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3D Hand Pose Estimation Using Synthetic Data
and Weakly Labeled RGB Images

Yujun Cai, Liuhao Ge, Jianfei Cai, Nadia Magnenat Thalmann, Junsong Yuan

Abstract—Compared with depth-based 3D hand pose estimation, it is more challenging to infer 3D hand pose from monocular RGB
images, due to the substantial depth ambiguity and the difficulty of obtaining fully-annotated training data. Different from the existing
learning-based monocular RGB-input approaches that require accurate 3D annotations for training, we propose to leverage the depth
images that can be easily obtained from commodity RGB-D cameras during training, while during testing we take only RGB inputs for
3D joint predictions. In this way, we alleviate the burden of the costly 3D annotations in real-world dataset. Particularly, we propose a
weakly-supervised method, adaptating from fully-annotated synthetic dataset to weakly-labeled real-world single RGB dataset with the
aid of a depth regularizer, which serves as weak supervision for 3D pose prediction. To further exploit the physical structure of 3D hand
pose, we present a novel CVAE-based statistical framework to embed the pose-specific subspace from RGB images, which can then
be used to infer the 3D hand joint locations. Extensive experiments on benchmark datasets validate that our proposed approach
outperforms baselines and state-of-the-art methods, which proves the effectiveness of the proposed depth regularizer and the
CVAE-based framework.

Index Terms—3D hand pose estimation, weakly-supervised methods, depth regularizer, pose-specific subspace.
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1 INTRODUCTION

HANDS are of central importance to humans, since
they provide a natural way for humans to manipu-

late objects and communicate with each other. Articulated
hand pose estimation has aroused a long-standing research
attention in the past decades [1], [2], [3], [4], [5], [6], [7],
[8], as it serves as an essential component in numerous
applications such as human-computer interaction, virtual
reality, robotics and rehabilitation. Additionally, similar to
human body pose estimation used for action recognition [9],
[10], [11], 3D hand pose estimation can be further applied to
gesture recognition and sign language recognition [12], [13].

Many recent works [12], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24] on 3D hand pose estimation have
gained tremendous success due to the availability of low-
cost depth cameras and the large public 3D hand pose
datasets [3], [4], [25], [26] with depth images. The advance
in monocular RGB-based 3D hand pose estimation [27], [28],
[29], [30], however, still remains limited. Due to low cost and
low power of RGB cameras, RGB-based solutions for 3D
hand pose estimation are more favored than depth-based
solutions in many vision applications.

Compared with depth images, single-view RGB images
exhibit inherent depth ambiguity and lighting-sensitive ap-
pearance, which makes 3D hand pose estimation from single
RGB images a challenging problem. Most recent works
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on RGB-based 3D hand pose estimation heavily rely on
large amount of labeled data for training, while compre-
hensive real-world dataset with complete 3D annotations
is often difficult to obtain, thus limiting the performance.
Specifically, compared with 2D annotations, providing 3D
annotations for real-world RGB images is typically more
difficult since 2D locations can be directly defined in the
RGB images while 3D locations cannot be easily labeled by
human annotators. To address this problem, Zimmermann
et al. [27] turned to render low-cost synthetic hands with 3D
models, from which the ground truth of 3D joints can be
easily obtained. Although achieving good performance on
the synthetic dataset, this method does not generalize well
to real image dataset due to the domain gap between image
features. To tackle this issue, Mueller et al. [28] leveraged
CycleGANs [31] to generate a “real” dataset transferred
from synthetic dataset and combined a CNN with a kine-
matic 3D hand model for 3D pose estimation. However,
its limited performance shows that there still exists gap
between generated “real” images and real-world images.
Mahdi et al. [32] proposed a domain transfer method which
learns the feature mapping from color images to depth
images. Recently, Spurr et al. [29] employed a cross-modal
deep variational hand pose estimation, which learns a cross-
modal latent representation that are estimated from different
modalities. This method, still relying on 3D annotations of
real hands, is thus different from our weakly-supervised set-
ting where no 3D annotations of real images are provided.

Most of the previous works [27], [28], [29] for hand
pose estimation from real-world single-view RGB images
focus on training with complete 3D annotations, which are
expensive and time-consuming to obtain, while ignoring the
depth images that can be easily captured by commodity
RGB-D cameras. In addition, such depth images contain
rich cues for 3D hand pose labels, as depth-based methods
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Fig. 1: Illustration of the concept of weakly supervised 3D hand pose estimation. Different from conventional fully-
supervised methods (a) that use 3D labels to guide joint predictions, our proposed weakly-supervised method (b) leverages
the reference depth map, which can be easily obtained by consumer-grade depth camera, to provide weak supervision. To
better constrain the physical structure of 3D hand pose, we present a CVAE-based framework to learn the pose-specific
latent distribution, from which we can sample the latent feature and further infer the 3D hand pose and render the
corresponding depth map. Note that we only need the reference depth map during training as a regularizer. During
testing, the trained model can predict 3D hand pose from RGB-only input.

achieve state-of-the-art performance on 3D pose estimation.
Based on these observations, we propose to leverage the
easily captured depth images to compensate the scarcity of
entire 3D annotations during training, while during testing
we take only RGB inputs for 3D hand pose estimation.
Furthermore, to better constrain the physical structure of
3D hand pose, we deploy a statistical framework based on
Conditional Variational Autoencoder (CVAE) to encode the
pose-specific latent subspace, from which we can further
decode the 3D hand joint locations. Fig. 1 illustrates the
concept of our proposed weakly supervised 3D hand pose
estimation method, which alleviates the burden of the costly
3D annotations in real-world datasets.

In particular, similar to the previous works [33], [34],
[35], [36], [37] in body pose estimation, we split the task
into 2D detection followed by a 2D-3D lifting step. Note
that both synthetic and real datasets are utilized in our
framework. For well-labeled synthetic data, different from
most of the previous approaches that directly take a regres-
sion framework to map 2D to 3D output, we propose to
learn a pose-specific latent distribution via an extension of
CVAE framework, which aims to maximize the posterior
probability of 3D hand pose estimation given the RGB image
input. Specifically, we provide a framework that allows
the training of a latent subspace encoded from the image
feature domain and the 3D hand pose domain separately,
and force the two embedded latent distributions close to
each other. By doing this, the fully trained network model is
able to capture the pose-specific latent subspace efficiently
and robustly from the RGB images during testing, which
can then be used to sample the pose-specific feature and
infer the 3D hand joint locations.

