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Abstract— Estimating optical flow from successive video
frames is one of the fundamental problems in computer vision
and image processing. In the era of deep learning, many methods
have been proposed to use convolutional neural networks (CNNs)
for optical flow estimation in an unsupervised manner. However,
the performance of unsupervised optical flow approaches is still
unsatisfactory and often lagging far behind their supervised
counterparts, primarily due to over-smoothing across motion
boundaries and occlusion. To address these issues, in this paper,
we propose a novel method with a new post-processing term
and an effective loss function to estimate optical flow in an
unsupervised, end-to-end learning manner. Specifically, we first
exploit a CNN-based non-local term to refine the estimated
optical flow by removing noise and decreasing blur around
motion boundaries. This is implemented via automatically learn-
ing weights of dependencies over a large spatial neighborhood.
Because of its learning ability, the method is effective for various
complicated image sequences. Secondly, to reduce the influence
of occlusion, a symmetrical energy formulation is introduced
to detect the occlusion map from refined bi-directional optical
flows. Then the occlusion map is integrated to the loss function.
Extensive experiments are conducted on challenging datasets, i.e.
FlyingChairs, MPI-Sintel and KITTI to evaluate the performance
of the proposed method. The state-of-the-art results demonstrate
the effectiveness of our proposed method.

Index Terms— Optical flow, unsupervised learning, non-local
term, loss function, occlusion map.

I. INTRODUCTION

OPTICAL flow estimation, which aims at computing a
pixel-wise motion field between video frames, is one

of the most fundamental problems in computer vision. It has
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attracted much attention in both the academic community and
the industry due to its wide range of applications, e.g., action
recognition [1], [2], segmentation [3], etc.

Recently, the optical flow estimation methods [4]–[7] based
on deep learning have overcome the typical problems (such as
low speed performance) in traditional models [8], [9], by using
convolutional neural networks (CNNs). However, one main
drawback of these methods is that they are supervised and
need large amount of annotated data with ground-truth optical
flow for training. Unfortunately, obtaining per-pixel ground-
truth optical flow for real videos is difficult [3], [10].

One promising research direction is to use unsupervised
learning method. Ahmadi and Patras [11] proposed to train
a CNN to compute optical flow by designing a loss function
based on the classical brightness constant assumption (BAC).
However, occluded pixels will affect the estimation accuracy
since the classical BAC-based loss function prefers to compen-
sate the occluded regions with other arbitrary pixels. Recently,
some more advanced unsupervised methods were presented
to calculate optical flow [12]–[16] by taking into account
occlusion. Still, there is a big performance gap between the
unsupervised methods and their supervised counterparts (as
will be shown in Section V). Mostly, these models are unable
to handle outliers well and often produce over-smoothed
flows.

Sun et al. [8] conducted massive experiments and found
that the use of filters (such as mean filter, non-local filter,
bilateral filter, etc.) can effectively improve the accuracy of
traditional models. Among them, the non-local filter appears
to be one of the best. The non-local term minimizes the
L1 distance between the central value and all flow values in
its neighborhood except itself, which can prevent smoothing
across motion boundaries [8], [17]. However, the traditional
non-local approach has two drawbacks: (1) the low speed per-
formance, and (2) the weights are human-designed according
to the measure of the Euclidean distance or else [8].

In this paper, we propose a new end-to-end unsuper-
vised method for optical flow estimation. Firstly, to solve
the problem of over-smoothing across motion boundaries,
we design a CNN-based non-local term. Our non-local term
is embedded in the deep neural network so that its weights
can be automatically learned, making it is suitable for
denoising various images and can preserve the details of
motion boundaries. Besides, our CNN-based non-local term
consists of just five convolutional layers and is only con-
ducted at the last pyramid level, and hence saving significant
computational time.
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Secondly, to tackle problems due to occluded regions that
usually produce misleading information [14], following pio-
neer works [15], [18], we enable our network to extract
occlusion maps and integrate them to form a loss function.
Specifically, we estimate the forward and backward optical
flow to generate bi-directional occlusion maps (see Fig. 1).
We use their relationship and allow them to leverage each other
via the estimated bi-directional flow and occlusion maps.

More concretely, in the training phase, the input is two
consecutive frames. Exchanging the order of the images,
we can estimate both the forward and the backward optical
flow. Subsequently, the CNN-based non-local term is used
to refine the computed optical flow. After that, we utilize
the refined bi-directional optical flow to get bi-directional
occlusion maps by forward and backward consistency check.
Finally, we build a loss function according to the estimated bi-
directional optical flow and occlusion maps. We evaluate our
approach on the FlyingChairs, MPI-Sintel, KITTI 2012 and
KITTI 2015 benchmarks. The approach yields the highest
accuracy among all unsupervised learning-based optical flow
methods. The comprehensive ablation study validates the
effectiveness of our unsupervised optical flow technique.

We summarized the contributions of this work as follows:
• We propose a novel end-to-end neural network to estimate

optical flow in an unsupervised manner to handle the
problems of occlusion and lacking large-scale datasets
with ground-truth.

• We introduce a CNN-based non-local term, which can
learn the dependencies over a large spatial neighborhood,
so that the flow estimates can be robustly integrated in
the optimization process to prevent over-smoothing across
motion boundaries.

• The CNN-based non-local term can be widely used as
it can be easily combined with other CNN-based optical
flow models.

• With high robustness and efficiency, the proposed
model achieves high accuracy on the MPI-Sintel, KITTI
2012/2015 datasets.

II. RELATED WORK

A large number of studies have been carried out to improve
the performance of optical flow estimation for a long time
[19], especially on handling outliers and occlusions [3]. In this
section, we consider three classes of related optical flow
techniques, i.e., variational methods, supervised deep learning
methods, and unsupervised deep learning methods. In addition,
we will show different ways of refining optical flow in
section II-D.

