the remaining
frames, the local eye images are acquired by tracking the
yielded local eye regions of the last frame directly using KCF
tracker [18] due to its high running efficiency. KCF uses the
kernelized correlation filter to measure the similarity between
2 signals. And, its discriminative part can be solved within
the Discrete Fourier Transform domain to reduce the storage
and computation burden by several orders of magnitude. The
main technical pipeline for local eye image extraction is shown
in Fig. 16.

V. IMPLEMENTATION DETAILS

In this section, the essential and important implementation
details of the proposed eyeblink detection in the wild approach
will be illustrated.

• MS-LSTM is implemented based on the open source
machine learning library TensorFlow [46] for large-scale
data processing. It can run on the platforms of CPU, GPU,
ASIC and TPU, which is convenient for the developers.
Within its architecture, the nodes of a dataflow graph is
mapped across many machines in a cluster;

TABLE III

THE DECLINING LEARNING RATE THAT CORRESPONDS TO
THE LEARNING STEP DURING MS-LSTM TRAINING

• During the training phase of MS-LSTM, ADAM [47] is
used as the optimizer with the declining learning rate as
shown in Table III. The parameters β1 and β2 in ADAM
are set to 0.5 and 0.9 respectively;

• SeetaFace is an open source C++ face parsing engine
that can run on CPU with no third-party dependence.
Towards our research, it involves 2 key functions,
(i.e., face and landmark detection). SeetaFace engine
runs in the coarse-to-fine manner, with a novel funnel-
structured cascade FuSt) detection framework. We use
its public code with C/C++ programming language
at https://github.com/seetaface/SeetaFaceEngine;

• ADAM is a first-order gradient-based optimization
method for stochastic objective functions. It estimates the
lower-order moments adaptively, to leverage the optimiza-
tion performance;

• KCF is implemented using the public code with C/C++
programming language at https://github.com/vojirt/
kcftracker;

• Uniform LBP is implemented by ourselves using C/C++
programming language.

VI. EXPERIMENTS

During experiments to reveal the essential challenges of
eyeblink detection in the wild and verify the effectiveness of
our proposed eyeblink detection approach, we first compare
the performance between our method and the other state-of-
the-art eyeblink detection manners [8], [10], [12], [13], [22]
on the proposed HUST-LEBW dataset in Sec. VI-A. Since
the codes of the approaches employed for comparison are not
publicly available and cannot be acquired from the authors,
we try our best to implement them by ourselves.

Then to demonstrate the superiority of the proposed
MS-LSTM based eyeblink verification approach, we compare
it with the other state-of-the-art region-level eyeblink verifi-
cation methods [10], [12], [13] in Sec. VI-B. To remove the
impact of eye location for fair comparison, this test is executed
under the assumption that the local eye region has already
been successfully extracted in the way of using the manual
annotation result directly as depicted in Sec. III-C. Since the
approaches in [8], [22] cannot take the local eye image as
input, they will not be taken into consideration for comparison
in this experimental part.

Consequently, the performance comparison between our eye
localization method and the other existing approaches [8], [9],
[13], [22], [48] is carried out in Sec. VI-C. Here, 3 face
parsing approaches (i.e., SeetaFace [17], Intraface [22], and
MTCNN [29]) are also compared from the perspectives of
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both effectiveness and efficiency to justify the reason for why
we choose SeetaFace to initially locate the eye center.

The real-time running capacity of our eyeblink detection
approach is demonstrated in Sec. VI-D. And, the ablation
studies towards MS-LSTM, A-softmax loss function, and
low-level eyeblink feature extraction within our method are
executed in Sec. VI-E, Sec. VI-F and Sec. VI-G respectively to
reveal the effectiveness of our propositions. The failure cases
are given in Sec. VI-H. And, Sec. VI-I lists the performance
of the proposed approach towards the untrimmed video clips.

The experiments run on a laptop with Intel(R) Core(TM)
i7-7700HQ CPU @ 2.8GHz (only using one core) and 8 GB
RAM memory, under the Windows 10 operation system.
During the training phase of MS-LSTM, GPU is used for
speed acceleration. But for online test, GPU will not be used.

A. Performance Comparison Among the Different Eyeblink
Detection Methods

To evaluate the performance of the different eyeblink detec-
tion methods on HUST-LEBW dataset, the criterias of Recall,
Precision and F1 score are used as below.