For unlabeled real images, directly transferring the net-
work trained on synthetic dataset to real-world dataset
usually produces poor estimation accuracy, due to the do-
main gap between them. To address this problem, inspired
by [38], [39], we innovate the structure with a depth reg-
ularizer, which generates depth images from the above
mentioned pose-specific latent feature and regularizes the

latent representation by supervising the generated depth
map, as shown in Figure 1 (b). This network essentially
learns the mapping from the pose-specific latent feature
to its corresponding depth map, which can be used for
the knowledge transfer from the fully-annotated synthetic
images to unlabeled real-world images without entire 3D
annotations. The effectiveness of the depth regularizer is
experimentally verified by our weakly-supervised, semi-
supervised and fully-supervised methods on benchmark
datasets.

Compared with the existing methods for 3D hand pose
estimation from monocular RGB images, our main contribu-
tions are:

• We innovatively introduce the weakly supervised
problem of leveraging low-cost depth maps during
training for 3D hand pose estimation from RGB im-
ages, which alleviates the burden of 3D joint labeling.
To the best of our knowledge, we are the first ones
to introduce such weakly-supervised setting for 3D
hand pose estimation from RGB images.

• We propose an end-to-end learning based solu-
tion for weakly-supervised adaptation from fully-
annotated synthetic images to real-world images
without entire 3D annotations. Particularly, we in-
troduce a depth regularizer supervised by the eas-
ily captured depth images, which considerably en-
hances the estimation accuracy compared with other
baselines.

• We conduct experiments on the two benchmark
datasets, which show that our weakly-supervised ap-
proach compares favorably with existing works and
our proposed semi-supervised and fully-supervised
methods are superior to the state-of-the-art methods.

This paper is an extension of our conference paper [40]. The
new contributions of this paper include:

• We replace the original regression network with a
novel CVAE-based statistical framework, which en-
codes the distribution of the pose-specific latent sub-
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space that can be sampled to infer the 3D hand joint
locations. Experimental results show that, the CVAE-
based framework is able to improve the performance
of prediction accuracy and provide a physically-
valid structure for 3D hand pose compared with our
original regression network.

• To further alleviate the burden of 2D annotation, we
investigate our weakly-supervised method trained
with only depth regularization, which removes the
2D supervision in the original weakly-supervised
approach trained with both 2D labels and depth reg-
ularizer, as presented in our conference paper. More-
over, experimental results show that our proposed
weakly-supervised method trained with only depth
regularizer performs comparably with the original
version constrained by both 2D labels and depth
regularization.

• We modify the depth regularizer with the input
of low-dimensional pose-specific feature instead of
the predicted 3D hand pose. Moreover, we experi-
mentally validate that the network can benefit more
from constraining the latent representation by the
proposed depth regularizer.

• We conduct more extensive experiments including
in the semi-supervised setting and self-comparisons.
Additionally, we also compare with more state-of-
the-art methods on RHD [27], STB [41], Dexter Ob-
ject [42] and Egodexter [43] datasets. Experimental
results show that our method can achieve good per-
formance and has plausible generalization ability in
all settings.

The remainder of this paper is organized as follows: We first
discuss the related work in Section 2 and then introduce our
detailed methodology in Section 3. After that, Section 4 pro-
vides the experimental evaluations and Section 5 concludes
this paper.

2 RELATED WORK

3D hand pose estimation Articulated 3D hand pose esti-
mation has been studied extensively for a long time, with
vast theoretical innovations and important applications.
Early work [1], [44], [45] on 3D hand pose estimation from
monocular color input used complex model-fitting schemes
which require strong prior knowledge on physics or dynam-
ics and multiple hypotheses. These sophisticated methods,
however, usually suffer from low estimation accuracy and
restricted environments, which result in limited prospects in
real-world applications. While multi-view approaches [46],
[47] alleviate the occlusion problem and provide decent
accuracy, they require sophisticated mesh models and opti-
mization strategies that prohibit them from real-time tasks.

The emergence of low-cost consumer-grade depth sen-
sors in the last few years greatly promotes the research on
depth-based 3D hand pose estimation, since the captured
depth images provide richer context that significantly re-
duces depth ambiguity. With the prevailing of deep learning
technology [48], learning-based 3D hand pose estimation
from single depth images has also been introduced, which
can achieve state-of-the-art 3D pose estimation performance
in real time. In general, they can be classified into generative

approaches [49], [50], [51], discriminative approaches [12],
[14], [17], [52], [53], [54], [55] and hybrid approaches [6],
[56], [57], [58].

Inspired by the great improvement of CNN-based 3D
hand pose estimation from depth images [59], deep learning
has also been adopted in some recent works on monocular
RGB-based applications [27], [28], [29], [60], [61], [62], [63].
In particular, Zimmermann and Brox [27] proposed a deep
network that learns an implicit 3D articulation prior of joint
locations in canonical coordinates, as well as constructing
a synthetic dataset to tackle the problem of insufficient
annotations. Spurr et al. [29] presented a “cross-modal vari-
ational model” based on VAE to learn a shared latent space
between different modalities. Mueller et al. [28] embedded a
“GANerated” network which transfers the synthetic images
to “real” ones so as to reduce the domain shift between
them. The performance gain achieved by these methods in-
dicates a promising direction, although estimating 3D hand
pose from single-view RGB images is far more challenging
due to the absence of depth information. Our work, as a
follow-up exploration, aims at alleviating the burden of
3D annotations in real-world dataset by bridging the gap
between fully-annotated synthetic images and unlabeled
real-world images.

For our proposed depth regularizer, Dibra et al. [39] is
the closest work in spirit, which presented an end-to-end
network that enables the adaptation from synthetic dataset
to unlabeled real-world dataset. However, we want to em-
phasize that our method is significantly different from [39]
in several aspects. Firstly, our work is targeted at 3D hand
pose estimation from single RGB input, whereas [39] focuses
on depth-based predictions. Secondly, compared with [39]
that leverages a rigged 3D hand model to synthesize depth
images from 3D hand pose, we use a simple convolutional
network to infer the corresponding depth maps from the
pose-specific latent feature. Our weakly-supervised adap-
tation is the first learning-based attempt that introduces a
depth regularizer to monocular-RGB based 3D hand pose
estimation. This presents a weakly-supervised solution for
this problem and will enable further research of utilizing
depth images in RGB-input applications.

