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Abstract. Weakly-supervised Temporal Action Localization (W-TAL)
aims to classify and localize all action instances in an untrimmed video
under only video-level supervision. However, without frame-level annota-
tions, it is challenging for W-TAL methods to identify false positive action
proposals and generate action proposals with precise temporal boundaries.
In this paper, we present a Two-Stream Consensus Network (TSCN) to
simultaneously address these challenges. The proposed TSCN features an
iterative refinement training method, where a frame-level pseudo ground
truth is iteratively updated, and used to provide frame-level supervision
for improved model training and false positive action proposal elimination.
Furthermore, we propose a new attention normalization loss to encourage
the predicted attention to act like a binary selection, and promote the
precise localization of action instance boundaries. Experiments conducted
on the THUMOS14 and ActivityNet datasets show that the proposed
TSCN outperforms current state-of-the-art methods, and even achieves
comparable results with some recent fully-supervised methods.

Keywords: Temporal Action Localization; Weakly-Supervised Learning

1 Introduction

The task of Weakly-supervised Temporal Action Localization (W-TAL) aims at
simultaneously localizing and classifying all action instances in a long untrimmed
video given only video-level categorical labels in the learning phase. Compared
to its fully-supervised counterpart, which requires frame-level annotations of all
action instances during training, W-TAL greatly simplifies the procedure of data
collection and avoids annotation bias of human annotators, therefore has been
widely studied [18, 41, 34, 27, 30, 1, 23, 46, 24, 28, 26, 43, 20] in recent years.

Several W-TAL methods [41, 30, 27, 23, 28, 26, 20] adopt a Multiple Instance
Learning (MIL) framework, where a video is treated as a bag of frames/snippets
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Fig. 1: Visualization of two-stream outputs and their late fusion result. The first
two rows are an input video and the ground truth action instances, respectively.
The last three rows are attention sequences (scaled from 0 to 1) predicted by the
RGB stream, the flow stream and their weighted sum (i.e., the fusion result),
respectively, and the horizontal and vertical axes denote the time and the intensity
of attention values, respectively. The green boxes denote the localization results
generated by thresholding the attention at the value of 0.5. By properly combining
the two different attention distributions predicted by the RGB and flow streams,
the late fusion result achieves a higher true positive rate and a lower false positive
rate, and thus has better localization performance

to perform the video-level action classification. During testing, the trained model
slides over time and generates a Temporal-Class Activation Map (T-CAM) [49, 27]
(i.e., a sequence of probability distributions over action classes at each time step)
and an attention sequence that measures the relative importance of each snippet.
The action proposals are generated by thresholding the attention value and/or
the T-CAM. This MIL framework is usually built on two feature modalities, i.e.,
RGB frames and optical flow, which are fused in two possible ways. Early fusion
methods [30, 34, 1, 23, 24, 20] concatenate the RGB and optical flow features
before they are fed into the network, and late fusion methods [27, 23, 28, 26]
compute a weighted sum of their respective outputs before generating action
proposals. An example of late fusion is shown in Fig. 1.

Despite these recent development, two major challenges still persist. One
of the most critical problems that prior W-TAL methods suffer from is the
lack of ability to rule out false positive action proposals. Without frame-level
annotations, they localize action instances that do not necessarily correspond
to the video-level labels. For example, a model may falsely localize the action
“swimming” by only checking the existence of water in the scene. Therefore, it is
necessary to exploit more fine-grained supervision to guide the learning process.
Another problem lies in the generation of action proposals. In previous methods,
action proposals are generated by thresholding the activation sequence with a
fixed threshold, which is preset empirically. It has a significant impact on the
quality of action proposals: a high threshold may result in incomplete action
proposals while a low threshold can bring more false positives. But how to get
out of this dilemma was rarely studied.
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In this paper, we introduce a Two-Stream Consensus Network (TSCN) to
address the two aforementioned problems. To eliminate false positive action
proposals, we design an iterative refinement training scheme, where a frame-level
pseudo ground truth is generated from late fusion attention sequence, and serves
as a more precise frame-level supervision to iteratively update two-stream models.
Our intuition is simple: late fusion is essentially a voting ensemble of the RGB
and flow streams, and if a proper fusion parameter (i.e., the hyperparameter to
control the relative importance of two streams) is selected, late fusion can provide
more accurate result compared with each individual stream. The advantage
of combining these two streams has been demonstrated by the Two-Stream
Convolutional Networks [37] for action recognition. As shown in Fig. 1, the two
streams produce different activation distributions, which lead to different false
positives and false negatives. However, when they are combined, the false positive
action proposals that only exist in one stream can be largely eliminated, and a
high activation value occurs only when both streams are confident that an action
instance exists. Since the late fusion result is of higher quality than single stream
result, it can in turn serve as a frame-level pseudo ground truth to supervise and
refine both streams. To generate high-quality action proposals, we introduce a
new attention normalization loss. It pushes the predicted attention to approach
extreme values, i.e., 0 and 1, so as to avoid ambiguity. As a result, simply setting
the threshold to 0.5 yields high-quality action proposals.