Recall = T P

T P + F N
, (8)

Precision = T P

T P + F P
, (9)

F1 = 2
1

Recall + 1
Precision

, (10)

where T P indicates the number of eyeblink samples recog-
nized correctly; F N2 and F P denote the number of eyeblink
and non-eyeblink samples recognized incorrectly.

Meanwhile, for eyeblink detection in the wild the fail-
ure of eye localization essentially weakens the performance.
To reveal the impact of this issue, the failure rate (F R) of eye
localization towards eyeblink samples is given as

F R = Nmiss + Nerr

Nall
, (11)

where Nmiss indicates the number of eyeblink samples that
correspond to the case that the eyes cannot be detected at all;
Nerr denotes the number of eyeblink samples that correspond
to the case that the eyes cannot be localized correctly within
the all frames; and Nall represents the number of eyeblink
samples in all. The criteria for judging whether the eye has
been correctly localized is given as

M E =
M H

(̃
Ploc, Ploc

gt

)

M H
(

Ple f t
gt , Pright

gt

) , (12)

where M H (∗, ∗) is Manhattan distance function; Ple f t
gt and

Pright
gt indicate the ground-truth position of left and right eye

center; ˜Ploc denotes the position of the detected eye center
and Ploc

gt represents its ground-truth position. If M E > 0.4,
we declare that the eye center has not been correctly localized.

2It is worthy noting that, the eyeblink samples with wrong eye localization
result will be regarded as FNs.

TABLE IV

PERFORMANCE COMPARISON AMONG THE DIFFERENT EYEBLINK DETEC-
TION METHODS ON HUST-LEBW DATASET. THE BEST PERFOR-

MANCE OF EACH EVALUATION CRITERIA IS SHOWN IN BOLDFACE.
IN TABRIZI’S METHOD [8], EYEBLINK DETECTION IS EXE-

CUTED TOWARDS LEFT AND RIGHT EYE JOINTLY

According to the evaluation criterias above, the comparison
among the different eyeblink detection approaches on HUST-
LEBW dataset is listed in Table IV. It can be observed that:

• Actually, all the eyeblink detection approaches for test
(including ours) cannot achieve the satisfactory per-
formance. In summary, their F1 scores cannot exceed
0.7 (0.6735 at most). This phenomenon reveals the fact
that, eyeblink detection in the wild is not a trivial but
indeed challenging visual recognition task not well solved
yet;

• The proposed eyeblink detection approach outperforms
the other methods significantly at 3 of the 4 evaluation
criteria (except for Precision) both on left and right eye,
from the perspectives of eye localization and eyeblink
verification. That is, the performance gap between our
method and the others on F1 score is at least 0.167. This
demonstrates the superiority of our proposition towards
eyeblink detection in the wild. In some cases, the methods
of Chau [10] and Morris (ver.) [12] can yield higher
Precision than ours. However, they suffer from low
Recall mainly due to high F R;

• The challenges of eyeblink detection in the wild essen-
tially derive from the procedures of eye localization
and eyeblink verification simultaneously. In particular,
all the methods suffers from high F R (over 0.3) on
eye localization. Meanwhile, although our approach per-
forms best its Recall and Precision is still relatively
low.

Obviously, the approach of Soukupová [22] is our strongest
competitor. Since it is implemented by us, the comparison
between its original result reported in [22] and our implemen-
tation is conducted on ZJU dataset [3] (as shown in Fig. 17)
to verify the correctness of our implementation. Particularly,
Precision-Recall curve is used as the performance evaluation
metric. We can see that, our result is close to the original
one in [22]. This actually reveals the fairness of the con-
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Fig. 17. The performance comparison with Precision-Recall curve on
ZJU dataset between the method of Soukupová [22] (i.e., Intraface SVM)
implemented by us and the original result reported in [22]. Since the accurate
result is not given in [22], we choose to cite “Fig. 8(a)” in [22] directly.

TABLE V

PERFORMANCE COMPARISON AMONG THE DIFFERENT EYEBLINK VERI-
FICATION METHODS ON HUST-LEBW DATASET. THE BEST PERFOR-

MANCE OF EACH EVALUATION CRITERIA IS SHOWN IN BOLDFACE

ducted experiments. Since the other approaches are much
inferior to ours, their implementation correctness will not be
verified.