Recovering 3D mesh from RGB images To further
evaluate the deformable and articulated architecture of
3D hands, recently some deep learning based approaches
[64], [65], [66], [67], [68], [69], [70] proposed to recon-
struct 3D hand mesh from RGB inputs. For instance,
[66], [67], [68], [69], [70] attempted to regress MANO pa-

rameters using deep neural networks with the supervi-
sions of silhouette and/or 2D keypoints. Hasson et al. [64]
presented a learnable model for reconstructing hand and
object meshes during manipulations and exploited a novel
contact loss that favors physically plausible hand-object
constellations. Ge et al. [65] and Kulon et al. [71] leveraged
graph-based methods to directly operate on the 3D mesh
vertices and estimate 3D pose from the generated mesh.
These approaches show a good direction on joint 3D pose
and shape estimation.

Latent representation The concept of latent represen-
tation has been previously discussed in the literature [72],
[73], which argues that the large degrees-of-freedom of 3D
pose configurations are not independent with each other,
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Fig. 2: Overview of our proposed weakly-supervised 3D hand pose estimation network, which is trained in an end-to-end
manner. During training, cropped images from both synthetic dataset and real image dataset are mixed in each single batch
as the input to the network. For well-labeled synthetic data, a pose specific low-dimensional latent feature is jointly learned
from the 3D pose domain and the image feature domain, and can be further utilized to predict the 3D hand joint locations.
To compensate the absence of ground truth annotations for unlabeled real data, we innovatively extend the network with
a depth regularizer by leveraging the corresponding depth maps available in both synthetic and real datasets, so as to
provide a weak supervision on the pose-specific latent embedding. During testing, real images only go through the part of
the network in the dash-dotted line box. Note that modules with the same name share weights with each other.

and can be constrained in a low-dimensional subspace.
For instance, [74], [75] applied the linear dimensionality
reduction technique, PCA, to learn the pose subspace. Poier
et al. [76] observed that the pose is predictive for the ap-
pearance of the hand seen from another view and tried to
learn a pose specific representation using unlabeled data by
constraining the different views of hand generated from
the latent representation. Wan et al. [77] targeted at 3D
hand pose estimation from depth images and proposed a
network architecture based on two generative networks,
including a variational auto encoder (VAE) for hand poses
and a generative adversarial network (GAN) for modeling
the distributions of depth images. To connect the separate
latent spaces of depth images and hand pose, a one-to-one
mapping function is introduced to align the two domains.
Yang et al. [78] introduced a disentangled latent space
to separate image variations such as image background
content and hand pose, which can be used for image
synthesis and 3D hand pose estimation tasks. Spurr et al.
[29] learned a shared latent space that crosses multiple

hand modalities such as depth and RGB images. Specifically,
given a set of modalities, separate VAE networks are trained
iteratively with one input modality contributing to the back-
propagation per iteration.

Different from [29], [77], [78], our CVAE-based statistical
framework builds on the extension of the conditional varia-
tional auto-encoder (CVAE) [79] and is trained to maximize
the conditional log-likelihood of the predicted 3D hand

pose based on the observation of RGB image input. We
note that for fully-supervised and semi-supervised meth-
ods, our method allows for the joint learning of the pose-
specific subspace from both 3D pose domain and image
feature domain, as opposed to the iterative training strategy
proposed in [29], while for weakly-supervised method, the
pose-specific latent feature encoded from image features can
be constrained by our proposed depth regularizer.

3 METHODOLOGY

3.1 Overview
Our target is to infer 3D hand pose from a monocular RGB
image, where the 3D hand pose is represented by a set of
3D joint coordinates Φ = {φk}Kk=1 ∈ Λ3D . Here Λ3D is the
K × 3 dimensional hand joint space with K = 21 in our
case.

Figure 2 depicts the overview of our proposed network
architecture. It consists of a 2D pose estimation network
(convolutional pose machines - CPM), a CVAE-based statis-
tic network which jointly learns a pose specific embedding
from the 3D pose domain and the image feature domain,
from which the 3D joint locations are predicted, as well as
a novel depth regularizer to provide a weak supervision.
Specifically, given a cropped single RGB image containing
human hand with certain gesture, we aim to get the 2D
heatmaps and the corresponding depth of each joint from
the proposed end-to-end network. The 2D joint locations
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Fig. 3: A pictorial representation of the implemented CVAE-
based statistical network, which jointly learns the pose-
specific distribution across the paired 3D pose and image
feature, from which we sample the latent representation and
then decode the predicted 3D hand pose. Note that during
training, both 3D labels and image features are utilized as
the input of the network, while during testing, we only go
through the orange flow to predict the 3D hand pose.

are represented as Φ2D ∈ Λ2D , where Λ2D ∈ RK×2 and the
depth values are denoted as Φz ∈ Λz , where Λz ∈ RK×1.
The final output of 3D joint locations are represented in the
camera coordinate system, where the first two coordinates
are converted from the image plane coordinates using the
camera intrinsic matrix, and the third coordinate is the joint
depth. We note that although the CVAE-based network is
able to decode the 3D hand joint locations and we only
choose the z-dimensional result Φz for our final output,
since the 2D projections estimated from the 2D heatmaps
slightly outperform those from the CVAE-based network.
Moreover, we adopt the implementation of decoding 3D
hand joint locations instead of directly regressing the depth
of each joint, due to the fact that decoding 3D hand pose
in practice brings more robust and accurate estimation of
z-dimensional results.

The depth regularizer is the key part to facilitate the
proposed weakly supervised training, i.e., relieving the
painful joint annotations for real-world dataset by making
use of the rough depth maps, which can be easily captured
by consumer-grade depth cameras. Additionally, we em-
phasize that our depth regularizer is only utilized during
training. During testing, real images simply go through the
dash-dotted line box illustrated in Figure 2 to estimate the
3D hand pose.

The entire network is trained with a Rendered Hand
Pose Dataset (RHD) created by [27] and a real-world dataset
from Stereo Hand Pose Tracking Benchmark (STB) [41]. For
ease of representation, the synthesized dataset and the real-
world dataset are denoted as IRHD and ISTB , respectively.
Note that for weakly-supervised learning, our model is
firstly pretrained on IRHD and then adapted to ISTB by
fusing the training of both datasets. For fully-supervised
and semi-supervised learning, the two datasets are used
independently in the training and evaluation process.