Formally, given an input video, RGB and optical flow features are first
extracted from pre-trained deep networks. Then two-stream base models are
trained with video-level labels on RGB and optical flow features, respectively,
where the attention normalization loss is used to learn the attention distribution.
After obtaining two-stream attention sequences, a frame-level pseudo ground
truth is generated based on their weighted sum (i.e., the late fusion attention
sequence), and in turn provides frame-level supervision to improve the two-stream
models. We iteratively update the pseudo ground truth and refine the two-stream
base models, and the normalization term at the same time forces the predicted
attention to approach a binary selection. The final localization result is obtained
by thresholding the late fusion attention sequence.

To summarize, our contribution is threefold:

– We introduce a Two-Stream Consensus Network (TSCN) for W-TAL. The
proposed TSCN uses an iterative refinement training method, where a pseudo
ground truth generated from late fusion attention sequence at previous
iteration can provide more precise frame-level supervision to current iteration.

– We propose an attention normalization loss function, which forces the atten-
tion to act like a binary selection, and thus improves the quality of action
proposals generated by the thresholding method.

– Extensive experiments are conducted on two standard benchmarks (i.e.,
THUMOS14 and ActivityNet) to demonstrate the effectiveness of the pro-
posed method. Our TSCN significantly outperforms previous state-of-the-art
W-TAL methods, and even achieves comparable results to some recent fully-
supervised TAL methods.
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2 Related Work

Action Recognition. Traditional methods [19, 7, 8, 39] aim to model spatio-
temporal information via hand-crafted features. Two-Stream Convolutional Net-
works [37] use two separate Convolutional Neural Networks (CNNs) to exploit
appearance and motion clues from RGB frames and optical flow, respectively,
and use a late fusion method to reconcile the two-stream outputs. [10] focuses
on studying different ways to fuse the two streams. The Inflated 3D ConvNet
(I3D) [3] expands the 2D CNNs in two-stream networks to 3D CNNs. Several
recent methods [47, 5, 35, 40, 31] focus on directly learning motion clues from
RGB frames instead of calculating optical flow.
Fully-supervised Temporal Action Localization. Fully-supervised TAL re-
quires frame-level annotations of all action instances during training. Several
large-scale datasets have been created for this task, such as THUMOS [15, 13],
ActivityNet [2], and Charades [36]. Many methods [33, 48, 12, 14, 6, 42, 22, 4] adopt
a two-stage pipeline, i.e., action proposal generation followed by action classifica-
tion. Several methods [42, 6, 11, 4] adopt the Faster R-CNN [32] framework to
TAL. Most recently, some methods [22, 25, 21] try to generate action proposals
with more flexible durations. Zeng et al. [45] apply the Graph Convolutional
Networks (GCN) [17, 38] to TAL to exploit proposal-proposal relations.
Weakly-supervised Temporal Action Localization. W-TAL, which only
requires video-level supervision during training, greatly relieves the data annota-
tion efforts, and draws more and more attention from the community recently.
Hide-and-Seek [18] randomly hides part of the input video to guide the network to
discover other relevant parts. UntrimmedNet [41] consists of a selection module
to select the important snippets and a classification module to perform per
snippet classification. Sparse Temporal Pooling Network (STPN) [27] improves
UntrimmedNet by adding a sparse loss to enforce the sparsity of selected seg-
ments. W-TALC [30] jointly optimizes a co-activity similarity loss and a multiple
instance learning loss to train the network. AutoLoc [34] is one of the first two-
stage methods in W-TAL, and it first generates initial action proposals and then
regresses the boundaries of the action proposals with an Outer-Inner-Contrastive
loss. CleanNet [24] improves AutoLoc by leveraging the temporal contrast in
snippet-level action classification predictions. Liu et al. [23] propose a multi-
branch network to model different stages of action. Besides, several methods [28,
20] focus on modeling the background and achieve state-of-the-art performances.