A. Variational Methods

Horn and Schunck (HS) [19] creatively combined the two-
dimensional velocity field with the change in brightness to
construct a basic data term based on the BAC, and further
designed a smoothness term according to the overall smooth-
ing constraint. With these two terms, the theoretical structure
of variational optical flow model was established. Because
the variational optical flow approach has many advantages,

it became the mainstream in optical flow calculation. Sub-
sequent variational optical flow algorithms were almost all
derived and extended from the HS algorithm [3]. To deal
with the large displacement problem, Black and Anandan [20]
proposed a coarse-to-fine variational method, and introduced
a robust framework to deal with outlier, i.e., brightness incon-
stancy and spatial discontinuities. The coarse-to-fine strategy
is a heuristic work to handle large displacements which has a
huge impact on subsequent optical flow methods [21]–[23]. To
handle outliers and reduce over-smoothing at motion bound-
aries, Sun et al. [8] introduced a non-local term which robustly
integrates flow estimates over large spatial neighborhoods, [24]
took into account the symmetry across the images as well as
possible occlusions in the flow field. Tu et al. [9] proposed a
method, which uses edge detection to extract flow edges and
piecewise occlusion detection to extract occlusions, to handle
both occlusion and over-smoothing. A weighted median filter,
a bilateral filter and a fast median filter were together utilized
to post-process the detected edges and occlusions. However,
these methods require a lot of computation, making them less
likely to work in real-time.

B. Supervised Methods in Deep Learning

In recent years, using CNN to build a model to learn optical
flow in an end-to-end way has achieved great success [3].
Dosovitskiy et al. [4] pioneered to use CNN to calculate
optical flow. They proposed a network called FlowNet, which
contains two CNN networks – FlowNetS and FlowNetC. They
are implemented in trainable encoder-decoder networks end-
to-end. The networks were pre-trained on a large synthetic
dataset (FlyingChairs), and fine-tuned on other datasets. The
FlowNet is very fast, but its flow field contains a lot of
errors in smooth regions and thus variational refinement is
required. Inspired by the FlowNet, Ilg et al. [5] proposed
a network called FlowNet 2.0, which extends FlowNet by
stacking multiple encoder–decoder networks. It obtained much
more accurate result than FlowNet, but the parameters and
computational complexity were increased significantly. Ranjan
and Black [25] explored a compact network termed SpyNet,
which was derived from the spatial pyramid. Sun et al. [6]
further improved the performance of SpyNet, and presented
an effective model, which combined different good practices
from optical flow and stereo matching, by training a shallow
Siamese network and constructing a cost volume at different
scales. Hui et al. [7] proposed a model named LiteFlownet,
which conducted flow inference at each pyramid level via a
lightweight cascaded network, and used a feature-driven local
convolution to deal with the issue of outliers and blurry flow
boundaries. However, these supervised models share a big
limitation: they need a large amount of data with ground-
truth optical flow. Unfortunately ground-truth flow is difficult
to obtain for real videos.

C. Unsupervised Methods in Deep Learning

To address the problem of lacking ground-truth flow,
one promising way is to exploit unsupervised learning.
Jason et al. [12] presented a method to calculate optical flow
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Fig. 1. Illustration of the framework. The entire network is based on the coarse-to-fine strategy. Specifically, we build a feature pyramid on the input two
consecutive images. Due to the limited space, we only show the flow estimation modules at the top two levels and the end level. The optical flow estimator
has different parameters at different levels. At the end level, the full resolution optical flow is obtained.

via brightness constancy and motion smoothness in an unsu-
pervised way. Similarly, Ren et al. [13] suggested an unsuper-
vised method based on FlowNet to sidestep the limitation of
synthetic annotated datasets. They replaced the original super-
vised loss with the classic photometric loss. But the accuracy
was unsatisfactory, and one reason is that when the pixels
are occluded, the photometric loss would provide misleading
information. Wang et al. [14] first inferred occlusion maps and
then utilized them in computing the photometric difference.
Hur and Roth [26] proposed to learn optical flow and occlusion
jointly, and showed how to utilize occlusion as an important
cue for estimating optical flow. Meister et al. [15] proposed
a model named UnFlow, which designed an unsupervised
loss based on occlusion-aware bidirectional flow estimation
to avoid the need of ground-truth flow. Neoral et al. [27]
presented a ContinualFlow method which estimated opti-
cal flow by using a multi-frame formulation with temporal
consistency. It utilized more data with advanced occlusion
reasoning for getting better accuracy, but it lacks the capa-
bility to learn optical flow in occluded regions. Additionally,
Lai et al. [18] proposed an unsupervised network to jointly
learn spatiotemporal correspondence for stereo matching and
optical flow estimation. It also includes occlusion extraction,
where the stereo matching can help the model understand-
ing the depth information in the scene. This strategy is
effective to improve the accuracy of optical flow estimation
but increases the complexity of the model. In this paper,
we only use two consecutive images to learn the bi-directional
optical flow and the occlusion map. Moreover, we apply
a CNN-based non-local term to alleviate the boundary
smoothness.

D. Refinement

Traditional optical flow methods often use contextual infor-
mation to post-process the flow field. Median filtering and
bilateral filtering are common approaches used to prevent
smoothing across motion boundaries [9]. Buades et al. [17]
proposed a non-local algorithm for image denoising, which
can capture long-range dependencies. It alleviates boundary

over-smoothing during the denoising process. Sun et al. [8]
showed how to incorporate a weighted version of the non-
local term into the variational model to refine optical flow.
They suggested that if we know a pair of pixels belonging
to the same surface, a higher weight should be given to
them. In this way, boundary blur is reduced, and weights are
approximated according to their spatial distance, color-value
distance and occlusion state. However, it is not only difficult to
calculate weights, but also difficult to incorporate with current
deep networks. Inspired by the classical non-local technique,
Wang et al. [28] constructed a non-local term to compute the
response at a position as a weighted sum of the deep features
at all positions within a deep neural network. This simple oper-
ation shows effectiveness in the application of video classifi-
cation. Motivated by the above mentioned works, we design a
CNN-based non-local term to refine the extracted optical flow,
which can be easily integrated with deep models to overcome
over-smoothing.

III. THE PROPOSED METHOD

The schematic structure of our framework is depicted
in Fig. 1. Based on the coarse-to-fine strategy [6], [7], [25],
we propose an end-to-end method to estimate (forward) optical
flow in an unsupervised manner. The input are two successive
images, and the output is the (forward) estimated optical flow.

