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Abstract

State-of-the-art pedestrian detectors have performed
promisingly on non-occluded pedestrians, yet they are still
confronted by heavy occlusions. Although many previous
works have attempted to alleviate the pedestrian occlusion
issue, most of them rest on still images. In this paper, we ex-
ploit the local temporal context of pedestrians in videos and
propose a tube feature aggregation network (TFAN) aim-
ing at enhancing pedestrian detectors against severe occlu-
sions. Specifically, for an occluded pedestrian in the current
frame, we iteratively search for its relevant counterparts
along temporal axis to form a tube. Then, features from
the tube are aggregated according to an adaptive weight to
enhance the feature representations of the occluded pedes-
trian. Furthermore, we devise a temporally discrimina-
tive embedding module (TDEM) and a part-based relation
module (PRM), respectively, which adapts our approach to
better handle tube drifting and heavy occlusions. Exten-
sive experiments are conducted on three datasets, Caltech,
NightOwls and KAIST, showing that our proposed method is
significantly effective for heavily occluded pedestrian detec-
tion. Moreover, we achieve the state-of-the-art performance
on the Caltech and NightOwls datasets.

1. Introduction
Detecting heavily occluded pedestrians is crucial for

real-world applications, e.g., autonomous driving systems,
and remains the Gordian Knot to most state-of-the-art
pedestrian detectors [27, 28, 10, 26, 24, 23, 19, 17, 54, 47,
46, 15, 16]. This challenge boils down to two aspects: (i)
Heavily occluded pedestrians are hard to be distinguished
from background due to missing/incomplete observations;
(ii) Detectors seldom have a clue about how to focus on the
visible parts of partially occluded pedestrians. Many great
efforts have been made to address the occlusion issue, e.g.,
attention mechanisms [29, 9], feature transformation [11]
and part-based detection [22, 19, 13]. While these occlusion
handling approaches alleviate partially occluded pedestrian
detection in still images, they may not bring extra informa-
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Figure 1. Top row: A heavily occluded pedestrian often leads to
miss detection for a single frame detector due to incomplete and
weak observations. Bottom row: In our approach, we exploit local
temporal context of a heavily occluded pedestrian, i.e., similar less
occluded pedestrians in nearby frames, to enhance its feature rep-
resentations. After linking temporally these pedestrian samples
to a tube, we aggregate their features using an adaptive weight
scheme by matching between visible parts, which substantially
help to distinguish the heavily occluded one from the background.

tion beyond a single image for detectors to reliably infer
an occluded pedestrian in essence. In this paper, we argue
that the temporal context can essentially enhance the dis-
criminability of the features of heavily occluded pedestrians
which has not been studied thoroughly in previous works.

Our key idea is to search for non/less-occluded pedes-
trian examples (which we call them reliable pedestrians)
with discriminative features along temporal axis, and if they
are present, to exploit them to compensate the missing in-
formation of the heavily occluded ones in the current frame,
as shown in Fig. 1. Specifically, our approach is carried out
with two main steps. (i) Tube linking: starting from a pedes-
trian proposal in the current frame, we iteratively search for
its relevant counterparts (not necessarily the same person)
in adjacent frames to form a tube; (ii) Feature aggregation:
the proposal features from the formed tube are aggregated,
weighted by their semantic similarities with the current pro-
posal candidate, enhancing the feature representations of
the pedestrian in the current frame. Using the augmented
features, the classifier tends to more confidently distinguish
heavily occluded pedestrians from background. We imple-
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ment this by a tube feature aggregation network (TFAN).
It is not straightforward to link heavily occluded pedes-

trians with non/less occluded ones, since their appearances
are substantially different, otherwise most pedestrian detec-
tors would deal well with occlusions. We resort to local
spatial-temporal context to match pedestrians with differ-
ent extents of occlusions using a new temporally discrim-
inative embedding module (TDEM) and a part-based rela-
tion module (PRM). The TDEM module supervised by a
discriminative loss learns an embedding for each proposal
across frames, where pedestrian and background examples
become readily separable in the embedding feature space.
We therefore utilize these embedding features of propos-
als to search for their counterparts in consecutive frames
and measure their semantic similarities as the weights to ag-
gregate their features. When aggregating features from the
tube, if the pedestrian proposal is heavily occluded, we fa-
vor the matched reliable pedestrians and assign them larger
weights, rather than the backgrounds. However, the heavily
occluded pedestrian may differ from the reliable ones due
to missing observations. Accordingly, the PRM module is
designed to focus more on the visible area of the current
pedestrian candidate and assign the counterparts of similar
visible parts with larger weights, so as to address the above
discordance problem during feature aggregation.

The proposed TFAN strives to utilize local temporal con-
text to enhance the feature representations of heavily oc-
cluded pedestrians by similar pedestrian samples in neigh-
boring frames. Temporal clue has been widely exploited in
video object detection. For instance, optical flow has been
utilized to achieve feature calibration [30, 31, 38], while
flow estimation may be noisy when an object is heavily
occluded. Alternatively, detection boxes [33, 34, 37, 32]
are associated to rerank classification scores as a post-
processing step, yet these methods are not optimized end-
to-end or require track-id annotations for training a tracker.
By contrast, our approach integrates feature enhancement
and pedestrian box association into a unified framework in
an end-to-end fashion without the need of track-id annota-
tions. Moreover, our approach is particularly designed for
handling heavily occluded pedestrian detection.

In summary, our main contributions are three-fold: (i)
We propose a tube feature aggregation network (TFAN),
which essentially utilizes local temporal context to enhance
the representations of heavily occluded pedestrians; (ii)
We devise a temporally discriminative embedding module
(TDEM) that links the tube reliably and assigns a robust and
adaptive weight in aggregating tube features; (iii) We design
a part-based relation module (PRM) which focuses on the
visible pedestrian regions when aggregating features. Ex-
periments on 3 benchmarks: Caltech [20], NightOwls [59]
and KAIST [60] validate our approach is significantly ef-
fective for heavily occluded pedestrian detection.