Recently, RefineLoc [1] uses an iterative refinement method to help the model
capture a complete action instance. And our method is distinct from RefineLoc
in three main aspects. (1) We adopt a late fusion framework, while RefineLoc
adopts an early fusion framework. (2) Our pseudo ground truth is generated from
two-stream late fusion attention sequences, which provides better localization
performance than each single stream, while RefineLoc generates the pseudo
ground truth by expanding previous localization results, which might result in
coarser and over-complete action proposals. (3) We introduce a new attention
normalization loss to explicitly avoid the ambiguity of attention, while RefineLoc
has no explicit constraints on attention values.
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Fig. 2: An overview of the proposed Two-Stream Consensus Network, which
consists of three parts: (1) RGB and optical flow snippet-level features are
extracted with pre-trained models; (2) two-stream base models are separately
trained using these RGB and optical flow features; (3) frame-level pseudo ground
truth is generated from the two-stream late fusion attention sequence, and in
turn provides frame-level supervision to two-stream base models

3 Two-Stream Consensus Network

In this section, we first formulate the task of Weakly-supervised Temporal Action
Localization (W-TAL), and then describe the proposed Two-Stream Consensus
Network (TSCN) in detail. The overall architecture is shown in Fig. 2.

3.1 Problem Formulation

Assume we are given a set of training videos. For each video v, we only have its
video-level categorical label y, where y ∈ RC is a normalized multi-hot vector,
and C is the number of action categories. The goal of temporal action localization
is to generate a set of action proposals {(ts, te, c, ψ)} for each testing video, where
ts, te, c, ψ denote the start time, the end time, the predicted action category and
the confidence score of the action proposal, respectively.

3.2 Feature Extraction

Following recent W-TAL methods [34, 27, 30, 23, 24, 28, 26, 43, 20], we construct
TSCN upon snippet-level feature sequences extracted from the raw video vol-
ume. The RGB and optical flow features are extracted with pre-trained deep
networks (e.g., I3D [3]) from non-overlapping fixed-length RGB frame snippets
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and optical flow snippets, respectively. They provide high-level appearance and
motion information of the corresponding snippets. Formally, given a video with T
non-overlapping snippets, we denote the RGB features and optical flow features
as {fRGB,i}Ti=1 and {fflow,i}Ti=1, respectively, where fRGB,i, fflow,i ∈ RD are the fea-
ture representations of the i-th RGB frame and optical flow snippet, respectively,
and D denotes the channel dimension.

3.3 Two-Stream Base Models

After obtaining the RGB and optical flow features, we first use two-stream base
models to perform the video-level action classification, and then iteratively refine
the base models with a frame-level pseudo ground truth. The features of two
modalities are fed into two separate base models, respectively, and the two base
models use the same architecture but do not share parameters. Therefore, in this
subsection, we omit the subscript RGB and flow for conciseness.