During the training process, to detect occlusion, we also
need inverse (backward) optical flow [18], [25]. Optical flow
and occlusion maps are integrated into our loss function
to constrain each other. Note that, for the sake of brevity,
some explanations only discuss on the forward optical flow.
Exchanging the order of the input images, we can obtain the
backward optical flow, and the reasoning is implemented in
the same way.

Following the previous work [6], [7], we first build a feature
pyramid from the two input images. At the top level, we use
the features of the first image and the features of the second
image to construct forward cost volume. The forward cost
volume and features of the first image are fed into the optical
flow estimator to compute the forward flow at the top level.
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Fig. 2. Illustration the extraction process of the forward optical flow at l-
layer: (2) Getting cost volume based on the future of image 1 and the warped
image 2. (3) Estimating optical flow based on the future of image 1, the cost
volume and the upsampled flow.

After that, the estimated forward flow is upsampled and
rescaled to the second level.

At the second level, the way to compute optical flow is a
little different from the top level. We warp the feature map of
the second image toward the first using the upsampled forward
flow from the top level to obtain a forward warped feature. The
features of the first image and the forward warped features are
used to construct the forward cost volume. Next, the features of
the first image, the forward cost volume, and the upsampled
forward flow from the top level are fed to the optical flow
estimator to obtain the forward flow at the second level. The
process repeats until reaches to the desired level. The details
of the process are shown in Fig. 2.

We utilize the CNN-based non-local term to refine the
estimated optical flow at the end level, which can learn long-
range dependencies directly. We will show the implementa-
tion details of the non-local term in section III-E. In this
way, the motion boundary can be effectively prevented from
being over-smoothing. Finally, the refined flow is used to
generate the occlusion map. We integrate the flow and the
occlusion map into the energy formulation, which can better
estimate both forward and backward flow through iterative
optimization.

We will describe the framework in detail from the following
aspects: In Section III-A, we will define our notations.
In Section III-B, the method of feature extraction will be
introduced. Feature warping will be explained in Section III-C.
How to estimate optical flow and occlusion will be respectively
illustrated in Sections III-D and III-F. Most importantly,
the CNN-based non-local term and the new loss function will
be described in Sections III-E and III-G separately.

A. Notation

The two input RGB images are I1, I2 ∈ RH×W×3, where
H and W respectively represent the height and width. The
forward and backward optical flow are denoted by w f and wb.
Specifically, the forward optical flow w f is computed from I1

to I2, while the backward optical flow wb is estimated from
I2 to I1, where w f , wb ∈ RH×W×2. We use O f and Ob

to indicate the forward and backward occlusion maps, where
O f , Ob∈ RH×W×1. Taking the forward occlusion map as an
example, the white area denotes the area in the first image does
not have a correspondence in the second image, see Fig. 1.

B. Feature Extraction

First of all, for the two input images I1 and I2, we extract
L multi-scale feature representations, where L denotes the
number of pyramid layers and the bottom level being the
input images. We use Fl

1 and Fl
2 to represent the extracted

CNN feature maps of I1 and I2 at the l-th pyramid level
respectively. Inspired by [6], we use layers of convolutional
filters to downsample the feature at the l + 1 pyramid level
to generate feature representation at the l-th layer. For our
model, there are six layers in the pyramid. From the first to
the sixth pyramid levels, we set the number of feature channels
at each convolutional layer fixed to 16, 32, 64, 96, 128 and
192 respectively [6], [7], [25].

C. Feature Warping

If the two images have large displacements, it will be
difficult for the network to get high quality optical flow.
To handle this problem, we add a feature warping layer [6],
[7]. At the l-th level, we warp Fl

2 towards Fl
1 via the estimated

flow to obtain Fl
f ω, the implementation is expressed as:
Fl

f ω = Fl
2

(
x + upωl

f (x)
)
, (1)

where x is the pixel index, and upωl
f is upsampled flow

from the (l-1)-th level. Notably, at the top level, there is
no upsampled flow, we simply set upω1

f and upω1
b to zero,

i.e., F1
f ω = F1

2 and F1
bω = F1

1 .
The bilinear interpolation [3] is applied to implement the

warping operation. For non-translational motions, warping can
compensate some geometric distortions and put image patches
at the right scale [6].

D. Optical Flow Estimation

To store the matching cost for associating a pixel with its
corresponding pixels at the next frame, we use deep features
to construct a partial cost volume [6], [7], [29] at multiple
pyramid levels. The matching cost is defined as the correlation
[30] between features of the two images. The cost volume uses
feature of a pixel in the first image with corresponding feature
in the second image, and only needs to calculate a limited
range of d pixels, i.e., |x1 − x2|∞ ≤ d . At the top level,
the spatial resolution is small, a small search range is used.
In the remaining levels, to reduce the search range, we use the
warped feature map and the feature map of the first image to
construct the cost volume, defined as:

cvl
f (x1, x2) = 1

N
(Fl

1(x1))
T Fl

f ω(x2). (2)

The dimension of the cost volume is d2 × H l × Wl , where
H l and Wl denote the height and width of the l-th pyramid
level, respectively.
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The optical flow estimator is built on a multi-layer CNN.
To be specific, at the l-level, the inputs are the deep feature
map of the first image Fl

1, the upsampled forward optical flow
upωl

f and the cost volume cvl
f , and the output is the calculated

forward optical flow ωl
f , see Fig. 2.

The optical flow estimators at different levels have their own
parameters instead of sharing the same parameters. Impor-
tantly, since the forward flow is inverse to the backward flow,
we share the weights of forward and backward flow estimators
to reduce computational cost, see Fig. 1.

E. CNN-Based Non-Local Term

For the traditional non-local term [8], [28], it not only
compares the gray value of a single point, but also compares
the geometry of the entire neighborhood. Specifically, if a pair
of pixels have similar gray values but the structures around the
pixels are not similar, small weights are assigned to them.
Consequently, this denoising strategy ensures to retain the
detailed information of the image and reduces over-smoothing
at image boundaries. However, it is costly to run and difficult
to combine with the deep learning approach.

