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Figure 1: 3D hand-object pose estimation: our proposed method fully leverages correlations among hand joints and object
bounding box corners for 3D hand-object pose estimation from a single RGB image. From left to right: input image, 2D hand-
object (HO) pose, multi-views of 3D HO pose, and the reconstructed hand mesh. Results in Fig.4 are ordered in the same way.

ABSTRACT

As we use our hands frequently in daily activities, the analysis of
hand-object interactions plays a critical role to many multimedia
understanding and interaction applications. Different from conven-
tional 3D hand-only and object-only pose estimation, estimating
3D hand-object pose is more challenging due to the mutual occlu-
sions between hand and object, as well as the physical constraints
between them. To overcome these issues, we propose to fully utilize
the structural correlations among hand joints and object corners
in order to obtain more reliable poses. Our work is inspired by
structured output learning models in sequence transduction field
like Transformer encoder-decoder framework. Besides modeling
inherent dependencies from extracted 2D hand-object pose, our
proposed Hand-Object Transformer Network (HOT-Net) also cap-
tures the structural correlations among 3D hand joints and object
corners. Similar to Transformer’s autoregressive decoder, by con-
sidering structured output patterns, this helps better constrain the
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output space and leads to more robust pose estimation. However,
different from Transformer’s sequential modeling mechanism, HOT-
Net adopts a novel non-autoregressive decoding strategy for 3D
hand-object pose estimation. Specifically, our model removes the
Transformer’s dependence on previously generated results and ex-
plicitly feeds a reference 3D hand-object pose into the decoding
process to provide equivalent target pose patterns for parallely
localizing each 3D keypoint. To further improve physical validity
of estimated hand pose, besides anatomical constraints, we propose
a cooperative pose constraint, aiming to enable the hand pose to co-
operate with hand shape, to generate hand mesh. We demonstrate
real-time speed and state-of-the-art performance on benchmark
hand-object datasets for both 3D hand and object poses.
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Figure 2: The architecture of HOT-Net. The model consists of 3 components. The ResNet first encodes image features and re-
gresses 2D HO pose. Then, both information gets passed into our proposed Non-AutoRegressive Transformer (NART) module
to generate 3D HO pose. The hand pose will further cooperate with shape feature in order to generate a MANO mesh.

1 INTRODUCTION

Interaction with surrounding objects has always been an essential
part of human daily behavior, especially through hands sensing and
manipulating everyday objects. Thus, understanding hand-object
interactions (HOI) and recognizing 3D hand and object poses are
vital for analyzing and imitating human behavior, leading to a great
many applications in human-computer interactions, virtual reality,
augmented reality, and robotics, etc.

In the last decade, we have witnessed a rapid advance towards
both 3D hand pose estimation [4, 5, 11, 13, 14, 24, 30, 33, 41, 42, 47,
47, 51, 56, 57, 60] and object pose estimation [25, 26, 37, 38, 46, 52,
53, 55] in isolation. However, joint estimation for both 3D hand
and object poses from a single RGB frame has received far less
attention and remains a challenging task. Besides the common is-
sues with articulated and rigid pose estimation from RGB images,
including complex pose variations, depth/scale ambiguities, clutter,
and self-occlusions, the complex HOI scenarios bring in another
challenge: the hand and manipulated object would occlude each
other, possibly leading to severe mutual occlusion. Nonetheless,
we also observe that jointly accounting for the presence of hand
and object helps overcome the above issues since hand and object
are highly correlated under HOI scenarios. Specifically, different
object poses and categories induce different hand grasps while the
hand pose can also provide hints on the object pose and category.
Thus, the problem boils down to: how to capture and use the corre-
lations between hand and object poses in order to jointly model a
kinematically feasible hand-object pose configuration space?

Early works [7, 16, 19, 30, 31, 39] estimate both 3D hand and
object poses separately, thus neglecting the constraints between
the hand pose and the pose of object being interacted. Recent
works [9, 21, 34, 45, 48] start to exploit the existence of hand and
object as effective evidence and jointly model hand and object poses.
However, they tend to rely on a coarse modeling without a finer ex-
ploration of useful correlations or ignore the inherent dependencies
of the 3D target pose, which causes unrealistic pose configurations.