2. Related Work
Pedestrian Detection. With the renaissance of convolu-
tional neural networks, many deep learning based methods
on pedestrian detection [27, 28, 10, 26, 24, 23, 19, 17, 25,
18, 48, 36] significantly outperform the hand-crafted feature
based methods [55, 61, 21, 14]. Regardless of the promis-
ing performance on non-occluded pedestrians, most detec-
tors yield limited accuracies on heavily occluded pedestri-
ans. To alleviate the occlusion issue, recent methods are
designed by exploiting attention mechanism [29, 9], feature
transformation [11] and part-based detection [22, 19, 13].
Nevertheless, these works seldom take into account the tem-
poral context, which may essentially help to compensate the
missing information of heavily occluded pedestrians. To the
best of our knowledge, TLL [23] is the only one recent work
which also utilizes temporal cues for pedestrian detection.
TLL simply applies an off-the-shelf LSTM [52] to the de-
tection model. In contrast, our approach thoroughly inves-
tigates how to utilize local temporal context to enhance the
representations of heavily occluded pedestrians.

Video Object Detection. Object detection in videos has
been actively studied recently [50, 51, 38, 39, 40, 41, 42,
43, 30, 31, 38], exploring different ways to take advantage
of temporal cues. Several works focus on utilizing optical
flow to achieve feature calibration [30, 31, 38]. However,
flow estimation may be inaccurate in the circumstance of
fast motion. To tackle this problem, [44, 45, 49] propose to
aggregate features at instance-level, which can better cap-
ture the objects with fast motion. Another direction is to
associate proposal or detection boxes for tube classifica-
tion and detection rescoring [34, 35, 33, 37, 32]. Never-
theless, these methods are not optimized end-to-end or re-
quire track-id annotations. In contrast, we present an end-
to-end approach, integrating both proposal box association
and feature augmentation into a unified framework without
the need of track-id annotations. Since there may be mis-
matches in the linked tube, our approach performs a tem-
porally discriminative embedding for each proposal across
frames. When aggregating the tube features, only features
from relevant counterparts are selected, so as to filter out
irrelevant mismatches. Furthermore, our approach is dedi-
cated to handling heavy occlusions in pedestrian detection,
which has not been thoroughly investigated in the previous
approaches.

3. Method
In this section, we first describe the baseline detector in

§ 3.1. Then, our proposed approach is presented in § 3.2.
Finally, we introduce the implementation details in § 3.3.

3.1. Baseline Detector

For the baseline detector, we employ an off-the-shelf
single-frame detector to process each frame individually in
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Figure 2. Visible ratio statistics of pedestrian examples on the Cal-
tech dataset. For each pedestrian Pt in the current frame, we use
the ground truth boxes to link a tube from t−τ to t+τ frames. The
x-axis denotes the visible ratio of Pt. For each Pt, it has a V max

which is computed by the maximum visible ratio of those pedes-
trians in its corresponding tube. The y-axis denotes the average of
the V max for those Pt whose visible ratios are V t. Pedestrians
with visible ratios lower than 0.2 are not considered.

an input video. Specifically, we adopt vanilla Faster R-
CNN [56] that is commonly used in pedestrian detection
and ResNet-101 [57] of feature stride 16 as the base net-
work.

3.2. Tube Feature Aggregation Network

In real-world scenarios, most pedestrians are actively
moving and the heavily occluded ones are not always be
occluded by other objects. To validate this, we conduct
a quantitative analysis on the Caltech dataset as shown in
Fig. 2. From the figure, we observe that most of pedestrians
which are heavily occluded in the current frame become less
occluded in nearby frames. Motivated by this observation,
we aim to exploit local temporal context from neighboring
frames to compensate the missing information of heavily
occluded pedestrians.

3.2.1 Preliminary Model

Given a sequence of video frames {Ii ∈ RW×H×3}t+τi=t−τ
where It is the current frame, we first apply the base net-
work Nfeat to each frame to produce feature maps fi =
Nfeat(Ii), where fi ∈ RW

16×
H
16×256. Let us denote by

Bi = {bkii ∈ R4}Mki=1 the proposal boxes in frame Ii gener-
ated by the region proposal network [56] and Xi = {xkii ∈
R7×7×256}Mki=1 the corresponding proposal features, where
M (= 300 by default) is the total number of proposals per
frame. xkii is obtained by xkii = φ(fi,b

ki
i ), where φ is the

RoI align operation [58]. In this paper, our goal is to en-
hance the proposal features Xt in the current frame, which
is achieved by two steps: 1) Tube linking: starting from a
pedestrian proposal bktt , we iteratively search for its rel-
evant counterparts in adjacent frames to form a proposal
tube where we aim to include the reliable pedestrians in this

tube; 2) Feature aggregation: the proposal features from
the obtained tube are aggregated weighted by their seman-
tic similarities with the current proposal candidate. Next,
we introduce these two steps in detail.

Tube Linking. For simplicity, we only formulate the tube
linking procedure from t to t− τ , and the tube linking from
t to t + τ is achieved in a similar way. Formally, let bkii
denote the ki-th proposal in frame Ii. Starting from bktt , we
first look for its relevant counterparts in an adjacent spatial
area in frame It−1, and bktt is linked to the best matching
counterpart bkt−1

t−1 based on their semantic and spatial simi-
larities. After bkt−1

t−1 is found in frame It−1, we then use it
as the reference to search for the best matching counterpart
b
kt−2

t−2 in frame It−2. The linking procedure is iteratively
performed until frame It−τ . Specifically, given the ki-th
proposal in frame Ii, the best matching ki−1-th proposal in
frame Ii−1 is found by:

ki−1 = argmax
k̂∈Qki−1

s(xkii ,x
k̂
i−1) + l(bkii ,b

k̂
i−1), (1)