Inspired by [8], [28], we build a non-local term with deep
learning to refine the optical flow. Our non-local term can
automatically learn the relationship of pixels in the flow
field, and effectively alleviate over-smoothing crossing motion
boundaries. Because our non-local term is based on deep
learning, it can be easily integrated into deep convolutional
networks, with parameters updated according to the tasks in
an end-to-end manner.

Specifically, our non-local term is defined as:
yi = 1

C(x)

∑
∀ j

f (xi , x j )g(x j ), (3)

where i is the index of an output position whose response is to
be computed, and j is the index that enumerates all possible
positions. C(x) denotes a normalizing factor. In Eq. (3),
we consider not only local neighborhood but also all pixels
over the flow field.

f (xi , x j ) is a pairwise function which computes a scalar,
and represents the relationship affinity between xi and all
x j . If xi and x j are on the same surface and have similar
peripheral structure information there should be a higher
weight, otherwise the weight should be small. Accordingly,
we define the f (xi , x j ) as:

f (xi , x j ) = e(Wθ xi )
T Wψ x j , (4)

where C(x) = ∑
∀ j f (xi , x j ), Wθ xi and Wψ x j are two

embeddings.
g(x j ) is a unary function computes a representation of the

input signal at the position j , and we consider it in the form
of a linear embedding, which is defined as:

g(x j ) = Wg x j , (5)

where Wg is a weight matrix to be learned.
Our non-local term consists of only five convolutional layers

and is performed at the last pyramid level, which means
that it is relatively light to compute. What’s more, unlike

the traditional way where the weights are manually designed,
our CNN-based non-local term can automatically learn the
weights. It will assign a weight value f (xi , x j ) based on the
two pixels xi and x j whether they are located on the same
surface, whether they have similar color-space characteristic,
and whether they have similar structural information. Due
to this power, our CNN-based non-local term is effective to
prevent over-smoothing across motion boundaries and can be
applied to complex scenes. In Section V-E, we will test the
effectiveness of the proposed CNN-based non-local term by
conducting various experiments.

F. Occlusion Estimation

Occlusion is a consequence of depth and motion. Accurate
detection of occluded regions is crucial for reliable optical flow
estimation as they are beneficial for preventing non-occluded
areas being adversely affected by occluded pixels [26]. Conse-
quently, estimating accurate optical flow is required to localize
occlusions reliably. In this work, we extract occlusion masks
as key clues for computing optical flow. Generally, there are
three different ways to handle occlusion:

• Treating occlusion as outliers and predicting target pixels
in the occluded regions as a constant value or through
interpolation [31], [32].

• Building sophisticated framework to reason
occlusion [33].

• Dealing with occlusion by exploiting the symmetric prop-
erty of optical flow and ignoring the loss penalty on
predicted occluded regions [3], [26], [34].

Our method is similar to the last one, where the occlusion
detection is performed according to the forward-backward
consistency checking [34]. We consider pixels as occluded
when the mismatch between the forward and backward flow is
too large or the flow is out of image boundary �. We follow
the technique of [15], which defines the occlusion flag O f (x)
to be 1 when the constraint Eq.(6) is violated and 0 otherwise.∣∣∣∣ω f (x)+ ωb

(
x + ω f (x)

)∣∣∣∣
2

≤ α1

(∣∣ω f (x)
∣∣2 + ∣∣ωb(x + ω f (x)

∣∣2
)

)
+ α2, (6)

where we set α1 = 0.01 and α2 = 0.05 for all experiments.
The backward occlusion maps are computed in the same way,
just with ω f and ωb exchanged. In the Section V-F, we will
prove the effectiveness of occlusion maps.

G. Loss Function

In this paper, we add the loss function to the end of
the network. We jointly integrate the forward-backward flow
consistency checking and occluded/non-occluded symmetry
operation into the loss formulation. The occlusion and non-
occlusion information can be used to improve the performance
of both backward and forward optical flow estimation. For
non-occluded pixels, the forward flow should be inverse to
the backward flow at the corresponding pixel position in
the second frame, which means that corresponding pixels
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should be similar after mapping by the flow. Accordingly,
we add a forward-backward consistency penalty [15], [18] as
following:

LC (ω f , ωb, O f , Ob)

=
∑
x∈P

(1 − O f ) · σ(ω f (x)+ ωb(x + ω f (x))

+ (1 − Ob) · σ(ωb(x)+ ω f (x + ωb(x)), (7)

where σ is a robust generalized Charbonnier penalty function
[35] and defined as:

σ(x) = (x2 + ε2)τ , (8)

we set ε = 0.01 and τ = 0.4 for all of our experiments.
We design an occlusion-aware data loss as:

L D(ω f , ωb, O f , Ob)

=
∑
x∈p

(1 − O f ) · σ( fD(I1 − I2(x + ω f )))

+ (1 − Ob) · σ( fD(I2 − I1(x + ωb))), (9)

where fD function is used for measuring the photometric
difference.

The final loss function is expressed as:
L(I1,I2,ω f ,ωb,O f ,Ob) = LC + L D . (10)

The brightness constancy is not invariant to illumination
changes in real world [36]. To increase the robustness, we use
ternary census transform [37], which can compensate additive
and multiplicative illumination changes, and provide a more
reliable constancy for realistic imagery.

To sum up, we take full advantage of the relationship
and symmetry between optical flow and occlusion, and use
them as important clues to help promote each other. This
contribution significantly improves the accuracy of optical flow
estimation in the unsupervised-learning manner. We will show
the influence of occlusion in section V-F.

IV. TRAINING PROCEDURE

Algorithm 1 shows the pseudo-code for training. The input
is two consecutive frames I1 and I2, and the output is the for-
ward optical flow ω f . In the inner loop of Algorithm 1, at the
L-th pyramid level, we extract the feature information Fl

1 and
Fl

2 from I l
1 and I l

2 respectively. Simultaneously, we upsample
ω
(l−1)
f to upωl

f . We use Eq. (1) to warp Fl
2 towards Fl

1 via
upsampled flow upωl

f and obtain the warped feature Fl
f ω.