Since the features are not originally trained for the W-TAL task, we concate-
nate the T input features {fi}Ti=1, and use a set of temporal convolutional layers

to generate a set of new features {xi}Ti=1, where xi ∈ RD′
, and D′ denotes the

output feature dimension.
As a video may contain background snippets, to perform video-level classi-

fication, we need to select snippets that are likely to contain action instances
and meanwhile filter out snippets that are likely to contain background. To this
end, an attention value Ai ∈ (0, 1) to measure the likelihood of the i-th snippet
containing an action is given by a fully-connected (FC) layer:

Ai = σ (wA · xi + bA) , (1)

where σ(·), wA, and bA are the sigmoid function, weight vector and bias of the
attention layer. We then perform attention-weighted pooling over the feature
sequence to generate a single foreground feature xfg, and feed it to an FC softmax
layer to get the video-level prediction:

xfg =
1∑T

i=1Ai

T∑
i=1

Aixi, (2)

ŷc =
ewc·xfg+bc∑C
i=1 e

wi·xfg+bi
, (3)

where ŷc is the probability that the video contains the c-th action, and wc and
bc are the weight and bias of the FC layer for category c. The classification loss
function Lcls is defined as the standard cross entropy loss:

Lcls = −
C∑

c=1

yc log(ŷc), (4)

where yc denotes the value of label vector y at index c.
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Ideally, an attention value is expected to be binary, where 1 indicates the
presence of action while 0 indicates background. Recently, several methods [28, 20]
introduce a background category, and use the background classification to guide
the learning of attention. In this work, instead of using background classification,
we introduce an attention normalization term to force the attention to approach
extreme values:

Latt =
1

l
min

A⊂{Ai}
|A|=l

∑
a∈A

a− 1

l
max

A⊂{Ai}
|A|=l

∑
a∈A

a, (5)

where l = max
(
1, bTs c

)
and s is a hyperparameter to control the selected snippets.

This normalization loss aims to maximize the difference between the average
top-l attention values and the average bottom-l attention values, and force the
foreground attention to be 1 and background attention to be 0.

Therefore, the overall loss for the base model training is the weighted sum of
the classification loss and the attention normalization term:

Lbase = Lcls + αLatt, (6)

where α is a hyperparameter to control the weight of the normalization loss.
In addition, the temporal-class activation map (T-CAM) {si}Ti=1, si ∈ RC is

also generated by sliding the classification FC softmax layer over all snippets:

si,c =
ewc·xi+bc∑C
j=1 e

wj ·xi+bj
, (7)

where si,c is the T-CAM value of i-th snippet for category c.

3.4 Pseudo Ground Truth Generation

We iteratively refine the two-stream base models with a frame-level pseudo ground
truth. Specifically, we divide the whole training process into several refinement
iterations. At refinement iteration 0, only video-level labels are used for training.
And at refinement iteration n+ 1, a frame-level pseudo ground truth is generated
at refinement iteration n, and provides frame-level supervision for the current
refinement iteration. However, without true ground truth annotations, we can
neither measure the quality of the pseudo ground truth, nor guarantee the pseudo
ground truth can help the base models achieve higher performance.

Inspired by two-stream late fusion, we introduce a simple yet effective method
to generate the pseudo ground truth. Intuitively, locations at which both streams
have high activations are likely to contain ground truth action instances; locations
at which only one stream has high activations are likely to be either false positive
action proposals or true action instances that only one stream can detect; locations
at which both streams both have low activations are likely to be the background.

Following this intuition, we use the fusion attention sequence {A(n)
fuse,i}Ti=1 at

refinement iteration n to generate pseudo ground truth {G(n+1)
i }Ti=1 for refinement

iteration n + 1, where A
(n)
fuse,i = βA

(n)
RGB,i + (1 − β)A

(n)
flow,i, and β ∈ [0, 1] is a
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hyperparameter to control the relative importance of RGB and flow attentions.
We introduce two pseudo ground truth generation methods.
Soft pseudo ground truth means to directly use the fusion attention values

as pseudo labels: G(n+1)
i = A

(n)
fuse,i. The soft pseudo labels contain the probability

of a snippet being the foreground action, but also add uncertainty to the model.
Hard pseudo ground truth thresholds the attention sequence to generate a
binary sequence:

G(n+1)
i =

{
1, A

(n)
fuse,i > θ;

0, A
(n)
fuse,i ≤ θ,

(8)

where θ is the threshold value. Setting a large value of θ will eliminate the
action proposals that only one stream has high activations, and therefore reduces
the false positive rate. In contrast, setting a small value of θ will help models
to generate more action proposals and achieve a higher recall. Hard pseudo
labels remove the uncertainty and provide stronger supervision, but introduce a
hyperparameter.