To tackle this problem, we make use of the connection between
the structured pose prediction problem and the structured sequence
transduciton task in Natural Language Processing (NLP) field. Typ-
ical transduction algorithms [1, 50], following an encoder-decoder

framework, autoregressively condition each output token genera-
tion on the relevant input tokens’ features and the inherent depen-
dencies among previously generated output tokens. By considering
the structured output patterns, this comprehensive modeling strat-
egy has led to drastic improvements in generating semantically and
syntactically valid results, such as image captions and language
translations. Therefore, we propose to leverage the state-of-the-
art transduction model, the Transformer network, as our central
building block, aiming to exploit the structured output learning
mechanism in NLP field for reliable 3D hand-object pose estimation.

Following the Transformer encoder-decoder framework, we first
capture the structural correlations among extracted 2D hand joints
and object corners. Specifically, we convert the input HOI image
into a concatenation of estimated 2D hand-object pose with image
context features and we feed them into an attention-based encoder
for capturing 3D information embedded in the 2D spatial configu-
ration and image features. The encoding process yields point-wise
features for subsequent decoding.

Then, we pay attention to the inherent dependencies of the
3D hand-object pose. Human hands are inherently structured and
highly correlated with manipulated objects. For instance, the ring
finger can constrain the motion of middle finger by bending back-
ward and the hand-object contact points should always remain at
the rigid object surface without interpenetration [21]. However,
most works [11, 12, 32, 33] simply regard the complex 3D pose as
a set of independent 3D keypoints while a few studies have en-
forced geometrical constraints [21, 23, 58, 59]. Nonetheless, due
to the large variations in HOI, an algorithm that can adaptively
model the inherent correlations among 3D keypoints should be
more helpful compared with pre-defined constraints. Inspired by
the autoregressive decoding mechanism used in Transformer de-
coder, we can impose necessary knowledge of 3D output pose by
conditioning each 3D keypoint generation on previously generated
results. However, the autoregressive factorization causes high in-
ference latency. Additionally, the sequential decoding mechanism
would only provide dependencies among “previous” keypoints for
current 3D keypoint generation, given a specified order of 3D hand
and object keypoints. However, we can find cases where each hand
joint and object corner are inter-correlated with both “previous” and



“future” keypoints. Therefore, this might lead to inferior and invalid
results if we only take sequential dependencies into consideration.
To speed up the inference while feeding necessary 3D hand-
object pose patterns to the decoder, we propose to replace the
autoregressive factorization with a novel non-autoregressive struc-
tured learning mechanism designed for joint estimation of 3D
hand-object pose. Unlike recently proposed Non-AutoRegressive
Transformer (NART) models [17, 18, 44, 54], most of which simply
expose a modified copy of input tokens to decoder resulting in
loss of knowledge from structured output, we design a structured-
reference extractor to feed a 3D reference hand-object pose into
the decoder. Our goal is to exploit the inherent dependencies of the
reference pose as an approximation to that of the target pose.

Beyond drawing features from extracted 2D hand-object pose
and reference hand-object pose, our decoder imitates the Trans-
former to further utilize the captured reference pose dependencies
as queries to attend over the point-wise features output from en-
coder. This step helps prioritize the set of informative features,
towards each 3D keypoint generation. Finally, we can merge the
attention-weighted information with the reference pose dependen-
cies to find precise 3D hand joint and object corner locations.

Moreover, since hands are highly articulated, to further optimize
the geometric validity of our resulting hand pose space besides us-
ing the help from object, we adopt a hand anatomical constraint [29]
composed of a bone length loss and a bone direction loss in order to
further constrain the structural correlations between different 3D
hand joints. We also propose a novel cooperative pose constraint.
Previous works tend to ignore the correlations between articulated
pose and other visual factors such as shape within a given frame.
For example, the hand pose feature should always cooperate with
the hand shape feature in order to generate a reasonable 3D hand
mesh. Besides using target 3D coordinates as supervision, this can
impose another form of supervision to aid the articulated pose
estimation task.

Our major contributions are summarized as follows: (1) We pro-
pose a novel structured modeling framework, HOT-Net, which is
based on Non-Autoregressive Transformer, for joint 3D articulated
and rigid object pose estimation. Our method models the strong
correlations among hand joints and object corners in a fine-grained
and comprehensive manner. (2) We introduce a novel cooperative
pose constraint to improve physical validity of hand structure. Our
scheme depends on the cooperative relationship between hand pose
and hand shape to reconstruct hand mesh. (3) Our extensive exper-
imental results on benchmarks show that our method consistently
outperforms previous methods. We also conduct comprehensive
ablation studies to gain better understandings of our approach.