We combine Fl
1 and Fl

f ω, then use Eq. (2) to calculate the
cost volume cvl

f . Finally, cvl
f , Fl

1 and upωl
f are input to the

optical flow estimator to compute the l-level optical flow ωl
f .

Notably, at the top pyramid level, we set optical flow to zero.
After the inner loop, we obtain a full resolution optical flow,
and Eq. (3) is used to regularize the optical flow and refine
optical flow ω f . Occlusion maps are computed by forward-
backward consistency checking.

Training is conducted via the stochastic gradient descent
method over shuffled mini-batch. Following the prior works
[12], [13], we first pre-train the model on a large synthetic
dataset FlyingChairs with 300k iterations to ensure our model

Algorithm 1 Pseudo-Code for Training

has good generalization ability. Then, we fine-tune the pre-
trained model on MPI-Sintel and KITTI datasets respectively.
Parameters are updated by using back-propagation. We utilize
Adam [38] as the optimizer with initial learning rate of 1e-4,
which decays half every 50k iterations. The model is trained
by using TensorFlow. To benefit from the efficiency of the
parallel computation of the tensors, all simulation studies are
conducted with three NVIDIA Pascal TitanX GPU on an
Ubuntu PC. Testing is implemented with one single GPU.

V. EXPERIMENTS

We evaluate our method on standard optical flow
benchmark datasets including FlyingChairs [4], MPI-Sintel
[10], KITTI 2012 [39] and KITTI 2015 [40], and compare
our results with other state-of-the-art deep learning based
supervised and unsupervised optical flow approaches.
We will detail the benchmark datasets in Section V-A. In
Section V-B, the evaluation metrics used in this paper will be
introduced. The experimental results are shown and analyzed
in Section V-C. Specifically, the role of occlusion reasoning
and the CNN-based non-local regularization will be analyzed
in detail in Sections V-F and V-E respectively.

A. Datasets

1) FlyingChairs: The FlyingChairs is a large synthetic
dataset with optical flow ground-truth. It consists of segmented
background images from Flickr [4], and contains 22872 image
pairs as well as their corresponding flow fields. Motions of
both the chairs and the background are purely planar. We crop
a 448 × 384 image patch of every frame and use a batch size
of 4.

2) MPI-Sintel: The Sintel benchmark [10] is created by
using the open source graphics movie “Sintel” with two
passes, i.e., Clean and Final. The original resolution of Sintel
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images is 1024×436. The dataset contains flow fields, motion
boundaries, unmatched regions and image sequence. MPI-
Sintel provides ground-truth for training, and also supplies
pixel-wise occlusion masks. We crop a 768×384 image patch
of every frame and use a batch size of 4.

3) KITTI: The KITTI dataset provides real road scenes
which were captured from a mobile platform. A laser scanner
provides accurate but sparse ground-truth optical flow for a
small number of images. KITTI contains two classes, i.e.
KITTI 2012 [39] and KITTI 2015 [40]. KITTI 2012 consists
of 194 training image pairs and 195 test pairs, while KITTI
2015 consists of 200 training scenes and 200 test scenes. The
size of the first 156 sequences of KITTI 2015 is 375 × 1242,
but the last 44 sequences with different resolutions, e.g.,
370 × 1224, 374 × 1238 and 376 × 1241. We fine-tune our
model on these two classes separately, and crop a 896 × 320
image patch on each frame. The batch size is set to 4.

B. Evaluation Metrics

Two standard metrics are selected for evaluation.

• Average End Point Error (EPE) is defined as the
average Euclidean distance between the estimated flow
and the ground-truth flow, which is expressed as follows:

E P E = 1

N

∑
N

√
(vx − v

gt
x )2 + (ux − ugt

x )2, (11)

where x denotes a pixel point. vx and ux represent
the optical flow predicted in the horizontal and ver-
tical directions respectively, ugt

x and ugt
x represent the

ground-truth flow in the horizontal and vertical directions
respectively.

• Percentage of Erroneous for KITTI Fl-all and Fl-noc
are reported. Fl-all denotes the ratio of pixels where the
estimated flow is wrong, and Fl-noc represents over non-
occluded pixels only.

C. Results on Benchmarks

We compare our model with state-of-the-art supervised
and unsupervised models on the MPI dataset in Table I and
Table II, respectively. Besides, we also compare our method
with the well-known supervised and unsupervised methods on
the KITTI dataset in Table VI and Table VII.

1) Pre-Training on FlyingChairs: We use “Our(Chairs)”
to indicate the model that was only pre-trained on the
FlyingChairs dataset. As shown in Table II, on the test-
ing set of FlyingChairs, the EPE of “Our(Chairs)” is 2.98,
which is at least 10.7% more accurate than the previous
methods (2.98 (Our) vs 3.30 [14]). Furthermore, as shown
in Table I, the result of “Our(Chairs)” approaches to the
best supervised-learning optical flow method. This is due
to our occlusion processing strategy, and the contribution
of the CNN-based non-local term which can remove noise
and decrease over-smoothing at motion boundaries. The
results prove that our model has a strong generalization
ability.

TABLE I

ACCURACY (EPE) COMPARISON WITH THE SUPERVISED METHODS ON
THE MPI-SINTEL DATASET. THE FIRST 16 ROWS ARE THE RESULTS

OF THE SUPERVISED METHODS. (−) DENOTES THAT THE ORIG-
INAL PAPER DOES NOT GIVE A CORRESPONDING REPORT.