3.2 2D Pose Estimation Network
For 2D pose estimation, we adopt the encoder-decoder
architecture similar to the Convolutional Pose Machines
proposed by Wei et al. [80], which is fully convolutional with
successively refined heatmaps in resolution. The network
outputs K low-resolution heatmaps. The intensity on each

heat-map indicates the confidence of a joint locating in the
2D position. Here we predict the 2D position of each joint
by applying the MMSE (Minimum mean square error given
a posterior) estimator, which can be viewed as taking the
integration of all locations weighed by their probabilities in
the heat map, as proposed in [81]. We initialize the network
with weights pretrained by Zimmermann et al. [27] and
finetune them on IRHD.

To train this module, we employ mean square error (or
L2 loss) between the predicted heat map Φ̂HM ∈ RH×W
and the ground-truth Gaussian heat mapG(Φgt

2D) generated
from ground truth 2D labels Φgt

2D with standard deviation
σ = 1. The loss function is

L2D(Φ̂HM ,Φ
gt
2D) =

H∑
h

W∑
w

(Φ̂
(h,w)
HM −G(Φgt

2D)
(h,w))2. (1)

3.3 CVAE-based Statistical Network

After obtaining the 2D joint predictions in the form of
heatmaps, we aim to infer the 3D hand pose. Most previous
work [27], [34], [82] in 3D human pose and hand pose
estimation from a single image attempt to lift the set of 2D
heatmaps into 3D space directly, while a key issue for this
strategy is how to distinguish multiple 3D poses inferred
from a single 2D skeleton. Inspired by [33], our method
exploits contextual information to reduce the ambiguity
of lifting 2D heatmaps to 3D locations. More specifically,
we concatenate the intermediate image evidence extracted
from the 2D pose estimation network with the predicted
2D heatmaps, and input the concatenated image features
to our CVAE-based statistical network. (See supplementary
material for more details.)

3.3.1 Conditional Variational Auto-encoder

Given the image features Xi containing the 2D heatmaps
and the intermediate feature representations, we attempt
to estimate the corresponding 3D hand pose X̂p. Mathe-
matically, our goal is to maximize the posterior probability
p(X̂p|Xi).

To address this problem, we resort to a CVAE (con-
ditional variational auto-encoder) [79] based framework,
whereby a low-dimensional latent representation zp is
drawn from the prior distribution p(zp|Xi) and the pre-
dicted 3D pose X̂p is then generated from the distribution
p(X̂p|zp,Xi). Similar to the original derivation, we start
with the posterior formulation that we wish to maximize:

p(X̂p|Xi) =

∫
pφ(X̂p|Xi, zp)pφ(zp|Xi)dzp, (2)

which can be re-written as follows:

p(X̂p|Xi) =

∫
pφ(X̂p|Xi, zp)

pφ(zp|Xi)

qψ(zp|Xp)
qψ(zp|Xp)dzp

= Ezp∼qψ(zp|Xp){pφ(X̂p|Xi, zp)
pφ(zp|Xi)

qψ(zp|Xp)
}.

(3)
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After taking logs and applying Jensen’s inequality, we ob-
tain the variational lower bound of the conditional log-
likelihood of the observation:

log(p(X̂p|Xi)) ≥ Ezp∼qψ(zp|Xp)[log(pφ(X̂p|Xi, zp))

+ log(
pφ(zp|Xi)

qψ(zp|Xp)
)]

= Ezp∼qψ(zp|Xp)log(pφ(X̂p|Xi, zp))

−KL(qψ(zp|Xp)||pφ(zp|Xi)).

(4)

Here KL is the Kullback-Leibler divergence, zp the pose-
specific latent embedding, Xp the ground truth 3D label,
qψ(zp|Xp) the posterior sampling function, pφ(zp|Xi) the
conditional prior, and pφ(X̂p|zp,Xi) is the likelihood. Note
that the conditional probability distributions ψ, φ can be
parameterized by deep neural networks.

For our purposes, we assume that the low dimensional
subspace serves as a controller for the dependency of the
high-dimensional 3D hand configurations, which indicates
that the extracted pose-specific latent feature zp encoded
from the 3D annotations Xp is sufficient to infer the 3D
hand pose X̂p. Therefore, pφ(X̂p|zp,Xi) can be replaced by
pφ(X̂p|zp) and Eq. (4) can be updated as:

log(p(X̂p|Xi)) ≥−KL(qψ(zp|Xp)||pφ(zp|Xi))

+ Eqψ(zp|Xp)[log(pφ(X̂p|zp))].
(5)

However, the second term in Eq. (5) only takes the sam-
pling from qψ(zp|Xp) during training, which is encoded
by the 3D annotations. This may not be optimal to make
a prediction during testing, as we wish to reconstruct 3D
hand pose typically from the extracted image features Xi.
In order to mitigate the gap between training and testing
processes, inspired from [79], we modify Eq. (5) by setting
the reconstruction with sampling from both qψ(zp|Xp) and
pφ(zp|Xi), and we have the following notation:

log(p(X̂p|Xi)) ≥µ{−KL(qψ(zp|Xp)||pφ(zp|Xi))}
+ µEqψ(zp|Xp)[log(pφ(X̂p|zp))]
+ (1− µ)Epφ(zp|Xi)[log(pφ(X̂p|zp))].

(6)

where 0 ≤ µ ≤ 1, which balances the two objectives during
training stage. Here we set µ = 0.5 in our experiment.

3.3.2 Network Architecture and Loss function
A pictorial representation of the implemented CVAE-based
statistical network is provided in Figure 3, which consists
of two paths. For the upper path, the ground truth 3D label
Xp is leveraged to encode the distribution qψ(zp|Xp) during
training, while for the lower path, which is also the test path,
the latent distribution pφ(zp|Xi) is inferred based on the
extracted image features Xi. Both qψ(zp|Xp) and pφ(zp|Xi)
can be sampled to reconstruct the 3D hand pose.

To train the CVAE-based framework, we propose the
loss function with the combination of terms in Eq. (6) to
maximize the variational lower bound and minimize the
total loss:

Lcvae = LKL + Lpose, (7)

where LKL represents the KL divergence between pairs of
latent distributions from image feature domain and 3D pose

Fig. 4: Two architectures for using the depth regularizer,
either (a) cascaded or (b) paralleled with the 3D hand
pose decoder. Such a depth regularizer takes the easily-
captured reference depth map to provide weak supervision
for unlabeled data. Note that the depth regularizer is only
leveraged during training. During testing, image features
go through the orange flow to predict the 3D hand pose, as
shown in both (a) and (b).

domain, and Lpose denotes the reconstruction loss of the
predicted 3D hand pose. Next, we will provide more details
on each term, with intuitive interpretations separately.