B. Performance Comparison Among the Different Eyeblink
Verification Methods

Since the result of eyeblink detection is jointly determined
by eye localization and eyeblink verification, to solely ver-
ify the superiority of our MS-LSTM based eyeblink verifi-
cation approach the different methods are compared under
the assumption that the local eye region has already been
manually extracted in advance. Accordingly, the performance
comparison among the different applicable approaches is listed
in Table V. We can see that:

• Removing the impact of eye localization, the proposed
MS-LSTM based eyeblink verification approach still
remarkably outperforms the other methods at F1 score
by large margins (0.1768 at least), both on left and
right eye. This indeed demonstrates the superiority of our
proposition over the other manners;

• Even the local eye region has been manually extracted
in advance, the performance of the involved approaches
is still not promising enough. In particular, the highest
F1 score is only 0.8046. Actually this verifies the fact
that eyeblink detection can be regarded as a fine-grained

Fig. 18. The performance comparison among the different eye localization
approaches used by the existing eyeblink detection manners.

Fig. 19. The performance comparison among 3 state-of-the-art face parsing
methods for eye localization.

spatial-temporal visual pattern recognition problem of
essential challenges, which is also revealed in Fig. 13
previously;

• Our approach is inferior to Chau’s method [10] at
Precision. Nevertheless, its Recall and F1 score is much
lower than ours.

C. Performance Comparison Among the Different Eye
Localization Methods

Eye localization is the vital step towards most of the
eyeblink detection methods. It affects the final performance a
lot. Since the existing eyeblink detection approaches generally
suffer from high failure rate (F R) on eye localization as
revealed in Table IV, we choose to compare our eye localiza-
tion approach with the others (i.e., Intraface [22], OpencvFace
+ TM [9], OpencvFace + KLT [13], Skin [48] and Yuzhi [8])
mainly according to Recall. The criteria for judging whether
the eye has been localized correctly is the same as Sec. VI-A,
according to M E in Eqn. 12. The experiments are executed
on all the sample frames within HUST-LEBW dataset. The
performance comparison among the different approaches is
shown in Fig. 18. In particular, for compact comparison the
average Recall of left and right eye is reported. Obviously
our eye localization approach that uses SeetaFace face parsing
engine [17] and KCF tracker [18] is consistently better than
the other manners remarkably, corresponding to the different
M E thresholds.

On the other hand, within our approach SeetaFace face
parsing engine plays the essential role of localizing eye
center initially before tracking. To solely verify its superiority,
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TABLE VI

AVERAGE TIME CONSUMPTION (MS) PER FRAME AMONG THE DIFFERENT
FACE PARSING APPROACHES FOR EYE LOCALIZATION

TABLE VII

THE AVERAGE ONLINE RUNNING TIME CONSUMPTION (MS) PER

FRAME OF THE MAIN PROCEDURES WITHIN THE PROPOSED

EYEBLINK DETECTION APPROACH

we compare it with the other 2 state-of-the-art face parsing
approaches (i.e., Intraface [22], and MTCNN [29]) from the
perspective of effectiveness and efficiency simultaneously.
In particular, the performance comparison on effectiveness
among the 3 face parsing methods is shown in Fig. 19.
We can see that, in most cases SeetaFace is better than
Intraface but inferior to MTCNN. Nevertheless, towards real-
time eyeblink detection application running efficiency should
also be taken into consideration. We compare the average time
consumption of these 3 approaches in Table VI. It can be
observed that, SeetaFace is of the highest running efficiency
(i.e., 33.20 ms per frame). Compared to MTCNN, it runs faster
of 1 magnitude. Concerning the tradeoff between effectiveness
and efficiency for real-time application, we choose SeetaFace
as our initial eye localizer.

D. Real-Time Online Running Capacity Verification

In this subsection, we will verify that our proposed eyeblink
detection method is of real-time online running capacity on a
personal computer with Intel(R) Core(TM) i7-7700HQ CPU
@ 2.8GHz (only using one core). The average online running
time consumption per frame of the main procedures within
our method is listed in Table VII. It can be observed that,
the main time consumption is costed by SeetaFace engine
for initial eye localization with 33.20 ms. However, it will
be executed only on the first frame towards an eyeblink
sample. And, the procedures of eye tracking, eyeblink feature
extraction, and eyeblink verification are extremely fast with
the time consumption of only 7.87 ms in all. We can make
a summary that, the initial eye localization procedure can run
with the speed over 29 FPS. When turning to eye tracking
phase, the proposed eyeblink detection method can run with
the speed over 127 FPS. Overall, our approach meets the real-
time running requirement (i.e., with the speed over 25 FPS).