OUR (CHAIRS) MEANS THE MODEL IS PRE-TRAINED
ON FLYINGCHAIRS DATASET. OUR+FT-SINTEL MEANS

FINE-TUNE (FT) THE PRE-TRAINED MODEL ON THE

MPI-SINTEL DATASET

TABLE II

ACCURACY (EPE) COMPARISON WITH THE UNSUPERVISED METHODS
ON THE MPI-SINTEL DATASET. THE FIRST 9 ROWS INDICATE THE

RESULTS OF THE UNSUPERVISED METHODS, WHILE THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD

2) Fine-Tuning on MPI-Sintel: We utilize “Our+FT-
Sintel” to represent the model which has been fine-tuned
through the MPI-Sintel dataset. Notably, when comparing
on the Sintel Clean set, we use the training set of Sintel
Clean for fine-tuning. When comparing on the Sintel Final
set, we use the training set of Sintel Final for fine-tuning.
Table II shows that “Our+FT-Sintel” gets EPE=2.58 and
EPE=3.85 on the training set of Sintel Clean and Final
respectively. Besides, it obtains EPE=7.12 on the testing set
of Sintel Clean, which surpasses the previous best result
obtained by MultiFrameOccFlow-Soft+FT [16] (7.12 vs 7.23).
“Our+FT-Sintel” gets EPE=8.51 on the Sintel Final testing
set, which outperforms the best prior result of [16] by 3.4%
(8.51 vs 8.81).

Fig. 3 shows the visualization results of “Our+FT-Sintel” on
the Sintel Clean pass and the Sintel Final pass, and also gives
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TABLE III

RESULTS ON THE SINTEL BENCHMARK FOR DIFFERENT REGIONS. “EPE MATCHED” DENOTES END POINT ERROR (EPE) OVER REGIONS THAT
REMAIN VISIBLE IN ADJACENT FRAMES, WHILE “EPE UNMATCHED” DENOTES EPE OVER REGIONS THAT ARE VISIBLE ONLY IN ONE

OF TWO ADJACENT FRAME. “D0-10” DENOTES EPE OVER BETWEEN 0 AND 10 PIXELS APART FROM THE NEAREST OCCLUSION

BOUNDARY. SIMILARLY “D10-60” AND “D60-140” ARE JUST DIFFERENT IN REGIONS. “S0-10” DENOTES EPE OVER REGIONS

WITH VELOCITIES BETWEEN 0 AND 10 PIXELS PER FRAME. SIMILARLY “S10-40” AND “S40+” ARE JUST DIFFERENT IN
REGIONS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 3. Illustration of qualitative examples on MPI Clean and MPI Final. Every two rows are a group. At the first group, the first column indicates the input
images (from MPI Clean), the top of the second column represents ground-truth flow while the bottom represents ground-truth occlusion map, and the top of
the third column denotes the estimated optical flow while the bottom denotes the estimated occlusion map. The second group has the same structure as the
first group, but the images are from MPI Final, which means there are more boundary blurs.

the comparison of our estimated optical flow and occlusion
masks with the ground-truth. It can be clearly observed from
Fig. 3 that the optical flow boundary obtained by our model
is quite clear and can distinguish different surfaces well. Even
if the original image has blurred boundaries (such as Sintel
Final), our model can still estimate optical flow with clear
boundary. The experimental results prove that our designed
CNN-based non-local term can effectively reduce the noise of
the optical flow while retaining details.

In Section V-E, we show the effect of the proposed non-local
on improving the performance of estimating optical flow, and
visualize the results when the model does not add the non-
local term. Besides, we analyze the impact of the non-local
term on the computing time.

Moreover, Table III reports the EPE results of different
regions on the MPI-Sintel dataset. It can be found that our
model performs relatively better than other methods in regions
with large motion and away from the motion boundaries.

TABLE IV

IMPACT OF USING GROUND-TRUTH DATA ON RESULTS. THE FIRST
LINE INDICATES THE PERCENTAGE OF DIFFERENT GROUND-TRUTHS

ADDED. THE SECOND LINE REPRESENTS THE RESULTS ON THE

FLYINGCHAIRS TESTING SET. THE MEASUREMENT IS EPE

This is likely because we employ the coarse-to-fine strategy
and use data with large motions to train the network.

3) Fine-Tuning on KITTI: We termed “Our+FT-KITTI”
to denote the model which has been fine-tuned through the
KITTI dataset. Notably, when comparing with other models
on the KITTI 2012 dataset, we use the training set of KITTI
2012 for fine-tuning. Similarly, when comparing on the KITTI
2015 dataset, we use the training set of KITTI 2015 for fine-
tuning.
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Fig. 4. Results on the KITTI dataset. The first column is the input image, the second column denotes the ground-truth flow with occlusion, the third column
is the estimated optical flow, and the last column denotes the extracted occlusion map.

TABLE V

RESULTS OF OUR MODEL AND UNFLOW ON DIFFERENT DATASETS WITH

USING THE SAME PRE-TRAINING DATASET (SYNTHIA).
THE MEASUREMENT IS EPE

As shown in Table VII: (1) on the training set of KITTI
2012, “Our+FT-KITTI” gets an EPE=3.02, which is more
accurate than the best existing counterpart UnFlow-CSS [15]
(EPE=3.29), i.e. the performance is improved by 8.94%
(3.02 vs 3.29). On the testing set of KITTI 2012, “Our+FT-
KITTI” gains EPE=4.5 and Fl-noc=5.86%. Specifically, our
EPE is not as good as OccAwareFlow+FT+KITTI [14] (4.5 vs
4.2 [14]), but OccAwareFlow+FT+KITTI has more complex
loss functions and more hyperparameters, while our loss
function is more concise and has fewer hyperparameters.
(2) On the training set of KITTI 2015, “Our+FT-KITTI”
obtains EPE=6.05 and Fl-al=11.2%, which outperforms [16]
by 8.93% (6.05 vs 6.59) on the EPE measure. On the testing
set, the Fl-al of us is 22.75%, and it is more accurate than
the previous best result of MultiFrameOccFlow (22.94%).
Notably, MultiFrameOccFlow utilizes multiple frames, while
our method use only two consecutive frames.

Fig. 4 shows the visuals results of our fine-tuned model
on KITTI. We can find that the captured occlusion map of
our model is quite good, and the accurate occlusion map
is beneficial for improving the performance of optical flow
estimation. Table VIII reports the evaluation results on the
KITTI 2015 benchmark testing set. “Our+FT-KITTI” has
lower percentage of flow outliers in both “Non-occluded

pixels” and “All pixels” than the most recently unsupervised
method MultiFrameOccFlow [16].