where Qki−1
= {k̂ | IoU(bkii ,b

k̂
i−1) > ε} is the set of

indices of the proposals in frame Ii−1 which are located
in the adjacent spatial area of bkii , and ε is a small con-
stant that is set to 0.1 in experiments. s(·) and l(·) are the
functions for measuring the semantic and spatial similarities
between two proposals, respectively. Given two proposals
b1,b2 and their corresponding proposal features x1,x2, the
semantic similarity is measured by the cosine similarity be-
tween their proposal features:

s(x1,x2) =
1

|R|
∑
p∈R

x1(p) · x2(p)

|x1(p)||x2(p)|
, (2)

where R = {(x, y) | 1 6 x 6 7, 1 6 y 6 7} is the set of
spatial coordinates in the proposal features. The semantic
similarity reflects the likelihood that two proposals belong
to the same category. For the spatial similarity, we take into
account both the scale and relative location information:

l(b1,b2) = scale(b1,b2) + location(b1,b2),

scale(b1,b2) = min(
w1

w2
,
w2

w1
)×min(

h1

h2
,
h2

h1
),

location(b1,b2) = exp(−
∥∥(d1x, d1y)− (d2x, d

2
y)
∥∥
2

σ2
),

(3)
where w and h are the width and height of a proposal, re-
spectively. dx and dy are predicted by the bounding box
regression branch of Faster R-CNN, denoting the offset of
the center of a proposal to its regression target. The term
scale(·) is used to penalize a large scale change between
two proposals in two consecutive frames, while the term
location(·) is used to penalize a large mis-alignment be-
tween two proposals.
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Figure 3. Visualization examples of the proposal tubes, adaptive weights and final detection results, where w in the figures denotes the
adaptive weight. Three representative cases are provided, in which the current proposals are a heavily occluded pedestrian, a background
region and a reliable pedestrian, respectively. For clear visualization, only one tube is shown in each row.

Finally, for the kt-th proposal in the current frame, we
obtain a proposal tube Tktb,τ = {bkt−τt−τ , ...,b

kt
t , ...,b

kt+τ
t+τ }

and its corresponding tube features Tktx,τ =

{xkt−τt−τ , ...,x
kt
t , ...,x

kt+τ
t+τ }. Note that if bktt is a heav-

ily occluded pedestrian and b
kt−τ
t−τ is a non-occluded

pedestrian, there is very likely a less occluded pedestrian in
frame It−τ<i<t due to temporal coherence. Therefore, in
such a linking procedure, the less occluded pedestrian can
serve as an intermediate step for building up the connection
between bktt and b

kt−τ
t−τ , even if the direct semantic and

spatial similarities between bktt and b
kt−τ
t−τ may be not high.

Feature Aggregation. According to the analysis in Fig. 2,
most heavily occluded pedestrians in the current frame may
be related to some reliable (i.e., non/less-occluded) coun-
terparts in neighboring frames. By applying the iterative
tube linking, we are able to connect the heavily occluded
pedestrian in the current frame to the reliable ones in nearby
frames. In view of these, we aggregate the proposal features
from Tktx,τ by a weighted summation, aiming at enhancing
the current proposal features xktt . Specifically, for proposal
features xktt , the enhanced features xkt′t are computed by:

xkt′t =

t+τ∑
i=t−τ

wkii xkii , (4)

where wkii is the adaptive weight and calculated as:

wkii =
exp(λ× s(xktt ,x

ki
i ))∑t+τ

l=t−τ exp(λ× s(x
kt
t ,x

kl
l ))

, (5)

where λ is a scaling factor. Because the output value of s(·)
is limited by cosine similarity which ranges from −1 to 1,
λ is set to greater than 1 for enlarging the gap among ex-
amples. Considering there may be mismatches in the linked
tube, we adopt the semantic similarity between xkii and xktt
to determine the adaptive weight wkii , such that it can au-
tomatically select features from relevant counterparts and
ignore some irrelevant or noisy ones once the tube drifts

(see Fig. 3). Furthermore, we emphasize that the feature ag-
gregation can augment not only the features of pedestrians
but also those of backgrounds. If bktt is a background pro-
posal, by tube linking, we are able to see more references
around the nearby spatio-temporal areas, therefore facili-
tating the classifier to make a better decision and suppress
false alarms.

3.2.2 Temporally Discriminative Embedding Module

In our preliminary model (§ 3.2.1), the tube linking and
feature aggregation are mainly determined by the seman-
tic similarity among proposal features. One issue is that
pedestrian and background examples across frames may
not be discriminative enough in the proposal feature space,
as no explicit supervision is provided to enforce the pro-
posal features of pedestrian and background examples to be
separable. To address this, we learn a discriminative em-
bedding ekii = φ(NTDEM(fi),b

ki
i ) for each proposal bkii ,

where ekii ∈ R7×7×256 andNTDEM is the proposed tempo-
rally discriminative embedding module (TDEM) as shown
in Fig. 4 (b). The NTDEM is explicitly supervised by a dis-
criminative loss LTDEM , which enforces the pedestrian
and background examples across frames to be more separa-
ble in the embedding feature space. Given the current frame
It and a nearby frame Ii, let us denote by O = {ek

?
t
t }Uk?t=1

the embedding features of the ground truth boxes in frame
It, where U is the number of ground truth boxes. For a
ground truth box b

k?t
t in the current frame, we denote b

k?i
i

as its corresponding ground truth box in frame Ii, which is
obtained by a greed scheme (as introduced in § 3.3). The
LTDEM is defined as:

LTDEM =
1

|O|
∑

e
k?t
t ∈O

1

|Y| × |Z|
∑

en∈Y,ep∈Z
lt(e

n, ep, e
k?t
t ),

(6)
where Z and Y are the sets of the embedding features of
pedestrian and background proposals sampled around b

k?i
i ,
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Figure 4. (a) Overall framework of the TFAN. Firstly, given an input video sequence, proposal tubes are formed based on the semantic
and spatial similarities among proposals. Secondly, the proposal features from the obtained tube are aggregated according to the adaptive
weights generated from the PRM module, enhancing the feature representations of the pedestrians in the current frame. Finally, the
augmented proposal features are fed into two fully connected network layers for a better classification. (b) The proposed TDEM module,
where theNTDEM is learned by both detection loss and discriminative loss.
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Figure 5. Qualitative examples of the TDEM module, where w in the figures denotes the adaptive weight. By applying a temporally
discriminative embedding for each proposal, not only the drifting problem can be alleviated in linking tubes but also irrelevant mismatches
are more effectively filtered out by the adaptive weights.

respectively, and lt(·) is achieved by a triplet loss:

lt(e
n, ep, e

k?t
t ) = max(0, s(en, e

k?t
t )−s(ep, ek

?
t
t )+α), (7)

where the margin term α is set to 0.5 in experiments.
The discriminative embedding features learned from

NTDEM are then used for measuring the semantic similarity
when linking tubes, which makes the TFAN be more likely
to alleviate the drifting problem (as evidenced in Table 3).
Moreover, such discriminative embedding features are fur-
ther applied to each proposal in the formed tube for calculat-
ing the adaptive weights, so that it can more effectively ab-
sorb favorable features from relevant counterparts and filter
out irrelevant mismatches (see Fig. 5). The adaptive weights
can be also implicitly learned from NTDEM. With the dis-
criminative embedding features, we rewrite Eq. 1 and Eq. 5

into:
ki−1 = argmax

k̂∈Qki−1

s(ekii , e
k̂
i−1) + l(bkii ,b

k̂
i−1), (8)

wkii =
exp(λ× s(ektt , e

ki
i ))∑t+τ

l=t−τ exp(λ× s(e
kt
t , e

kl
l ))

. (9)

3.2.3 Part-based Relation Module

Although a heavily occluded pedestrian bktt can be con-
nected to a reliable pedestrian b

kt+τ
t+τ , the similarity

s(ektt , e
kt+τ
t+τ ) may be small because the embedding fea-

tures of the heavily occluded pedestrian are contaminated
by background clutters. Accordingly, xkt+τt+τ will be over-
whelmed by the proposal features of other examples when
aggregating features. To better leverage those reliable
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Figure 6. (a) Illustration of the motivation of the PRM module. (b)
The proposed PRM module.

pedestrians, we design a part-based relation module (PRM)
as shown in Fig. 6 (b). For a current pedestrian candi-
date, the PRM module will favor its counterparts with sim-
ilar visible parts and assign them large adaptive weights in
aggregating features. For the example in Fig. 6 (a), we
want to use the embedding features of upper-body to mea-
sure the semantic similarity between bktt and b

kt+τ
t+τ , since

both their upper parts are visible. To this end, given a
pair of bktt and bkii , the PRM module first applies a seg-
mentation subnetwork Nseg to xktt to predict the visible
mask vkt = Nseg(x

kt
t ) for the current pedestrian candidate,

where vkt ∈ [0, 1]7×7×1. Next, the adaptive weight wkii is
computed using an improved semantic similarity function
sPRM (·), which is defined in terms of vkt :

sPRM (ektt , e
ki
i ) =

1

|V|
∑
p∈V

ektt (p) · ekii (p)

|ektt (p)||ekii (p)|
, (10)

where V = {p | vkt(p) > min{0.5, γ}} and γ is a thresh-
old which adaptively determined by vkt . For background,
the values in vkt tend to be zero. In order to retain enough
pixels for computing the semantic similarity for background
proposals, γ is set to a value such that at least 20% pixels
in embedding features are retained. The percentile 20% is
chosen according to the definition of heavy occlusion in ex-
isting pedestrian dataset: a pedestrian is considered to be
heavily occluded if only 20%− 65% of its body is visible.

3.2.4 Discussion

The overall architecture of the TFAN is shown in Fig. 4 (a).
The TFAN is designed to exploit the local spatial-temporal
context of heavily occluded pedestrians to enhance their
representations in the current frame. Different from person
tracking, the TFAN does not necessarily require the propos-
als in the linked tube Tktb,τ with the same pedestrian identity,
and instances from different persons may also contribute

to augment the xktt as long as they have distinguishable
feature representations. Moreover, our model also enjoys
the enhanced discriminability of background features. For
pedestrian detection especially in night time, some ambigu-
ous negative examples, e.g., trees and poles, are often mis-
classified with a high confidence score by the single frame
detector. In our approach, we are able to utilize more sam-
ples around nearby spatio-temporal areas, so that these hard
negative examples are confidently suppressed by the classi-
fier (as shown in Supplementary Material).

3.3. Implementation

Training. The proposed TFAN is fully differentiable and
can be trained end-to-end. Similar to [30], we select 3
frames Ibef , It, Iaft for training due to limited memory,
where Ibef and Iaft are randomly sampled from {Ii}t−1i=t−τ
and {Ii}t+τi=t+1, respectively. The overall loss function of the
TFAN is defined as:

L = Ldet + Lseg + LTDEM , (11)

whereLdet is the detection loss for Faster R-CNN as in [56],
Lseg is the segmentation loss for Nseg and LTDEM is the
discriminative loss for NTDEM. Cross-entropy loss is used
for Lseg . Since pixel-level annotations for visible pedes-
trian areas are not available in existing pedestrian detection
datasets, we use the visible bounding boxes as a weak su-
pervision for Nseg as in [29]. For LTDEM , we need to find
those ground truth boxes in frames Ibef and Iaft which cor-
respond to the ground truth box b

k?t
t in frame It. Since the

track-id annotations are unavailable in some pedestrian de-
tection datasets, we adopt a greedy scheme to obtain them.
Specifically, starting from b

k?t
t , we iteratively find the cor-

responding one in next frame using IoU as a matching score
until Ibef or Iaft are reached.