The distribution regularization LKL aims to regularizes
consistency between pairs of the pose-specific distributions
qψ(zp|Xp) and pφ(zp|Xi), in terms of KL divergences,
which ensures the latent distribution encoded from image
feature domain close to that from the 3D hand pose domain.
Practically, to simplify the computation, we define both
qψ(zp|Xp) and pφ(zp|Xi) as Gaussian distribution.

LKL = −µ{KL(qψ(zp|Xp)||pφ(zp|Xi))}. (8)

Lpose can be interpreted as the likelihood terms in Eq.
(6), encouraging accurate 3D hand pose reconstructions
from 3D pose and RGB image domains. Particularly, for
a collection of training datasets, the likelihood terms can
be approximated by drawing samples z

(l)
p (l = 1, 2, ...L),

z
(m)
p (m = 1, 2, ...M) from the pose specific distributions
qψ(zp|Xp) and pφ(zp|Xi), respectively:

Eqψ(zp|Xp)[log(pφ(X̂p|zp))] =
1

L

L∑
l=1

log(pφ(X̂p|z(l)p )) (9)

Epφ(zp|Xi)[log(pφ(X̂p|zp))] =
1

M

M∑
m=1

log(pφ(X̂p|z(m)
p )).

(10)
Then, Lpose is defined as:

Lpose = µsmoothL1(X̂
p
p −Xp) + (1− µ)smoothL1(X̂i

p −Xp),
(11)

where smoothL1 denotes the smooth L1 loss introduced in
[83], X̂p

p = Decoder(zpp), X̂i
p = Decoder(zip), zpp and zip are

the latent features sampled from qψ(zp|Xp) and pφ(zp|Xi),
as shown in Figure 3, and Xp is the ground truth 3D hand
pose.
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Fig. 5: Network architecture of our proposed depth regularizer. Given pose-specific latent feature as the input, the depth
regularizer is able to render the corresponding depth map by gradually enlarging the intermediate feature maps and
finally combining them into a single depth image.

3.4 Depth Regularizer
For fully-supervised learning with 3D annotations, the
above mentioned CVAE-based statistical network is suffi-
cient for both training and testing process, since we use
3D labels to guide the shared latent space and 3D pose
predictions. However, for weakly-supervised learning with
unlabeled real-world images, no penalty can be enforced
because of the absence of 3D annotations.

To address this issue, given the fact that the easily-
captured depth images can be applied as an implicit con-
straint of physical structures, we introduce a novel depth
regularizer leveraging low-cost reference depth maps to
provide a weak supervision for 3D hand pose. More specif-
ically, inspired by [38], [84] that iteratively synthesize depth
images from 3D pose, we deploy a deep neural network
to render depth images directly from the corresponding 3D
hand pose, which is referred as cascaded depth regularizer,
as shown in Figure 4 (a). Since 3D hand pose can be
decoded from a pose-specific latent feature, we assume that
when tuning the pose-specific feature through the depth
regularizer, the decoded 3D hand pose can be adapted as
well. Moreover, we present another strategy for the network
layout, which facilitates the depth regularizer during train-
ing by constraining the depth maps generated from the low-
dimensional pose-specific features, i.e., the proposed depth
regularizer is in parallel with the 3D hand pose decoder, as
illustrated in Figure 4 (b). In Sec. 4.3.4, we experimentally
show that our proposed paralleled architecture outperforms
the cascaded one, which suggests the benefits of constrain-
ing the low-dimensional latent feature.

To train the depth regularizer, we adopt L1 norm which
is more robust for image generation task compared with L2
norm, to minimize the difference between the ground truth
depth map Xd and the depth images X̂i

d, X̂p
d generated from

the latent feature zip, zpp, respectively:

Ldep(X̂
i
d, X̂

p
d,Xd) = ||X̂p

d −Xd||1 + ||X̂i
d −Xd||1. (12)

3.5 Training
For weakly-supervised learning, similar to [33] and [85], we
adopt fused training where each mini-batch contains both
the synthetic and the real-world training examples (half-
half), shuffled randomly during the training process.

To train the whole network, for well-labeled synthetic
data, we obtain the overall loss function by combining terms
in Eq. (1), (7) and (12):

Ls = λ2DL2D + λcvaeLcvae + λdepLdep. (13)

where L2D is responsible for the prediction of 2D heatmap,
Lcvae arises from the CVAE-based framework, and Ldep is
the generation loss from our proposed depth regularizer.
In contrast, for real-world data without 3D labels, we only
utilize the depth regularizer to provide weak supervision.
Therefore, the overall loss function is simplified as:

Lr = λdepLdep. (14)

4 EXPERIMENTS

4.1 Implementation Details
In this section, we describe the details of the network
architecture and implementation details.

We apply simple network in our proposed CVAE-based
framework and depth regularizer. More precisely, the en-
coder for the image features contains two convolutional lay-
ers with the kernel size 3, stride 2 and padding 1, followed
by a fully connected layer. Moreover, similar to [29], we
design the same architecture for the encoder/decoder of 3D
hand pose, containing four fully connected layers with 512
hidden units. As for the layout of our proposed depth reg-
ularizer, inspired by [38], [86], we deploy a network which
passes through a fully-connected layer connected with six
convolutional layers, as shown in Figure 5. Each convo-
lutional layer contains a transposed convolution followed
by a ReLU, after which the feature map is expanded along
both image dimensions. In the first five convolutional layers,
batch normalization [87] is introduced before ReLU in order
to reduce the dependency on the initialization. After that,
the final layer combines all feature maps to generate the
corresponding depth map.

Our method is implemented within PyTorch platform.
Adam optimizer [88] is used for training. In our experi-
ments, we adopt a three-stage training process, which is
more effective in practice compared with direct end-to-end
training. In particular, Stage 1 fine-tunes the 2D pose esti-
mation network with weights from Zimmermann et al. [27],
which are adapted from the Convolutional Pose Machines
[80]. Stage 2 trains the CVAE-based statistical framework
and depth regularizer from scratch with synthetic data.
Stage 3 fine-tunes the whole network with all the training
data, which is an end-to-end training. During optimization,
the weights of different losses are set to λ2D = 1, µ = 0.5,
λcvae = 0.1 and λdep = 0.1, with a batch size of 8 and
a regularization strength of 5 × 10−4. All experiments are
conducted on one GeForce GTX 1080 GPU with CUDA 8.0.
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4.2 Datasets and Metrics

We evaluate our method mainly on four publicly available
datasets: Rendered Hand Pose Dataset (RHD) [27], real-
world dataset from Stereo Hand Pose Tracking Benchmark
(STB) [41], Egodexter [43] and Dexter+Object [42] datasets,
where Egodexter and Dexter+Object are simply used for
validation. Note that here we infer a scale-invariant and
translation-invariant representation of 3D hand pose, by
subtracting from each hand joint the location of root key-
point and then normalizing it by the distance between a
certain pair of keypoints, as done in [27], [28].