After generating the frame-level pseudo ground truth, we force the attention
sequence generated by each stream to be similar to the pseudo ground truth with
a mean square error (MSE) loss6:

L(n+1)
G =

1

T

T∑
i=1

(
A

(n+1)
i − G(n+1)

i

)2

. (9)

At refinement iteration n+ 1, the total loss for each stream is

L(n+1)
total = Lbase + γL(n+1)

G , (10)

where γ is a hyperparameter to control the relative importance of two losses.

3.5 Action Localization

During testing, following BaS-Net [20], we first temporally upsample the attention
sequence and T-CAM by a factor of 8 via linear interpolation. Then, we select
top-k action categories from the fusion video-level prediction ŷfuse to perform
action localization, where ŷfuse = βŷRGB + (1 − β)ŷflow. For each of these
categories, following our intention that the attention performs a binary selection,
we generate action proposals by directly thresholding the attention value at 0.5
and concatenating consecutive snippets. The action proposals are scored via
a variant of the Outer-Inner-Constrastive score [34]: instead of using average
T-CAM, we use attention weighted T-CAM to measure the outer and inner
temporal contrast. Formally, given action proposal (ts, te, c), fusion attention

6 Although it is straightforward to use a cross entropy loss for hard pseudo ground
truth, we found in practice that the cross entropy loss and the MSE loss achieve
similar performance. To simplify training, we use the MSE loss for both kinds of
pseudo ground truth.
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{Afuse,i}Ti=1 and T-CAM {sfuse,i}Ti=1, where sfuse,i = βsRGB,i + (1− β)sflow,i, the
score ψ is computed as

ψ =

∑te
i=ts

Afuse,isfuse,i,c

te − ts
−
∑Te

i=Ts
Afuse,isfuse,i,c −

∑te
i=ts

Afuse,isfuse,i,c

Te − Ts − (te − ts)
, (11)

where Ts = ts − L
4 , Te = te + L

4 , and L = te − ts. We discard action proposals
with confidence scores lower than 0.

4 Experiments

4.1 Dataset and Evaluation

THUMOS14 dataset [15] contains 200 validation videos and 213 testing videos
within 20 categories for the TAL task. We use the 200 validation videos for
training, and use the 213 testing videos for evaluation.
ActivityNet dataset [2] has two release versions, i.e., ActivityNet v1.3 and
ActivityNet v1.2. ActivityNet v1.3 covers 200 action categories, with a training
set of 10, 024 videos and a validation set of 4, 926 videos. ActivityNet v1.2 is
a subset of ActivityNet v1.3, and covers 100 action categories, with 4, 819 and
2, 383 videos in the training and validation set, respectively.7 We use the training
set and the validation set for training and testing, respectively.
Evaluation Metrics. Following the standard protocol on temporal action lo-
calization, we evaluate our method with mean Average Precision (mAP) under
different Intersection-over-Union (IoU) thresholds. We use the evaluation code
provided by ActivityNet8 to perform the experiments.

4.2 Implementation Details

Two off-the-shelf feature extraction backbones are used in our experiments, i.e.,
UntrimmedNet [41] and I3D [3], with snippet lengths of 15 frames and 16 frames,
respectively. The two backbones are pre-trained on ImageNet [9] and Kinetics [3],
respectively, and are not fine-tuned for fair comparison. The RGB and flow
snippet-level features are extracted at the global pool layer as 1024-D vectors.

The networks are implemented in PyTorch [29]. We use the Adam [16]
optimizer with a fixed learning rate 0.0001. We train the base models 200 and
80 epochs at refinement iteration 0, and 100 and 40 epochs for later refinement
iterations for ActivityNet and THUMOS14, respectively. We set the maximal
number of refinement iterations to 4 for the THUMOS14 dataset, and 24 for the
ActivityNet datasets, and choose base models that achieve the lowest loss at the

7 In our experiments, there are 9, 937 and 4, 575 videos in training and validation set of
ActivityNet v1.3, respectively, and 4, 471 and 2, 211 videos in training and validation
set of ActivityNet v1.2, respectively, because the rest of the videos are unaccessible
from YouTube.