In Section V-F, we compare the accuracy of the model
with/without occlusion extraction to show the effect of occlu-
sion on optical flow estimation. In addition, we analyze the
impact of occlusion extraction on the calculation time.

4) Comparison With Consistent Pre-Train Strategy: For a
comprehensive comparison with other models, we conduct
another experiment. Specifically, we use the SYNTHIA dataset
[45] to pre-train our model, which is consistent with UnFlow
[15]. Then we fine-tune the pre-trained model on Sintel and
KITTI datasets. In this case, the EPE of us on Sintel Final
(training set) and KITTI 2015 (training set) are 5.22 and
7.15 respectively, while the corresponding results of UnFlow
on these datasets are 7.91 and 8.10 separately. The results
demonstrated that our model is better than Unflow, whose pre-
train strategy is consistent with us (see Table V).

D. Ground-Truth Boost Results

Originally, we used the entire FlyingChairs dataset to pre-
train the model in an unsupervised manner. Now we change the
way to pre-train the model, that is, add different proportions
of ground truth.

Firstly, we use 50% of FlyingChairs data (no ground-truth)
to initialize the model, where the loss function is consistent
with Eq. 10. Next, we add 10%, 25%, 50% of the remaining
data (with ground truth) to further train the model, and use
EPE as the loss function, which is a common loss function
in supervised models. Finally, we test the mixed training
model on the FlyingChairs test set, the results are shown in
Table IV.

Note that we can also transform our model into a supervised
way by using 100% FlyingChairs data (with ground-truth) to
pre-train the model. In this case, the pre-training strategy is
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TABLE VI

PERFORMANCE (EPE, FL-NOC AND FL-AL) COMPARISON WITH THE UNSUPERVISED MODELS ON THE KITTI DATASET. THE FIRST 9 ROWS INDICATE
THE RESULTS OF THE UNSUPERVISED METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. (−) DENOTES THAT THE ORIGINAL PAPER

DID NOT GIVE A CORRESPONDING REPORT. OUR (CHAIRS) MEANS THE MODEL IS PRE-TRAINED ON FLYINGCHAIRS DATASET. OUR+FT-
KITTI MEANS FINE-TUNE (FT) THE PRE-TRAINED MODEL ON THE KITTI DATASET

TABLE VII

PERFORMANCE (EPE, FL-NOC AND FL-AL) COMPARISON WITH THE UNSUPERVISED MODELS ON THE KITTI DATASET. THE FIRST 9 ROWS INDICATE

THE RESULTS OF THE UNSUPERVISED METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. (−) DENOTES THAT THE ORIGINAL PAPER

DID NOT GIVE A CORRESPONDING REPORT

the same as FlowNet2 [5], PWC-Net [6], LiteFlowNet [7].
Not surprisingly, the more ground-truth data is used, the better
performance our model can get. As shown in the last column
of Table IV, if we use a supervised approach to pre-train
the model, the results are slightly better than the state-of-the-
art supervised model PWC-Net. We obtain EPE=1.85 on the
FlyingChairs testing set, while PWC-Net gets EPE=2.0 (see
Table I). This may be due to the effect of our CNN-based
non-local term, which can effectively mitigate over-smoothing
across motion boundaries.

E. Non-Local Regularization

To verify the effectiveness of our CNN-based non-local
regularization, we conduct following experiments.

As shown in Table XII, when adding the CNN-based non-
local term to refine the estimated optical flow, higher accuracy
can be obtained. In particular, the EPE has increased by at

TABLE VIII

EVALUATION RESULTS ON THE KITTI 2015 BENCHMARK TESTING SET.
bg DENOTES THE PERCENTAGE OF OUTLIERS AVERAGED ONLY OVER

BACKGROUND REGIONS; fg REPRESENTS THE PERCENTAGE OF
OUTLIERS AVERAGED ONLY OVER FOREGROUND REGIONS;

All DENOTES PERCENTAGE OF OUTLIERS AVERAGED OVER

ALL GROUND-TRUTH PIXEL. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD

least 27.70% (4.08 vs 5.21) on the FlyingChairs, 23.79%
(4.75 vs 5.88) on the Sintel Clean, and 30.18% (4.87 vs 6.34)
on the Sintel Final. Integrating the CNN-based non-local term
to the baseline model leads to a larger improvement on the
Sintel Final than on the Sintel Clean, because the Sintel Final
contains more noise than the Sintel Clean.
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TABLE IX

THE EFFECT OF ADDING THE NON-LOCAL TERM AT DIFFERENT STAGES.
WHERE “EACH” MEANS THAT NON-LOCAL TERM IS ADDED TO EACH

LAYER OF THE PYRAMID, AND “END” DENOTES THE NON-LOCAL

TERM IS ONLY ADDED AT THE END OF THE PYRAMID. THE

MEASUREMENT IS EPE AND THE BEST RESULTS ARE HIGH-
LIGHTED IN BOLD

TABLE X

THE EFFECT OF DIFFERENT NUMBER OF LAYERS OF THE NON-LOCAL

TERM. THE FIRST ROW INDICATES THE NUMBER OF LAYERS. THE
SECOND ROW SHOWS THE RESULTS ON THE FLYINGCHAIRS TEST-

ING SET, WHERE THE MEASUREMENT IS EPE. THE THIRD

ROW IS THE COMPUTATION TIME RATIO COMPARED TO THE
BASELINE (5 LAYERS)

On the other side, our model runs at about 27 fps on the
Sintel dataset (resolution is 1024 × 436). When we remove the
non-local term, the speed becomes to 28 fps under the same
data. It reveals that the computational time is just increasing
about 3.5% with the application of our non-local term. Its
impact on the calculation time is acceptable, as it contains
only five convolutional layers and just conducts at the end
level of the pyramid.

Fig. 5 shows the visual results of the CNN-based non-
local term. We can find that when the non-local term is not
used, the estimated optical flow is blurred at the boundary.
In contrast, when the non-local term is employed, motion blur
at the boundary is effectively alleviated, and the final accuracy
is significantly enhanced.