E. Ablation Study 1: MS-LSTM

MS-LSTM is proposed by us to address the problem of
eyeblink verification. From the network structure perspective,
it holds 2 main modifications compared with the original

TABLE VIII

PERFORMANCE COMPARISON AMONG MS-LSTMS WITH THE
DIFFERENT NUMBERS OF STACKED LSTM LAYERS

TABLE IX

PERFORMANCE COMPARISON AMONG MS-LSTMS WITH THE

DIFFERENT TEMPORAL SCALE NUMBERS

TABLE X

PERFORMANCE COMPARISON BETWEEN SOFTMAX AND
A-SOFTMAX LOSS FUNCTION FOR EYEBLINK VERIFICATION

LSTM model to alleviate the multiple temporal scale problem
within eyeblink. One is to stack multiple LSTM layers. And,
the other is to involve multiple temporal scale feature. Here,
we will verify the effectiveness of the 2 modifications respec-
tively. The experiments are executed under the assumption that
the local eye region has already been manually extracted in
advance, which is the same as Sec VI-B.

1) Stack Multiple LSTM Layers: The number of the stacked
LSTM layers is set from 1 to 4. The performance comparison
among them is listed in Table VIII. It can be seen that:

• Compared to the original LSTM model with only 1 layer,
adding the layer number can consistently leverage the
performance on Recall and F1 score in all the test cases.
However, it may weaken Precision. Overall, stacking
multiple LSTM layers is an effective way to enhance
eyeblink verification result comprehensively.
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TABLE XI

THE PERFORMANCE COMPARISON AMONG THE DIFFERENT VISUAL DESCRIPTORS UNDER THE APPEARANCE-MOTION EYEBLINK FEATURE
EXTRACTION MECHANISM. IN PARTICULAR, “APP.” INDICATES APPEARANCE FEATURE AND “MOTION” DENOTES MOTION

FEATURE FOR EYEBLINK CHARACTERIZATION

• Setting the layer number to 2 can achieve the best aver-
age performance on Recall and F1 score. Accordingly,
the layer number within the proposed MS-LSTM model
is empirically set to 2 for eyeblink verification.

2) Multiple Temporal Scale Feature: The temporal scale
number is set from 1 to 5. The performance comparison among
them is listed in Table IX. We can see that:

• Involving multiple temporal scale feature essentially
leverages the performance of eyeblink verification,
especially from the perspectives of average Recall,
Precision and F1 score. This actually demonstrates
the effectiveness of our proposition on extracting mul-
tiple temporal scale feature for eyeblink characterization
within MS-LSTM model;

• Setting the temporal scale number to 2 can achieve
the best average performance on Recall and F1 score.
Accordingly, the temporal scale number of the proposed
MS-LSTM model is empirically set to 2 for eyeblink
verification.

F. Ablation Study 2: A-Softmax Loss Function

As revealed in Fig. 13, eyeblink verification can be regarded
as a fine-grained binary spatial-temporal pattern recognition
problem. To ensure the classification margin between eyeblink
and non-eyeblink classes, A-softmax loss function is used
within MS-LSTM model. To verify its superiority, we compare
it with the original softmax loss function. The experiments
are executed under the assumption that the local eye region
has already been manually extracted in advance, which is the
same as Sec VI-B. The performance comparison between these
2 loss functions is listed in Table X. It is impressive that
A-softmax loss function consistently outperforms the original
softmax loss function in all test cases, especially on the
average Recall and F1 score. This indeed demonstrates the
effectiveness of our proposition that applies A-softmax loss
function to address eyeblink verification.