RHD is a synthetic dataset of rendered hand images with
a resolution of 320 × 320, which is built upon 20 differ-
ent characters performing 39 actions and is composed of
41,258 images for training and 2,728 images for testing. All
samples are annotated with 2D and 3D keypoint locations.
For each RGB image, the corresponding depth image is
also provided. This dataset is considerably challenging due
to the large variations in viewpoints and hand shapes, as
well as the large visual diversity induced by random noise
and different illuminations. With all the labels provided, we
train the entire proposed network, including the 2D pose
estimation network, the CVAE-based statistical network and
the depth regularizer.

STB is a real world dataset containing two subsets with
an image resolution of 640 × 480: the stereo subset STB-

BB captured from a Point Grey Bumblebee2 stereo camera
and the color-depth subset STB-SK captured from an ac-
tive depth camera. Note that the two types of images are
captured simultaneously with the same resolution, identical
camera pose, and similar viewpoints. Both STB-BB and STB-
SK provide 2D and 3D annotations of 21 keypoints. For
weakly-supervised experiments, we use color-depth pairs
in STB-SK dataset, as well as root depth (i.e., palm in the
experiments) and hand scale (the distance between a certain
pair of keypoints). For fully-supervised experiments, both
color-depth pairs (STB-BB) and stereo pairs (STB-SK) with
2D and 3D annotations are utilized to train the whole net-
work. Note that all experiments conducted on STB dataset
follow the same training and evaluation protocol used in
[27], [28], which train on 10 sequences and test on the other
two.

Dexter+Object [42], in total, provides 6 test video se-
quences with 3145 frames. All sequences are recorded using
a static camera with a single person interacting with an
object, where 2D and 3D pose annotations of visible finger-
tips are provided for the dataset. Similarly, EgoDexter [43]
contains 4 testing video sequences with 3190 frames, which
are recorded from egocentric viewpoints with cluttered
backgrounds and complex hand-object interactions. 2D and
3D pose annotations of visible fingertips are provided for
most frames of this dataset. We note that the two validation
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Fig. 8: Comparisons with the state-of-the-art fully-supervised methods on RHD [27] and STB [41]. Left: 3D PCK on RHD
dataset. Right: 3D PCK on STB dataset.

datasets contain rich examples of hand-object interactions
and egocentric viewpoints, which are hard to find in our
training datasets (RHD and STB). To mitigate the gap be-
tween training and validation scenarios and improve the
robustness of our proposed weakly-supervised model, an
extra real-world dataset (CMU Multiview Bootstrapping
[89], referred as CMUMB) with only 2D supervision is

added to the training process when measuring the estima-
tion performance of the two datasets.

We evaluate the 3D hand pose estimation performance
with three metrics. The first metric is the area under the
curve (AUC) on the percentage of correct keypoints (PCK)
score, which is a popular criterion to evaluate the pose
estimation accuracy with different thresholds, as proposed
in [27], [28]. The second and third metrics are the mean
and median end-point-error (EPE) over all testing frames, as
utilized in [29]. Following the same condition used in [27],
[28] for STB and RHD datasets, we assume that the global
hand scale and the root depth are known in the experimental
evaluations so that we can report the quantitative results
based on 3D hand joint location in the global coordinate
frame, which are computed from the output root-relative
articulations. For Dexter Object and Egodexter datasets, we
follow [60] to calculate the absolute 3D pose with global
scale using the predicted normalized root-relative 3D pose
and the intrinsic camera parameters.

4.3 Self-Comparison

4.3.1 Weak Supervision

We first evaluate the impact of weak label constraints on STB
dataset compared with fully-supervised methods with com-
plete 2D and 3D annotations. Specifically, we compare our
proposed weakly-supervised approach (w/o 2D + w/ depth
regularizer) with four baselines: a) w/o 2D + w/o depth
regularizer: directly using the network model pretrained on
RHD dataset; b) w/ 2D + w/o depth regularizer: tuning the
pretrained network with 2D labels on STB dataset; c) w/ 2D
+ w/ depth regularizer: tuning the pretrained network with
both 2D labels and depth regularizer on STB dataset and d)
w/ 2D + w/ 3D: fully-supervised method with complete 2D
and 3D annotations.

As illustrated in the left part of Figure 6, the fully-
supervised method (baseline-d) achieves the best perfor-

mance while directly transferring the model trained on syn-
thetic data with no adaptation (baseline-a) yields the worst
estimation results. This is not surprising, since the fully-
supervised method provides the most effective constraint
in the 3D hand pose estimation task and real-world images
have considerable domain shift from synthetic ones. Note
that these two baselines serve as upper bound and lower
bound for our weakly-supervised method, respectively.
Compared with baseline-a, by fine-tuning the pretrained
model with the 2D labels of the real images (baseline-b),
the AUC value significantly increases from 0.249 to 0.467.
Moreover, as shown in Figure 6, adding our proposed
depth regularizer without 2D supervision (our proposed
weakly-supervised approach) achieves better performance
than baseline-b, increasing AUC to 0.475, which suggests
that the depth regularizer provides even stronger super-
vision than 2D labels. Furthermore, baseline-c with both
2D labels and depth regularizer further improves the AUC
value to 0.558, demonstrating that the network can benefit
from the complementarity between depth regularizer and
2D supervision.

We also compare the weakly-supervised method with
our conference paper [40]. As shown in Figure 6 (middle
and right), our proposed model surpasses the accuracy of
[40], which improves the AUC value from 0.796 to 0.881
for weak-supervised method with only depth regularizer.
Moreover, in scenarios with both 2D labels and depth reg-
ularization, our proposed method outperforms [40] as well,
increasing the AUC value from 0.876 to 0.926. It is worth
noting that our proposed weakly-supervised method with
only depth regularization (AUC value: 0.881) even performs
comparably with the original method [40] with both 2D
labels and depth regularization (AUC value: 0.876), which
further indicates the advanced generalization ability of the
proposed pipeline.