Inference. Given the input video frames {Ii}t+τi=t−τ (τ = 6
by default), our approach outputs the detection boxes in
frame It. In our implementation, we decouple the branches
of classification and bounding box regression. For classi-
fication, we use the enhanced features xkt′t . For bounding
box regression, the original xktt are used.

4. Experiments
4.1. Datasets and Experiment Settings

Dataset. In order to exploit temporal cue in our ap-
proach, we conduct experiments on three large-scale pedes-
trian detection datasets: Caltech [20], NightOwls [59] and
KAIST [60], where the video sequences are publicly avail-
able. On the Caltech dataset, the results are reported on
three subsets: Reasonable (R), Heavy Occlusion (HO) and
Reasonable+Heavy Occlusion (R+HO), where the visible
ratios of pedestrians are in the range of [0.65, 1], [0.2, 0.65]
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Method R+HO HO R

Baseline 16.5 43.1 8.6
Baseline+FGFA[30] 15.7 38.9 8.2
SELSA[44] 14.9 39.6 7.5
TFAN-preliminary 14.2 37.6 7.2
TFAN+TDEM (w/o LTDEM ) 14.1 37.5 7.0
TFAN+TDEM (w/o spa) 13.0 33.5 6.9
TFAN+TDEM+PRM (w/o spa) 13.0 33.2 6.8
TFAN+TDEM 12.9 32.7 6.8
TFAN+TDEM+PRM 12.4 30.9 6.7

Table 1. Ablation study of each proposed module on the Caltech
dataset. w/o spa denotes that the TFAN achieves the tube linking
without considering the spatial similarity.

NightOwls
Subset Baseline Ours ∆

Occluded 46.5 42.1 +4.4
Reasonable+Occluded 20.8 18.5 +2.3
Reasonable 16.3 14.3 +2.0

KAIST
Subset Baseline Ours ∆

Heavy Occlusion 76.6 71.3 +5.3
Partial Occlusion 55.4 49.0 +6.4
Reasonable 35.9 34.6 +1.3

Table 2. Performance comparison with the baseline detector on the
NightOwls validation set and the KAIST testing set, respectively.
Ours indicates the TFAN+TDEM.

and [0.2, 1], respectively. NightOwls is a newly released
dataset, in which all the images are captured in night time.
As the NightOwls dataset only provides a binary occlusion
flag in annotations, we report the results on the Reason-
able, Occluded and Reasonable+Occluded subsets. KAIST
mainly focuses on multispectral pedestrian detection, in
which half of the images are also collected in night time.
Following the common protocols, we experiment on three
subsets: Reasonable, Partial Occlusion and Heavy Occlu-
sion whose pedestrian examples have visible ratios in the
range of [0.5, 1], [0.5, 1) and [0, 0.5], respectively. On the
KAIST dataset, the stat-of-the-art methods mainly work on
the fusion of thermal images and RGB images, which is not
our focus in this paper. Therefore, we only use RGB im-
ages and compare our approach with the baseline detector
on the KAIST dataset. The original annotations of these
three datasets are used for experiments.

Experiment Settings. We adopt the standard evaluation
metric in pedestrian detection: MR−2 (lower is better). The
TFAN is trained with 3 epochs using SGD optimizer, and
the initial learning rate is set to 0.0005 and decreased by a
factor of 10 after 2 epochs. σ and λ are respectively set to
0.5 and 5 by default.

4.2. Ablation Studies
Comparison with Baselines. As shown in Table 1, we
compare three variants of our approach: TFAN-preliminary

KNN K= 1 K= 3 K= 5 K= 7

proposal feature space 68.3 70.2 69.8 66.6
embedding feature space 72.8 77.0 80.5 79.8

Table 3. Classification accuracy of pedestrian proposals by KNN
using the proposal features and embedding features, respectively.

(§ 3.2.1), TFAN+TDEM (§ 3.2.2) and TFAN+TDEM+PRM
(§ 3.2.3) as well as the baseline detector. To better com-
pare with video object detection methods, we also list the
results of FGFA [30] and SELSA [44]. Compared with
the baseline detector, our proposed approach boosts the de-
tection performance on HO subset by a remarkably large
margin of 12.2 points. Besides, we observe that our ap-
proach also improves the detection performance on the re-
liable pedestrians. On the NightOwls and KAIST datasets,
we use the TFAN+TDEM for experiments due to the lack
of visible region annotations. Table 2 shows that our ap-
proach is effective for heavily occluded pedestrians even in
the night scenario, showing very well generalization abil-
ity of the proposed method. Qualitative detection perfor-
mance on the heavily occluded pedestrians can be found in
Supplementary Material. In the following ablation studies,
experiments are analyzed on the Caltech dataset.

Effectiveness of the TDEM Module. Table 1 shows that
the TDEM module (§ 3.2.2) mainly benefits from the dis-
criminative loss rather than the additional network lay-
ers. To further quantitatively analyze the proposed TDEM
module in depth, we utilize K-nearest neighbors algorithm
(KNN) to classify the pedestrian examples in both the pro-
posal feature space and embedding feature space. Specifi-
cally, given an input image with 300 proposals, a proposal
is classified by a plurality vote of its neighbors in the fea-
ture space. Euclidean distance is used for measuring the
distance between two proposals in the feature space. In Ta-
ble 3, we report the classification accuracy with different K
on the Caltech testing set, where the accuracy is the per-
centage of correctly classified pedestrian proposals over the
total pedestrian proposals. It is clear to see that pedestri-
ans and backgrounds are more separable in the proposed
embedding feature space, which can benefit both the tube
linking and feature aggregation (see Fig. 5).