2 RELATED WORK

We now review relevant works on hand-object interaction.

Hand-Object Interaction. Early works [7, 16, 19, 30, 31, 39] tend
to ignore the strong correlations between hand and object under
HOI scenarios. Subsequent approaches [2, 34-36, 43, 48, 49] start to
show the effectiveness to exploit the interaction of hand and object
as constraints especially for depth input or multi-view camera sys-
tem. Oberweger et al. [34] adopts an iterative depth reconstruction
strategy for joint hand-object pose estimation. Due to the high cost

to set up a multi-view camera system and the huge power consump-
tion using active depth sensors, researchers turn to RGB frames.
Recent works [9, 21, 45] have shown various methods for jointly
understanding hand-object poses, which however do not yet fully
leverage the correlations between the hand and the manipulated
rigid object. Tekin et al. [45] proposes a unified YOLO-based frame-
work for jointly regressing 3D hand-object pose. Nonetheless, they
directly output both poses without considering the fine-grained cor-
relations between hand joints and object corners, which might lead
to physically invalid results. Hasson et al. [21] instead employs a
novel contact constraint to enforce valid hand-object configuration.
However, for this precise contact modeling, it usually requires dense
annotations, which is difficult to obtain. Doosti et al. [9] directly
models the relations among 2D hand and object keypoints using
an adaptive graph convolutional network, but it ignores utilizing
the inherent dependencies among 3D hand and object keypoints.

3 METHODOLOGY

Our proposed HOT-Net for joint 3D hand-object pose estimation
is illustrated in Fig. 2, which comprises three modules. Given a
HOI RGB frame, the first module serves as a backbone network for
image context feature extraction and estimation of 2D hand and
object poses. Our second module, the proposed Non-AutoRegressive
Transformer (NART), fully captures the strong correlations between
hand joints and object corners for robust 3D hand-object pose
estimation. Our third module further improves the physical validity
of resulting hand articulated pose via anatomy inspired constraints
and cooperation with hand shape features for mesh reconstruction
using the parametric MANO hand model [40].

3.1 Revisiting Transformer

Transformer [50], which is established as state-of-the-art sequence
transduction model, adopts a comprehensive structured learning
mechanism. Unlike typical deep learning models, most of which
tend to ignore the inherent dependencies of structured output
data, the AutoRegressive Transformer (ART), following an encoder-
decoder framework, utilizes attention-based autoregressive decod-
ing mechanism to condition each token generation on previously
generated output patterns and relevant input features selected by
the output patterns. These strategies effectively help constrain the
structured output space and achieve superior performance.

Thus, in the goal to obtain physically valid 3D hand-object pose
configuration space, we translate this structured modeling frame-
work into our case. While keeping the attention mechanism, we
extend the autoregressive decoding to a more suited strategy for
joint estimation of 3D hand and object poses. In the following
sections, we continue revisiting both key concepts.

3.1.1 Autoregressive Decoding. As an essential piece of the Trans-
former framework, the autoregressive decoding mechanism allows
each token generation to access previously generated results. Specif-
ically, given a source sentence X = {xi, ..., xN'}, the decoding strat-
egy factors the distribution of output sequence Y = {yy, ..., yr} into
a series of conditional probabilities with a left-to-right structure:

T
part (YIX;0) = [ | p (welyra—1, x1n50), (1)
t=1
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Figure 3: Left: Overview of our NART module. The encoder computes enhanced point-wise features given 2D HO pose while
the structured-reference extractor feeds a reference 3D HO pose to the decoder. Then, the decoder explores necessary 3D
pose patterns and use this information to attend over the encoder output. Our final estimation is thus based on the HO pose
patterns and selective encoder output. Right: Simplified diagram to represent the ART model and our NART model. Typical
ART model utilizes both previous output information and the encoder output, our model instead uses the encoder output and
more reasonable structured output patterns. L; and L is the number of layer for encoder and decoder, respectively.

where N and T denote the sequence length, and 6 is the model pa-
rameters. According to Eq. 1, the autoregressive modeling strategy
helps provide structured output patterns for each token gener-
ation, but it also suffers from heavy inference latency since
token y; generation relies on previously generated output y1.s—1.
Moreover, since hand and object 3D keypoints are highly inter-
correlated with each other, the biased sequential modeling might
not work well in terms of learning the inter-point relationships.
Hence, to improve the inference speed while enforcing more rea-
sonable structured output patterns into the decoding process, we
propose a non-autoregressive decoding mechanism.