8 https://github.com/activitynet/ActivityNet/tree/master/Evaluation
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Table 1: Comparison of our method with state-of-the-art TAL methods on the
THUMOS14 testing set. UNT and I3D are abbreviations for UntrimmedNet
feature and I3D feature, respectively

Method
mAP@IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
u
ll
y
-s

u
p

er
v
is

ed

Yuan et al. [44] 51.0 45.2 36.5 27.8 17.8 - - - -
CDC [33] - - 40.1 29.4 23.3 13.1 7.9 - -

R-C3D [42] 54.5 51.5 44.8 35.6 28.9 - - - -
SSN [48] 66.0 59.4 51.9 41.0 29.8 - - - -
BSN [22] - - 53.5 45.0 36.9 28.4 20.0 - -

TAL-Net [4] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - -
GTAN [25] 69.1 63.7 57.8 47.2 38.8 - - - -
BMN [21] - - 56.0 47.4 38.8 29.7 20.5 - -

W
ea

k
ly

-s
u
p

er
v
is

ed

UntrimmedNet [41] 44.4 37.7 28.2 21.1 13.7 - - - -
STPN (UNT) [27] 45.3 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3

AutoLoc (UNT) [34] - - 35.8 29.0 21.2 13.4 5.8 - -
W-TALC (UNT) [30] 49.0 42.8 32.0 26.0 18.8 - 6.2 - -
Liu et al. (UNT) [23] 53.5 46.8 37.5 29.1 19.9 12.3 6.0 - -
RefineLoc (UNT) [1] - - 36.1 - 22.6 - 5.8 - -
CleanNet (UNT) [24] - - 37.0 30.9 23.9 13.9 7.1 - -
BaS-Net (UNT) [20] 56.2 50.3 42.8 34.7 25.1 17.1 9.3 3.7 0.5

Ours (UNT) 58.9 52.9 45.0 36.6 27.6 18.8 10.2 4.0 0.5
STPN (I3D) [27] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1

W-TALC (I3D) [30] 55.2 49.6 40.1 31.1 22.8 - 7.6 - -
Liu et al. (I3D) [23] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - -
RefineLoc (I3D) [1] - - 40.8 - 23.1 - 5.3 - -

Nguyen et al. (I3D) [28] 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4
BaS-Net (I3D) [20] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5

Ours (I3D) 63.4 57.6 47.8 37.7 28.7 19.4 10.2 3.9 0.7

previous refinement iteration to generate the pseudo ground truth. To eliminate
fragmentary action proposals, temporal max pooling of kernel size 5 and stride 1
is used on the fusion attention sequence before pseudo ground truth generation
on ActivityNet dataset. We use a whole video as a batch. All hyperparameters
are determined via grid search: s = 8, α = 0.1, β = 0.4, γ = 2. We set θ to 0.55
and 0.5 for THUMOS14 and ActivityNet, respectively. We choose top-2 action
categories and also reject categories whose fusion classification prediction scores
are lower than 0.1 to perform action localization.

4.3 Comparison with the State-of-the-art

Experiments on THUMOS14. Table 1 summarizes the performance compari-
son between the proposed TSCN and state-of-the-art fully-supervised and weakly-
supervised TAL methods on the THUMOS14 testing set. With UntrimmedNet
features, TSCN outperforms other W-TAL methods by a large margin, and even
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Table 2: Comparison of our method
with state-of-the-art W-TAL methods
on the ActivityNet v1.2 validation set.
The Avg column indicates the average
mAP at IoU thresholds 0.5:0.05:0.95

Method
mAP@IoU (%)

Avg
0.5 0.75 0.95

UntrimmedNet [41] 7.4 3.2 0.7 3.6
AutoLoc [34] 27.3 15.1 3.3 16.0
W-TALC [30] 37.0 - - 18.0
Liu et al. [23] 36.8 22.0 5.6 22.4

Ours 37.6 23.7 5.7 23.6

Table 3: Comparison of our method
with state-of-the-art W-TAL methods
on the ActivityNet v1.3 validation set.
The Avg column indicates the average
mAP at IoU thresholds 0.5:0.05:0.95

Method
mAP@IoU (%)

Avg
0.5 0.75 0.95

STPN [27] 29.3 16.9 2.7 -
Liu et al. [23] 34.0 20.9 5.7 21.2

Nguyen et al. [28] 36.4 19.2 2.9 -
Ours 35.3 21.4 5.3 21.7

achieves comparable results to some recent W-TAL methods with I3D features
(e.g., Nguyen et al. [28] and BaS-Net [20]) at high IoU thresholds.