Effectiveness of the PRM Module. To study the effect of
the PRM module (§ 3.2.3), we visualize the predicted vis-
ible masks and cosine similarity maps which are used to
measure the semantic similarity. As shown in Fig. 7, when
using the embedding features of full-body to measure the
semantic similarity (Eq. 2), the heavily occluded pedestri-
ans are relatively less similar to the reliable ones. By fo-
cusing on the visible parts of current pedestrian candidates
(Eq. 10), the PRM module is more likely to recall those reli-
able pedestrians for supporting the heavily occluded ones in
the current frame. Besides, we can see from Table 1 that the
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Subset Ours Baseline SDS-RCNN [7] RPN+BF[2] A-FRCCN[6] FRCCN[53] Checkerboards[21]

Reasonable 16.5 19.7 17.8 23.3 18.8 20.0 39.7

Table 4. Performance comparison with the state-of-the-art methods on the NightOwls testing subset. Ours indicates the TFAN+TDEM.

τ 3 4 5 6 7 8 9 10

R+HO 13.0 12.8 12.5 12.4 12.4 12.4 12.4 12.4
HO 32.9 32.2 31.5 30.9 31.1 31.2 31.5 31.6
R 7.1 6.9 6.9 6.7 6.7 6.6 6.5 6.6

Table 5. Ablation study of the TFAN with different tube lengths.
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Figure 7. Qualitative examples of the PRM module.

PRM module is more effective when taking into considera-
tion the spatial similarity in linking tubes. The main reason
is that the similarity measurement is conducted using the
visible parts of current pedestrian candidates. Therefore, a
spatially aligned tube shall be more beneficial for this kind
of measurement.

Adaptive Weights. To assess the effectiveness of the adap-
tive weights, we experiment our detector with the average
weights, i.e., wkii = 1

τ . The TFAN with average weights
achieves 14.9/35.0/8.4 MR−2 on the R+HO, HO and R
subsets, respectively, where the TFAN with the adaptive
weights obtains 12.4/30.9/6.7 MR−2. The performance
degradation is that the average weights may not adaptively
filter out irrelevant features during feature aggregation.

Tube Length. We experiment our approach with different
tube lengths from τ = 3 to 10. As shown in Table 5, per-
formance tends to be stable when τ > 5, indicating that
our method does not require a long tube and 11 frames are
enough to support the detection in the current frame.

Hyper-parameters. There are several hyper-parameters in
the proposed method, e.g., σ, λ, γ. The results of our ap-
proach with different hyper-parameters can be found in Sup-
plementary Material, which shows our approach is not sen-
sitive to these hyper-parameters.
4.3. Comparison with State-of-the-Art

Caltech Dataset. We list the state-of-art methods which
use no extra data in Table 6. Our approach achieves notable
performance improvements on the R+HO and HO subsets,
respectively, outperforming the second best results by 1.5
and 6.4 points. It shows our detector is specialized to detect

Method Occ R+HO HO R
CompACT-Deep [1] 24.6 65.8 11.7

RPN+BF [2] 24.0 74.4 9.6
DeepParts [3] X 22.8 60.4 11.9

SAF-RCNN [4] 21.9 64.4 9.7
MS-CNN [5] 21.5 59.9 10.0

A-FRCNN [6] 20.0 57.6 9.2
SDS-RCNN [7] 19.7 58.5 7.4

F-DNN [8] 19.3 55.1 8.6
ATT-part [9] X 18.2 45.2 10.3
AR-Ped [10] 16.1 48.8 6.5
Bi-Box [12] X 16.1 44.4 7.6

DSSD+Grid [19] X - 42.42 10.9
GDFL [17] X 15.6 43.2 7.8

FRCN+A+DT [11] X 15.2 37.9 8.0
MGAN [29] X 13.9 38.3 6.8

TFAN+TDEM+PRM X 12.4 31.5 6.5

Table 6. Performance comparison with the state-of-the-art meth-
ods on the Caltech dataset. The Occ column indicates whether an
approach is devised for handling occlusions. The top two scores
are highlighted in red and blue, respectively.

heavily occluded pedestrians.

NightOwls Dataset. We compare the state-of-the-art meth-
ods on the NightOwls testing subset, where only evaluation
on the Reasonable subset is publicly available. As shown
in Table 4, the proposed method outperforms the second
best result by 1.3 points on the Reasonable subset, validat-
ing that our approach can be well generalized to night time
scenario.

5. Conclusion
This work presents a novel model, the TFAN, aiming at

exploiting local spatial and temporal context of a heavily
occluded pedestrian to enhance its feature representations.
The TFAN is carried out with two main steps: tube link-
ing and feature aggregation, which are designed to search
for relevant counterparts temporally in the video and ex-
ploit them to enhance the feature representations of cur-
rent pedestrian candidates. Furthermore, the TFAN to-
gether with the TDEM and PRM modules is capable of han-
dling drifting and severe occlusion problems. Extensive ex-
periments validate the effectiveness and superiority of our
method.
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State University of New York at Buffalo.

8



References
[1] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

complexity-aware cascades for deep pedestrian detection. In
ICCV, 2015. 8

[2] L. Zhang, L. Lin, X. Liang, and K. He. Is faster r-cnn doing
well for pedestrian detection? In ECCV, 2016. 8

[3] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong
parts for pedestrian detection. In ICCV, 2015. 8

[4] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan. Scale-
aware fast r-cnn for pedestrian detection. IEEE TMM, 2017.
8

[5] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified
multi-scale deep convolutional neural network for fast object
detection. In ECCV, 2016. 8

[6] S. Zhang, R. Benenson, and B. Schiele. Citypersons: A di-
verse dataset for pedestrian detection. In CVPR, 2017. 8

[7] G. Brazil, X. Yin, and X. Liu. Illuminating pedestrians via
simultaneous detection and segmentation. In ICCV, 2017. 8

[8] X. Du, M. El-Khamy, J. Lee, and L. Davis. Fused dnn: A deep
neural network fusion approach to fast and robust pedestrian
detection. In WACV, 2017. 8

[9] S. Zhang, J. Yang, and B. Schiele. Occluded pedestrian de-
tection through guided attention in cnns. In CVPR, 2018. 1, 2,
8