3.1.2  Scaled Dot-Product Attention. Attention mechanism is a func-
tion that maps a query and a set of key-value pairs to an output
vector. Specifically, the output is obtained using weighted average
of the input values without regard to their distance. The attention
weights measure the compatibility of given query with the input
keys. Formally, we first assume the input is composed of queries
and keys with dimension dj and values with dimension d,, then
we can compute the scaled dot-product attention [50] as follows:

T
Attention (Q,K,V) = softmax (Qi) v, (2)

Vi

where the set of queries, keys, and values are packed into matrices
Q, K, and V, respectively. To further model the input information
from different subspaces, the attention function can be equipped
with multi-head [50]:

MultiHead (Q,K, V) = Concat (head;, ..., heady,) WO,
head; = Attention (QWiQ, KWiK, VWl-V);

3)

where linear transformations WiQ € Rmodel Xdk, WiK € Rmodel Xdk,

WiV € Rmoderxdy O ¢ RhdoXdmodel gre parameter matrices. h
is the number of subspaces and di = dy = djpoger/h = 16 in our

implementation. We depend on the self-attention as well as encoder-
decoder attention mechanisms in our work.

3.2 2D Pose Initialization

We adopt ResNet [22] as backbone network to encode input HOI
frame into a 1D context feature vector. We further pass the 1D
feature vector through a fully-connected (FC) layer for regressing
the 2D hand-object pose. We then concatenate the image context
features with each 2D keypoint location, yielding point-wise fea-
tures. In this manner, we encode both posture and image features
into the point-wise representations, which are then fed into our
non-autoregressive Transformer module for further processing. We
adopt the mean squared error between the estimated 2D keypoint
coordinates and the ground truth as loss, which is denoted as £;.

3.3 Non-Autoregressive Transformer

As the core module of our HOT-Net, it fully models the struc-
tural correlations among hand joints and object corners in order
to generate physically valid 3D hand-object pose configuration
space. Representative Non-AutoRegressive Transformer (NART)
models [17, 18, 44, 54], instead of using previously generated tokens
as decoder input, explicitly feed a modified copy of input tokens
to decoder. For example, in [17], it feeds a copy of source sentence
guided by fertilities indicating times each input token is copied. This
parallel decoding strategy can achieve drastic inference speedup
but come at the cost of inferior performance compared with ART
models due to the lack of information from output sequence. The
decoding process can be given as:
T
pNarT (YIX:0) = [ ] p (yelx] x1n30), (4)
t=1
where x’ is a simple copy of x with minor modification, as shown
in [17, 44, 54]. This motivates us to propose a decoding mechanism
that can run in parallel while being able to exploit the structured



output patterns. Thus, we design a novel non-autoregressive struc-
tured learning framework for 3D hand-object pose estimation.

Taking the point-wise representations output from the 2D pose
initialization module as input to our NART module, we pass it
through our NART encoder and a proposed structured-reference
extractor as shown in Fig. 3. The encoder captures the inherent de-
pendencies among the 2D keypoints along with the image features
to enhance each point representation prepared for further decoding.
The structured-reference extractor, on the other hand, outputs a
reference 3D hand-object pose supervised by the ground truth 3D
hand and object poses. The goal is to utilize the reference pose as
our NART decoder input and provide necessary 3D pose-related
structural information.

Specifically, feeding the reference pose to the decoder, we first
utilize a non-causal self-attention layer [17] to capture its inherent
dependencies. Then, using the captured dependencies as queries,
we adopt the encoder-decoder attention mechanism to attend over
the enhanced point-wise features output from our NART encoder.
This further helps our model find out informative features towards
each 3D keypoint localization. Finally, the attention-weighted in-
formation from encoder output and the equivalent 3D target pose
patterns are combined together to estimation each 3D hand joint or
object corner location. The decoding process can be formulated as:

M
pYIX:0) = [ | p (ymly vopr x1:0156), 5)

m=1

where M is the total number of hand joints and object corners,
y’1.pr denotes the reference pose, x3.) is the extracted 2D pose
with image features, and y;.ys is the output 3D keypoints. In this
manner, our model can generate all 3D points parallelly using the
reference pose as decoder input. We apply smooth L1 loss [15] for
each frame between our final 3D hand-object pose estimation and
the ground truth 3D pose. We denote it as L.