With I3D features, our performance boosts significantly, and outperforms
previous W-TAL methods at most IoU thresholds. We note the proposed TSCN
can achieve a comparable performance to some recent fully-supervised methods
(e.g., R-C3D [42]). TSCN even outperforms TAL-net [4] at IoU thresholds 0.1
and 0.2. However, as the IoU threshold increases, the performance of TSCN
drops significantly, because generating more precise action boundaries need true
frame-level ground truth supervision.
Experiments on ActivityNet. The performance comparisons on ActivityNet
v1.2 and v1.3 are shown in Table 2 and Table 3, respectively, where our models
are trained with I3D features. The proposed TSCN outperforms previous W-TAL
methods at the average mAP at IoU threshold 0.5 : 0.05 : 0.95 on both release
versions of ActivityNet, verifying the efficacy of our design intuition.

4.4 Ablation Study

In this subsection, a set of ablation studies is conducted on the THUMOS14
testing set with UntrimmedNet feature to analyze the efficacy of each component
in the proposed TSCN.
Ablation study on Latt. The goal of Latt in Equation (5) is to force the atten-
tion values to approach extreme values, and therefore generate a clean foreground
feature xfg and improve action proposal quality. Some recent methods [28, 20]
introduce background classification to W-TAL. Particularly, background classifi-
cation loss Lbg [28] is introduced to classify the background, where a background
attention is defined as 1−Ai, and a background feature is generated via back-
ground attention-weighted pooling over all snippets to perform the background
classification. Therefore, Lbg is in essence an implicit attention normalization loss.
However, one drawback of such background loss is that assigning background
labels to all videos will make the value of the background category in the T-CAM
increase. We reproduce Lbg in our model, compare it with our proposed Latt, and
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Table 4: Comparison of our method with
different attention normalization func-
tions on the THUMOS14 testing set. Lbg

is the background classification loss in-
troduced in [28], and Latt is defined in
Equation (5). The var column denotes
the average attention variance over the
whole testing set

Lcls Lbg Latt
mAP@IoU (%)

Var
0.3 0.5 0.7

X - - 29.6 16.1 4.1 0.0440
X X - 34.3 19.3 6.7 0.0599
X - X 40.9 24.0 8.2 0.0937
X X X 40.6 23.6 7.8 0.0886
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Fig. 3: Comparison between models
trained with different pseudo ground
truth on the THUMOS14 testing set.
The upper bounds denote models trained
with ground truth actionness sequence

list the results in Table 4. The results reveal that both Lbg and Latt help improve
the performance. And the proposed Latt achieves higher attention variance and
better localization performance than Lbg, demonstrating that the our attention
normalization term Latt can better avoid the ambiguity of attention. Surprisingly,
with both Lbg and Latt, the localization performance is still lower than that with
only Latt, and we think this is because the noise of background classification
reduces the accuracy of action proposal scores.
Ablation study on Pseudo Ground Truth. Fig. 3 plots performance com-
parison between different pseudo ground truth methods at different refinement
iterations. Both soft and hard pseudo ground truth help improve the localization
performance. The hard pseudo ground truth removes uncertainty to the model,
and thus achieves higher performance improvement. However, with the same
frame-level supervision, the flow stream outperforms the RGB stream by a large
margin. We think this is because of the nature of two modalities: the RGB modal-
ity is less sensitive to actions than the optical flow modality. To demonstrate
this, we generate a true frame-level ground truth actionness sequence (action
categories are not used), train our model in the same way as the pseudo ground
truth. The results are plotted in Fig. 3 as an upper bound. The results verify our
hypothesis and demonstrate that the optical flow modality is more suitable for
the action localization task than the RGB modality.