[10] G. Brazil, and X. Liu. Pedestrian detection with autoregres-
sive network phases. In CVPR, 2019. 1, 2, 8

[11] C. Zhou, M. Yang, and J. Yuan. Discriminative feature trans-
formation for occluded pedestrian detection. In ICCV, 2019. 1,
2, 8

[12] C. Zhou, and J. Yuan. Bi-box regression for pedestrian de-
tection and occlusion estimation. In ECCV, 2018. 8

[13] C. Zhou, and J. Yuan. Multi-label learning of part detectors
for heavily occluded pedestrian detection. In ICCV, 2017. 1, 2

[14] C. Zhou, and J. Yuan. Learning to integrate occlusion-
specific detectors for heavily occluded pedestrian detection. In
ACCV, 2016. 2

[15] C. Zhou, and J. Yuan. Multi-label learning of part detectors
for occluded pedestrian detection. PR, 2019. 1

[16] C. Zhou, and J. Yuan. Occlusion Pattern Discovery for Par-
tially Occluded Object Detection. IEEE TCSVT, 2020. 1

[17] C. Lin, J. Lu, G. Wang, and J. Zhou. Graininess-aware deep
feature learning for pedestrian detection. In ECCV, 2018. 1, 2,
8

[18] J. Mao, T. Xiao, Y. Jiang, and Z. Cao. What can help pedes-
trian detection? In CVPR, 2017. 2

[19] J. Noh, S. Lee, B. Kim, and G. Kim. Improving occlusion
and hard negative handling for single-stage pedestrian detec-
tors. In CVPR, 2018. 1, 2, 8

[20] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: An evaluation of the state of the art. IEEE TPAMI,
2012. 2, 6

[21] S. Zhang, R. Benenson, and B. Schiele. Filtered channel
features for pedestrian detection. In CVPR, 2015. 2, 8

[22] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Occlusion-
aware r-cnn: Detecting pedestrians in a crowd. In ECCV, 2018.
1, 2

[23] T. Song, L. Sun, D. Xie, H. Sun, and S. Pu. Small-scale
pedestrian detection based on somatic topology localization
and temporal feature aggregation. In ECCV, 2018. 1, 2

[24] W. Liu, S. Liao, W. Hu, X. Liang, and X. Chen. Learning
efficient single-stage pedestrian detectors by asymptotic local-
ization fitting. In ECCV, 2018. 1, 2

[25] W. Ouyang, and X. Wang. Joint deep learning for pedestrian
detection. In ICCV, 2013. 2

[26] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen.
Repulsion loss: Detecting pedestrian in a crowd. In CVPR,
2018. 1, 2

[27] S. Liu, D. Huang, and Y. Wang. Adaptive nms: refining
pedestrian detection in a crowd. In CVPR, 2019. 1, 2

[28] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu. High-level se-
mantic feature detection: a new perspective for pedestrian de-
tection. In CVPR, 2019. 1, 2

[29] Y. Pang, J. Xie, M. H. Khan, R. M. Anwer, F. S. Khan, and L.
Shao. Learning to mask visible regions for occluded pedestrian
detection. In ICCV, 2019. 1, 2, 6, 8

[30] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-guided
feature aggregation for video object detection. In ICCV, 2017.
2, 6, 7

[31] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep feature
flow for video recognition. In CVPR, 2017. 2

[32] C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to track
and track to detect. In ICCV, 2017. 2

[33] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang,
Z. Wang, R. Wang, X. Wang, and W. Ouyang. T-cnn: tubelets
with convolutional neural networks for object detection from
videos. IEEE TCSVT, 2017. 2

[34] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detec-
tion from video tubelets with convolutional neural networks. In
CVPR, 2016. 2

[35] K. Kang, W. Ouyang, H. Li, and X. Wang. K. Kang, H. Li,
T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object
detection in videos with tubelet proposal networks. In CVPR,
2017. 2

[36] J. Cao, Y. Pang, S. Zhao, and X. Li. High-level semantic
networks for multi-Scale object detection. IEEE TCSVT, 2019.
2

[37] W. Han, P. Khorrami, T. Paine, P. Ramachandran,
M. Babaeizadeh, H. Shi, J. Li, S. Yan, and T. Huang. Seq-NMS
for video object detection. arXiv:1602.08465, 2016. 2

[38] S. Wang, Y. Zhou, J. Yan, and Z. Deng. Fully motion-aware
network for video object detection. In ECCV, 2018. 2

[39] F. Xiao, and Y. J. Lee. Video object detection with an aligned
spatial-temporal memory. In ECCV, 2018. 2

[40] X. Zhu, J. Dai, L. Yuan, and Y. Wei. Towards high perfor-
mance video object detection. In CVPR, 2018. 2

[41] X. Wang, and A. Gupta. Videos as space-time region graphs.
In ECCV, 2018. 2

[42] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In CVPR, 2018. 2

[43] K. Chen, J. Wang, S. Yang, X. Zhang, Y. Xiong, and
C. C. Loy, and D. Lin. Optimizing video object detection via a
scale-time lattice. In CVPR, 2018. 2

9



[44] H. Wu, Y. Chen, N. Wang, and Z. Zhang. Sequence level se-
mantics aggregation for video object detection. In ICCV, 2019.
2, 7

[45] M. Shvets, W. Liu, and A. Berg. Leveraging long-range tem-
poral relationships between proposals for video object detec-
tion. In ICCV, 2019. 2

[46] J. Cao, Y. Pang, J. Han, B. Gao, and X. Li. Taking a look
at small-scale pedestrians and occluded pedestrians. IEEE TIP,
2019. 1

[47] J. Cao, Y. Pang, and X. Li. Pedestrian detection inspired by
appearance constancy and shape symmetry. In CVPR, 2016. 1

[48] J. Cao, Y. Pang, and X. Li. Learning multilayer channel fea-
tures for pedestrian detection. IEEE TIP, 2016. 2