Furthermore, we compare the effects of the CNN-based
non-local term at different stages of the deep learning process.
In this paper, the baseline is adding the non-local term to the
end layer of the pyramid. For comparison, we incorporate
the non-local term to every layer of the pyramid as done by
the traditional way [35]. Table IX shows that the accuracy is
boosted by about 3%, but the computation cost is increased
by 100%. According to the experimental results, we can find
that using non-local term to denoise the flow at each level of
the pyramid does increase the accuracy, but results in much
more computational burden. Adding the non-local term only
at the end level of the pyramid enables the model to balance
between the efficiency and accuracy, and hence more proper
for real-time applications.

Additionally, we compared the effect of the number of
layers on both accuracy and efficiency. As shown in Table X,
when the number of non-local layers increases, the accuracy
improves a little but its computational time increases signifi-
cantly. E.g., compared to 5 layers, when the number of layers
is 9, its accuracy increases by 0.17 while the calculating time

Fig. 5. Visually illustration the effect of our proposed non-local term. The
left column shows the results of adding the non-local term to baseline model,
while the right column shows the results of without the non-local term.

increases by 70%. Consequently, we chose 5 layers to balance
the accuracy and the efficiency.

Summary: Our CNN-based non-local term works particu-
larly well when incorporating it into the deep architecture to
estimate optical flow, as it can learn to find meaningful rela-
tional clues regardless of the distance, and also it can robustly
integrate the flow estimate over large spatial neighborhood.
Accordingly, our non-local term is able to remove noise and
recover sharp motion boundaries.

F. Occlusion Reasoning

We evaluate our occlusion estimation on both MPI-Sintel
and KITTI datasets. We compare our method quantitatively to
MultiFrameOccFlow [16], OccAwareFlow [14], S2D [46] and
MODOF [47] by calculating the maximum F-measure intro-
duced in [46], as shown in Table XI. Specifically, S2D used
a binary classification, and employed ground-truth occlusion
maps to train their model in a supervised manner. MODOF
[47] utilized discrete-continuous optimization to minimize an
energy function.

On the MPI-Sintel dataset, it is difficult to learn occlu-
sion maps in an unsupervised way, since occlusions often
occur in untextured regions with limited guidance by the
photometric loss [16]. However, we use forward-backward
flow and occlusion symmetry relationship to allow them to
leverage each other, which not only couples optical flow
with occlusion, but also allows to exploit the geometric and
temporal information. With this contribution, our model has
better results than previous unsupervised methods, and obtains
F-measures of 0.55 and 0.49 respectively on the Clean and
Final pass. On the Sintel Clean, we have improved at least
1.85% compared to the past best result of OccAwareFlow [14]
(0.55 vs 0.54). On the Sintel Final, our result is also the most
accurate and is even close to the best result of the supervised
model S2D (0.49 vs 0.57 [46]). The results illustrate that the
occlusion map is an important clue to estimate optical flow.

On the KITTI dataset, the occlusion masks only contain
pixels moving out of the image [16]. The F-measure of
ours is 0.98 and 0.93 on the KITTI 2012 and the KITTI
2015 respectively, the improvement reaches to 3.16% (0.98 vs
0.95 [14]) and 2.20% (0.93 vs 0.91 [16]) compared to the
state-of-the-arts. It can be seen that our model can accurately
extract occlusion information and provide accurate occlusion
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TABLE XI

OCCLUSION ESTIMATION EVALUATION. THE RESULTS ARE THE MAXI-
MUM F-MEASURE. (−) DENOTES THAT THE ORIGINAL PAPER DOES

NOT GIVE A CORRESPONDING REPORT. ALL RESULTS ARE FROM

THE TRAINING SET OF THE CORRESPONDING DATASET. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE XII

THE EFFECT OF NON-LOCAL AND OCCLUSION ON RESULTS,
√

DENOTES

THE COMPONENT THAT WE ADDED, WHILE × MEANS NOT ADDED.
THE MEASUREMENT IS EPE AND THE BEST RESULTS ARE HIGH-

LIGHTED IN BOLD

clues when estimating optical flow, which is beneficial for
improving the performance of the CNN-based optical flow
model when meets occlusion.

Ablation analysis is further conducted on the FlyingChairs
and MPI-Sintel datasets to show the effectiveness of the
occlusion reasoning of our method, see Table XII. If we
only utilize photometric as the loss function, which means
setting forward and backward occlusion maps to zero and
without using the non-local term. We get an EPE=5.21 on
the FlyingChairs testing set, an EPE=5.88 on the Sintel Clean
training set, and an EPE=6.34 on the Sintel Final training
set. Remarkably, if we add the occlusion reasoning to the
baseline network, the performance is significantly boosted,
where the accuracy improvement reaches to 26.46% (4.12 vs
5.21) on the FlyingChairs testing set, 17.13% (5.02 vs 5.88)
on the Sintel Clean training set, and 21.46% (5.22 vs 6.34)
on the Sintel Final training set respectively. It can be seen
that the occlusion mask is helpful for optical flow estimation,
and integrating occlusion reasoning is effective to enhance the
ability of the model to deal with occlusion. Besides, using
occlusion reasoning will be more helpful when there is more
ambiguity in the dataset, e.g., Sintel Final. When the occlusion
reasoning is not integrated into the model, the model runs at
about 27.5 fps on the Sintel dataset, where the computational
time is reduced just by 1.8% (27.5 fps vs 28 fps, see the
result in subsection E). This is because the consistency check
equation does not contain any trainable parameters, therefore
the time requirement for occlusion handling is quite small.

VI. CONCLUSION

In this paper, we proposed an end-to-end unsupervised
method to learn optical flow from unlabeled images. Our
model can automatically learn forward and backward optical

flow as well as occlusion maps without using any human anno-
tations. With the captured occlusion information, we design
a new loss function to handle the issue of occlusion. Fur-
thermore, we exploit a CNN-based non-local term to refine
optical flow during the learning process, which is able to
alleviate the boundary over-smoothing effectively. Since our
non-local term is based on deep learning, the weights can be
learned automatically, making it adaptable to various complex
image sequences. The state-of-the-art experimental results
demonstrate the effectiveness of the CNN-based non-local
term and the loss function.
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