4.3.2 Semi-supervision
To further assess the effectiveness of our proposed depth
regularizer, we also explore the semi-supervised situation,
where both labeled data with 3D annotations and unlabeled
data with depth maps are available during training process.
This is a common scenario, as unlabeled RGB images with
depth maps can be easily captured by commodity RGB-D
cameras.
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Fig. 9: Comparisons with the state-of-the-art methods on Dexter Object [42] and Egodexter [43]. Left: 2D PCK on Dexter
Object dataset. Middle: 3D PCK on Dexter Object dataset. Right: 2D PCK on Egodexter dataset.

Fig. 10: Visual results of our proposed weakly-supervised approach trained with only depth regularization (column 1, 4)
and with both 2D labels and depth regularization (column 5), as well as other baselines (non-finetuned approach in column
2, and weakly-supervised method with only 2D supervision in column 3), compared with the ground truth 3D hand pose
(column 6). Note that columns 2-6 are shown at a novel viewpoint for easy comparison.

TABLE 1: Impact of our proposed depth regularizer on 3D
hand pose estimation with different percentages of labeled
data. The Mean EPE (mm) on STB dataset are listed in this
table.

0% 5% 10% 50% 75% 100%
w/o depth reg. 30.18 13.95 11.61 8.11 7.58 7.12
w/ depth reg. 17.61 13.33 11.36 7.80 7.30 7.10

TABLE 2: Effectiveness of our proposed CVAE-based frame-
work compared with the original regression network in [40]
on 3D hand pose estimation with different percentages of
labeled data. Note that for fair comparison, depth regular-
izer is not utilized in both strategies. The Mean EPE (mm)
on STB dataset are listed in this table.

5% 10% 50% 75% 100%
[40] regression network 14.25 12.22 8.37 8.13 7.73

proposed CVAE framework 13.95 11.61 8.11 7.58 7.12

Table 1 compares the results of the experiments with
different percentages of 3D joint labels in STB dataset. We
see that with more unlabeled data used in the dataset, our
proposed depth regularizer leads to larger gain in 3D hand

pose estimation, which indicates the regularizing effect of
the additional depth maps. Specifically, we note that for
fully-supervised method (100% in Table 1), the individual
performance difference brought by our proposed depth
regularizer is minor, while on weakly-supervised setting
(0% in Tabel 1), the margin is much more significant, up
to 12.57mm. This can be expected, as we already leverage
the strong supervision of 3D annotations in fully-supervised
method, which represents much more accurate 3D hand
pose information than depth maps. In contrast, for weakly-
supervised task, the complementary depth information be-
comes significant for closing the large domain shift between
synthetic and real-world dataset, so as to considerably im-
prove the performance in a relatively large margin.

4.3.3 CVAE-based framework Versus Simple Regression
Network
We also compare the influence of our proposed CVAE-based
statistical framework with the simple regression network
presented in our conference paper [40], which is illustrated
in Table 2. For fair comparison, we do not use depth regular-
izer in our experiment. Therefore, Mean EPE of the weakly-
supervised method (0% of labeled data) is not reported in
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Fig. 11: Visual results of our fully-supervised method on RHD and STB datasets. Row 1-2: RHD dataset. Row 3-4: STB
dataset. Note that skeletons are shown at a novel viewpoint for easy comparison.

Fig. 12: Qualitative Results for Dexter Object [42](row 1-2) and Egodexter [43] (row 3-4) datasets for weakly-supervised
approach. An additional CMUVB dataset [89] with only 2D supervision is added during training to compensate the absence
of hand-object and egocentric samples in original training datasets (STB and RHD). Note that skeletons are shown at a
novel viewpoint for easy comparison.

the table. It is worth noting that, when using CVAE-based
framework, our method outperforms the original pipeline in
both semi-supervised and fully-supervised method (100%
of labeled data), as shown in Table 2. In Section 4.5, we
show extensive qualitative comparisons for the weakly-
supervised flow with only 2D supervision, which demon-
strates the advantages of the CVAE-based framework in
producing plausible physical structures of 3D hand pose.

4.3.4 Cascaded Depth Regularizer Versus Paralleled one
In this section, we investigate the prediction accuracy of
our proposed depth regularizer operated on pose-specific
latent representation (paralleled network architecture) or
directly on 3D pose estimation (cascaded network archi-
tecture), as described in Sec. 3.4. For fair comparison, as
shown in Figure 4, we experiment with similar network
architecture, where the only difference is the layout of the
depth regularizer, either cascaded or paralleled with the
3D hand pose decoder. Figure 7 (left and middle) reports
the comparative results for weakly-supervised method on
STB dataset, which shows that the paralleled depth reg-
ularizer is superior to the cascaded one, indicating that
the network can benefit more from directly constraining
the low-dimensional pose-specific latent feature, compared
with constraining the 3D hand pose.

4.4 Comparison with State-of-the-art Methods
4.4.1 Fully-supervised and Weakly-supervised Methods
Figure 8 shows the comparisons with state-of-the-art meth-
ods, including PSO [49], ICPPSO [90], Panteleris et al. [61],

Zimmermann et al. [27], Mueller et al. [28], Spurr et al. [29],
Iqbal et al. [60], Yang et al. [78] and our conference paper [40]
on both RHD and STB datasets. Note that here we report the
performance of our fully-supervised method without depth
regularizer.

As shown in Figure 8 (left), on RHD dataset, our fully-
supervised method is superior to the state-of-the-art meth-
ods. The AUC value of our proposed method is 0.24, 0.066,
0.059 and 0.059 higher than those of the methods in [27],
[29], [40], [78], respectively.

On STB dataset, our fully-supervised method achieves
the best results compared with all existing methods, im-
proving the AUC value to 0.996 in joint error range between
20mm and 50mm. Note that our weakly-supervised method
with only depth regularizer also outperforms some of
the existing fully-supervised methods, which demonstrates
the potential values for the weakly-supervised exploration
when complete 3D annotations are difficult to obtain in real-
world dataset. We would like to point out that the gap
between the weakly-supervised and fully-supervised ap-
proaches is partially from the skeleton differences between
synthetic and real data, as different annotation schemes are
adopted by the synthetic RHD [27] and real-world STB
[41] datasets. It is also noted that the AUC values of our
proposed methods in Figure 8 (right) are slightly different
from their counterparts in Section 4.3.1. This is because here
we test on the stereo pair subset STB-BB rather than the
color-depth subset STB-SK.