[49] J. Deng, Y. Pan, Ting. Yao, W. Zhou, H. Li, and T. Mei.
Relation distillation networks for video object detection. In
ICCV, 2019. 2

[50] C. Guo, B. Fan, J. Gu1, Q. Zhang, S. Xiang, V. Prinet, and
C. Pan. Progressive sparse local attention for video object de-
tection. In ICCV, 2019. 2

[51] H. Deng, Y. Hua, T. Song, Z. Zhang, Z. Xue1, R. Ma,
N. Robertson, and H. Guan. Object guided external memory
network for video object detection. In ICCV, 2019. 2

[52] X. Shi, Z. Chen, H. Wang, D. Yeung,W. Wong, and W. Woo.
Convolutional lstm network: a machine learning approach for
precipitation nowcasting. In NeurIPS, 2015. 2

[53] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NeurIPS, 2015. 8

[54] J. Xie, Y. Pang, H. Cholakkal, R. M. Anwer, F. S. Khan,
and L. Shao. Psc-net: learning part spatial co-occurrence for
occluded pedestrian detection. arXiv:2001.09252, 2020. 1

[55] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature
pyramids for object detection. IEEE TPAMI, 2014. 2

[56] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NeurIPS, 2015. 3, 6

[57] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 3

[58] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In ICCV, 2017. 3

[59] L. Neumann, M. Karg, S. Zhang, C. Scharfenberger,
E. Piegert, S. Mistr, O. Prokofyeva, R. Thiel, A. Vedaldi,
A. Zisserman, and B. Schiele. Nightowls: a pedestrians at night
dataset. In ACCV, 2018. 2, 6

[60] S. Hwang, J. Park, N. Kim, Y. Choi, and I. Kweon. Multi-
spectral pedestrian detection: benchmark dataset and baseline.
In CVPR, 2015. 2, 6

[61] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 2

10



Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians
- Supplementary Material -

1. Qualitative Evaluation of Heavily Occluded Pedestrian Detection
As shown in Fig. 1, we visualize some proposal tubes and detection results on the Caltech dataset [2]. Compared to the

baseline detector and the baseline+FGFA [1], our proposed method achieves better detection of heavily occluded pedestrians.

Proposal Tubes Detections

OursB+FGFAB𝑡 + 2 𝑡 + 6𝑡 + 4𝑡𝑡 − 2𝑡 − 4𝑡 − 6
0.160.13 0.61
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0.850.53 0.62 0.990.99 0.99

Figure 1. Qualitative comparison with the baseline (B) and the baseline+FGFA (B+FGFA) on the Caltech dataset. Ours indicates the
TFAN+TDEM+PRM.w in the figures denotes the adaptive weight. The purple arrow indicates that the tube linking procedure is terminated
as there is no proposal in adjacent frame which has an IoU > ε with the reference proposal. For clear visualization, only one tube is shown
in each row.



2. Qualitative Evaluation of False Alarm Suppressing
For pedestrian detection especially in night time, many ambiguous negative samples, e.g., trees and poles, are usually

misclassified with a high confidence score by a single-frame detector. To qualitatively validate the effectiveness of our
method for false alarm suppressing, we visualize some proposal tubes and detection results on the NightOwls dataset [3] as
shown in Fig. 2. By exploiting local temporal context, our method is able to access more references from neighboring frames,
which can help the classifier more confidently suppress the hard negative examples.

Proposal Tubes Detections

OursB𝑡 + 2 𝑡 + 6𝑡 + 4𝑡𝑡 − 2𝑡 − 4𝑡 − 6

0.000.65

0.99 0.00

0.02
0.85

1.001.00

0.87 0.04

0.84 0.00

0.97 0.19

0.000.63

Figure 2. Qualitative comparison with the baseline (B) on the NightOwls dataset. Ours indicates the TFAN+TDEM. w in the figures
denotes the adaptive weight. The purple arrow indicates that the tube linking procedure is terminated as there is no proposal in adjacent
frame which has an IoU > ε with the reference proposal. For clear visualization, only one tube is shown in each row.

3. Hyper-parameters
We experiment the proposed TFAN (+TDEM+PRM) with different settings of hyper-parameters, and the tube length τ

is set to 6 by default. λ is used for enlarging the gap among examples when calculating the adaptive weights. As shown in
Table 1, the performance becomes better when λ is set to larger than 1, and λ = 5 is a suitable choice in experiments. σ is the
parameter for measuring the relative location similarity between two proposals. We can observe from Table 1 that the TFAN
is not sensitive to σ. Table 2 shows the ablation study of the TFAN with different γ, which is utilized for the PRM module to
retain sufficient pixels for measuring the semantic similarity of embedding features. The γ is set to a value such that at least
γ% pixels in the embedding features are retained. We can see that the performance of the TFAN is stable when γ is set to
20% 6 γ 6 50%. As the γ becomes larger, it leads to a worse result, since excess pixels may introduce more background
features for heavily occluded pedestrians.

λ 1 2 3 4 5 6 7 8 9 10 σ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R+HO 13.6 12.8 12.6 12.5 12.4 12.4 12.8 12.9 13.1 13.2 R+HO 12.8 12.7 12.6 12.4 12.6 12.6 12.6
HO 33.6 32.1 31.6 31.5 30.9 31.3 32.1 32.5 33.0 33.2 HO 31.9 31.9 31.5 30.9 31.9 32.1 32.1
R 7.5 7.0 6.8 6.7 6.7 6.8 7.1 7.1 7.1 7.2 R 6.8 6.8 6.7 6.7 6.7 6.8 6.8

Table 1. Ablation study of the TFAN with different λ and σ on the Caltech dataset.



γ 20 35 50 75 90 100
R+HO 12.4 12.4 12.4 12.6 12.6 12.9

HO 30.9 30.9 31.0 32.0 32.0 32.7
R 6.7 6.7 6.7 6.8 6.9 6.8

Table 2. Ablation study of the TFAN with different γ on the Caltech dataset.
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