G. Ablation Study 3: Low-Level Eyeblink Feature Extraction

To effectively characterize eyeblink, we propose to extract
low-level appearance and motion feature simultaneously as the
input of MS-LSTM using uniform LBP. To justify the supe-
riority of our low-level eyeblink feature extraction method,

TABLE XII

AVERAGE TIME CONSUMPTION (MS) PER FRAME AMONG THE DIFFERENT

VISUAL DESCRIPTORS FOR EYEBLINK CHARACTERIZATION

we conduct experiments in 2 folders. First, uniform LBP is
compared with the other 2 well-established visual descriptors
(i.e., HOG [25] and Haar [24]). Meanwhile, the effectiveness
of the mechanism on extracting appearance and motion feature
simultaneously for eyeblink characterization is also verified.
The experiments are executed under the assumption that the
local eye region has already been manually extracted in
advance, which is the same as Sec VI-B. The comprehensive
performance comparison is listed in Table XI. It can be
observed that:

• Among the 3 visual descriptors for test, uniform LBP
can achieve the best result on the average F1 score. Its
performance on the average Recall and Precision is also
comparable to the best one. Overall, uniform LBP is the
optimal choice for eyeblink detection;

• For all the 3 visual descriptors the mechanism of extract-
ing appearance and motion feature simultaneously can
essentially leverage the performance in most cases, com-
pared to using only one type feature.

• In addition, the running time comparison of the 3 visual
descriptors is listed in Table XII. We can see that, uniform
LBP is of the fastest running speed.

The experimental results above indeed demonstrate the
effectiveness of our proposed low-level eyeblink feature
extraction approach.

H. Failure Cases of Eyeblink Detection in the Wild

From Sec. VI-A to Sec. VI-G, quantitative performance
evaluation is executed to demonstrate its effectiveness and
superiority of our proposition. Here, qualitative analysis will
be conducted to show the defects of our proposition towards in
the wild application scenario. Accordingly the intuitive failure
case examples are given in Fig. 20 from different perspectives,
aiming to reveal some insights towards eyeblink detection in
the wild and indicate the future research avenue. We can see
that accurate face detection, eye localization and eye tracking
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Fig. 20. The failure cases towards eyeblink detection in the wild of our
proposed approach. In particular, “+” indicates the position of right eye and
“+” denotes the position of left eye.

TABLE XIII

PERFORMANCE OF EYEBLINK DETECTION ON UNTRIMMED VIDEO CLIPS

is still remaining as the challenging visual tasks under the
unconstrained “in the wild” conditions, although numerous
efforts have already been paid. The challenges actually derive
from the dramatic variation on human attribute, human pose,
illumination, and scene conditions. From Fig. 20(c), the fast
movement of human is also a critical issue to impair eye
tracking. Meanwhile, the makeup on eye may also confuse the
classifier during the phase of eyeblink verification as shown
in Fig. 20(d). What is more challenging is that within some
eyeblink samples the eyes are not fully closed as shown
in Fig. 20(e), which may be caused by the relatively low frame
rate of camera. These require us to extract more discriminative
spatial-temporal feature for eyeblink characterization.

I. Eyeblink Detection Towards Untrimmed Video Clip

Here our proposed eyeblink detection approach is tested on
the untrimmed video clips, which is more close to the practical
applications. To this end, a sub-dataset of HUST-LEBW is
built. In particular, 90 untrimmed video clips of the average
length of 51.30 frames are captured to cover all the 127 raw

eyeblink samples within HUST-LEBW for test. A 10-frame
sliding temporal window is set to decide the start and end
position of eyeblink, with the stride of 1 frame. Temporal
NMS is executed to reduce the redundant predictions, with
the IoU threshold [49] of 0.33 and eyeblink confidence score
threshold of 0.5. Performance evaluation is executed according
to THUMOS-overlap 0.5 criterion [50], and average precision
(AP) [50] is reported. During online test, eye localization
using SeetaFace engine will be re-executed when the eye
tracking score of KCF is below 0.25. The test results are listed
in Table XIII. We can see that, the performance of the proposed
eyeblink detection approach is actually not satisfactory enough
with the relatively low AP and high FR on eye localization.
This essentially verifies the challenges of eyeblink detection
in the wild, especially towards the practical applications.
However, the running speed of our method is still nearly real-
time (27.55 FPS in average).

VII. CONCLUSIONS

In this work, we shed the light to the research field of
eyeblink detection in the wild not well studied before. First,
an eyeblink detection in the wild dataset (HUST-LEBW)
is built. Second, MS-LSTM model is proposed to address
the fine-grained spatial-temporal pattern recognition problem
within eyeblink detection. Third, an effective and efficient
eyeblink feature extraction approach is proposed to capture
appearance and motion information simultaneously. Mean-
while, our eyeblink detection method can run in real-time on a
normal laptop without using parallel computing. The extensive
experiments verify the challenges of eyeblink detection in
the wild, and demonstrate the superiority of the proposed
approach.
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