To further assess the generalization quality of our
proposed weakly-supervised approach, we additionally
provide quantitative analysis on Dexter Object [42] and
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Fig. 13: Visual results of our proposed CVAE-based statistical framework (column 1, 3) and the original regression
framework (column 2) presented in our conference paper [40]. Here both methods are trained on STB [41] dataset with
only 2D supervision and without depth regularization. Skeletons in column 2-4 are shown at a novel viewpoint for easy
comparison.

Egodexter [43] datasets, as shown in Fig 9. Note that
different from other state-of-the-art approaches [27], [28],
[60], [66], [70] mentioned in Fig 9, our proposed weakly-
supervised method didn’t take real-world 3D labels of other
datasets as supervision during training. We can see that our
weakly-supervised approach is comparable with other fully-
supervised approaches with real-world 3D annotations,
which indicates the generalization ability of our approach
to real-world scenarios.

4.4.2 Semi-supervised Methods
We also perform a quantitative analysis of our semi-
supervised method on STB dataset with the state-of-the-
art semi-supervised methods [29], [40] for RGB-based 3D
hand pose estimation. As presented in Figure 7 (right),
our proposed semi-supervised approach without depth
regularizer outperforms [29] by a relatively large margin.
Additionally, the proposed CVAE-based model consistently
surpasses our conference paper [40], which validates that
our proposed CVAE-based statistical framework can better
capture the 3D pose information and provide more accurate
estimation, compared with the original regression network.
Furthermore, Figure 7 (right) also shows that adding depth
regularizer can further improve the estimation accuracy of
the semi-supervised method, as discussed in Section 4.3.2.

4.5 Qualitative Results
Figure 10 shows some visual results of our proposed
weakly-supervised approach and baselines. For a better
comparison, we show the 3D skeleton reconstructions at a
novel view and the skeleton reconstructions of our method
at the original view are overlaid with the input images. It
can be seen that, directly applying the model pretrained on
synthetic dataset to real dataset (column 2) fails to capture
the global orientation of 3D pose, while finetuning with
2D labels improve this situation to some extent, as shown
in column 3. It is worth noting that after simply imposing
the depth regularizer without 2D supervision (column 1, 4),
both the 2D estimation results and global orientations con-
siderably perform better, compared with the non-finetuned
method in column 2. Finally, with both 2D constraint and
depth regularizer, the weakly-supervised approach on real-
world dataset yields the best estimation accuracy, which is
consistent with our aforementioned quantitative analysis.

Figure 11 shows some visual results of our fully-
supervised methods on RHD and STB datasets. We exhibit
samples captured from various viewpoints with serious self-
occlusions. It can be seen that our fully-supervised approach
is robust to various hand orientations and complicated pose
articulations.

To evaluate the generalization ability of our proposed
weakly-supervised method, we also provide qualitative ex-
amples on another two challenging datasets (Egodexter [43]
and Dexter Object [42]), as shown in Figure 12. As can be
seen in Figure 12, our method is able to provide valid pose
estimation for challenging scenarios in daily life.

We also conduct qualitative comparison between our
proposed CVAE-based statistical framework and the regres-
sion network in our original paper [40]. For a fair compar-
ison, we train the network on STB dataset with only 2D
supervision. Note that no depth regularizer is introduced in
this setting. Qualitative results are provided in Figure 13.
As can be seen, although our proposed method did not
accommodate well with the global orientation due to the
absence of depth supervision, it still performs better in
exploiting plausible and valid 3D pose structures than the
original simple regression network.

5 CONCLUSION

Providing full 3D annotations for a large real-world hand
dataset is a major bottleneck for learning-based 3D hand
pose. To address this problem, we have presented a weakly
supervised solution, which can leverage unlabeled real-
world dataset by adapting fully-annotated synthetic dataset
with the aid of low-cost depth images, which, to our knowl-
edge, is the first exploration of leveraging depth maps to
compensate the absence of entire 3D annotations for 3D
hand pose estimation from RGB images. To be specific, we
have introduced a novel and effective end-to-end architec-
ture consisting of a 2D estimation network, a CVAE-based
statistical network, and a novel depth regularizer. Quantita-
tive and qualitative experimental results have demonstrated
that our weakly-supervised method compares favorably
with the existing works, and our semi-supervised and fully-
supervised approaches surpass the state-of-the-art methods.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

ACKNOWLEDGMENTS

This research is supported by the National Research Foun-
dation, Singapore under its International Research Centres
in Singapore Funding Initiative. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore. This research
is also supported in part by Singapore MoE Tier-2 Grant
(MOE2016-T2-2-065) and start-up funds from University at
Buffalo.

REFERENCES

[1] J. M. Rehg and T. Kanade, “Digiteyes: Vision-based hand tracking
for human-computer interaction,” in Pro. IEEE Workshop Motion of
Non-rigid and Articulated Objects, 1994, pp. 16–22.

[2] Y. Wu and T. S. Huang, “Capturing articulated human hand
motion: A divide-and-conquer approach,” in Proc. IEEE Int. Conf.
Comput. Vis., vol. 1, 1999, pp. 606–611.

[3] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time con-
tinuous pose recovery of human hands using convolutional net-
works,” ACM Trans. Graph., vol. 33, no. 5, p. 169, 2014.

[4] D. Tang, H. Jin Chang, A. Tejani, and T.-K. Kim, “Latent regression
forest: Structured estimation of 3d articulated hand posture,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 3786–3793.

[5] H. Liang, J. Yuan, and D. Thalmann, “Resolving ambiguous hand
pose predictions by exploiting part correlations,” IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 7, pp. 1125–1139, 2015.

[6] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim,
C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei et al., “Accurate,
robust, and flexible real-time hand tracking,” in Proc. 33rd Annu.
ACM Conf. Human Factors Comput. Syst.,. ACM, 2015, pp. 3633–
3642.

[7] R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff, “3d hand pose
reconstruction using specialized mappings,” in Proc. IEEE Int.
Conf. Comput. Vis., vol. 1, 2001, pp. 378–385.

[8] Y. Wu and T. S. Huang, “View-independent recognition of hand
postures.”

[9] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-
based action recognition using spatio-temporal lstm network with
trust gates,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 12,
pp. 3007–3021, 2018.

[10] J. Weng, C. Weng, J. Yuan, and Z. Liu, “Discriminative spatio-
temporal pattern discovery for 3d action recognition,” IEEE Trans.
Circuits Syst. Video Technol., 2018.

[11] J. Weng, C. Weng, and J. Yuan, “Spatio-temporal naive-bayes
nearest-neighbor (st-nbnn) for skeleton-based action recognition,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4171–
4180.
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