Table 5 lists the detailed performance comparison between the model trained
with only video-level labels and that trained with the hard pseudo ground
truth. The results show that pseudo ground truth improves the localization
performance for both modalities at all IoU thresholds, and thus improves the
performance of the fusion result. Also, the pseudo ground truth greatly improves
the precision and recall for the RGB stream and the fusion result, and improves
the precision for the flow stream with a minor loss of recall (the overall F-measure
improves significantly), which demonstrates that the pseudo ground truth can
help eliminate false positive action proposals.
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Table 5: Comparison between the model trained with only video-level labels and
the model trained with hard pseudo ground truth on the THUMOS14 testing
set. The label column denotes the supervision used in training, where “video”
indicates only video-level labels are leveraged, and “frame” indicates the hard
pseudo ground truth is also leveraged during training. Precision, recall and
F-measure are calculated under IoU threshold 0.5

Modality Label
mAP@IoU (%)

Precision (%) Recall (%) F-measure
0.3 0.4 0.5 0.6 0.7

RGB video 19.8 13.2 8.2 4.5 1.9 10.2 20.9 0.1371
RGB frame 31.4 22.1 14.4 8.9 5.2 20.9 30.8 0.2489

Flow video 40.2 32.0 23.2 15.4 7.2 25.5 43.3 0.3207
Flow frame 40.8 32.7 24.1 16.8 8.7 30.9 42.4 0.3573

Fusion video 40.9 32.4 24.0 15.9 8.2 23.6 44.4 0.3078
Fusion frame 45.0 36.5 27.6 18.8 10.2 31.3 44.6 0.3680

Qualitative Analysis. Three representative examples of TAL results are plotted
in Fig. 4 to illustrate the efficacy of the proposed pseudo supervision. In the first
example of diving and cliff diving, with only video-level labels, the RGB stream
provides worse localization result than the flow stream, and thus leads to a noisy
fusion attention sequence. The pseudo ground truth guides the RGB stream
to identify false positive action proposals and discover true action instances,
and further leads to a cleaner fusion attention sequence, where high activations
correspond better to the ground truth. In the second example of cricket shot, with
only video-level supervision, the RGB stream can only distinguish certain scenes,
and fails to separate proximate action instances. In contrast, the flow stream
can precisely detect action instances. Therefore, the pseudo ground truth helps
the RGB stream to separate consecutive action instances. In the last example
of soccer penalty, both streams have high activations on certain false positive
temporal locations. Under this circumstance, the false positive action proposals
will have higher activations under frame-level pseudo supervision. To eliminate
such false positive action proposals, however, need true ground truth supervision.
To summarize, the two modalities have their own strengths and limitations: the
RGB stream is sensitive to appearance, thus it fails in scenes shot from unusual
angles or separating proximate action instances; the flow stream is sensitive
to motion, and provides more accurate results, but it fails in slow or occluded
motion. Qualitative results reveal that the pseudo ground truth helps two streams
reach a consensus at most temporal locations. Therefore, the fusion attention
sequence becomes cleaner and helps generate more precise action proposals and
more reliable confidence scores.

5 Conclusions

In this paper, we propose a Two-Stream Consensus Network (TSCN) for W-TAL,
which benefits from an iterative refinement training method and a new attention
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Fig. 4: Qualitative results on the THUMOS14 testing set. The eight rows in
each example are input video, ground truth action instance, RGB stream, flow
stream, and fusion attention sequences from the model trained with only video-
level labels and frame-level pseudo ground truth, respectively. Action proposals
are represented by green boxes. The horizontal and vertical axes are time and
intensity of attention, respectively

normalization loss. The iterative refinement training uses a novel frame-level
pseudo ground truth as fine-grained supervision, and iteratively improves the
two-stream base models. The attention normalization loss function reduces the
ambiguity of attention values, and thus leads to more precise action proposals.
Experiments on two benchmarks demonstrate the proposed TSCN outperforms
current state-of-the-art methods, and verify our design intuition.
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