3.3.1 Encoder. Similar to the encoder in ART model, our NART
encoder also captures the long-range dependencies from the input
data, which is the point-wise representations output from the 2D
pose initialization module in our case. The encoder is composed of a
simple spectral Graph Convolutional Network (GCN) [3, 8, 28] and
multi-head self-attention layers. Since each point’s features contain
2D keypoint coordinates and image context features, their inherent
dependencies can serve as important hints for 3D pose estimation.
We first adopt a three-layer spectral GCN similar to [5, 9, 28] for
modeling the local dependencies among each 2D keypoint and its
connected neighbors via aggregating the adjacent features. Then,
to further model the long-range dependencies among hand joints
and object corners without regard to their distance or connection,
we employ self-attention layers. The encoder outputs enhanced
point-wise features with more structural information embedded.

3.3.2  Structured-Reference Extractor. As mentioned earlier, our
NART module relies on the structured-reference extractor to pro-
vide a reference 3D hand-object pose to the decoder. In this manner,
the decoder can use the reference pose patterns, which serves as an
equivalent 3D target pose patters, to help constrain the output pose
configuration space and generate each 3D keypoint in parallel.

Specifically, as shown in Fig. 2 and Fig. 3, we feed the point-wise
features output from the 2D pose initialization module into the
structured-reference extractor to infer the reference 3D hand-object
pose. We again utilize a multi-layer spectral GCN [5, 9, 28] with
encoder-decoder framework as the structured-reference extractor.
The GCN allows each node to enhance its representation based
on its correlations with adjacent nodes, which helps encode pose
structural information into the resulting reference pose.

We apply an intermediate supervision to encourage the reference
pose to include more information regarding the ground truth 3D
hand-object pose. The loss term L3 is defined as the smooth L1 loss
between the reference pose and the 3D ground truth pose.

3.4 Structural Constraints for 3D Hand Pose

As the third module for our HOT-Net, we expect it to further im-
prove the geometric validity of resulting 3D hand poses in the
pose configuration space learnt from our NART module. Due to
the highly articulated structure and severe occlusion under HOI
scenarios, deep learning-based 3D hand pose estimation is an ill-
posed problem. Thus, sometimes we can still observe some joints
are put into positions where there is no evidence of presence of
hand points, or being physically infeasible. Thus, besides purely
relying on our NART module, we include additional constraints
to help improve the 3D hand pose estimation accuracy and the
kinematical feasibility of the hand skeleton.

The first type of constraint, which helps maintain the skeletal re-
lation between the resulting hand joints, constrain two bone-related
properties given a 3D hand pose. The second type of constraint
requires hand pose itself to cooperate with hand shape, in the goal
to reconstruct the hand mesh. Previous researches usually ignore
the correlations between articulated pose and other visual factors
for pose estimation. However, we can see that some factors need to
help with each other to form another visual modality. For instance,
the hand pose along with the hand shape feature should generate a
complete 3D hand mesh. Besides relying on ground truth 3D coordi-
nates as supervision, it further imposes another form of constraints
on the resulting articulated pose space by asking hand pose to form
this natural relation with hand shape.

3.4.1 Bone-Related Biological Constraints. The bone-related bio-
logical constraints explicitly maintain a geometrical relation be-
tween different joint locations. The classic 3D hand pose loss only
constrains the joint locations while ignoring the structural relations
between adjacent joints. Specifically, following [23], we apply one
bone unit-direction loss to penalize the deviation in the direction
of bones and also one bone length loss to restrict the distance in
bone length. Both of which are given below:

Lo = gty Zsmoothy, (1011 16:12).

. b1/ b 2 )

Ly = G5 gj]_smoothL1 (bi,j/”bi,j
(6)

where J is the number of hand joints, b; j = y; — y; is the bone

vector between hand joint y; and y;, and b; ; is the ground truth
bone vector. The total loss is given as:

Ly=Lyp+ Lpg. (7)



3.4.2 Cooperative Pose Constraints via Mesh Reconstruction. To
generate hand mesh based on the cooperation between hand pose
and shape information, we adopt the MANO model [40], a paramet-
ric deformable 3D hand model. The hand mesh are deformed and
posed by the input shape § € R'* and pose 8 € R/*3 parameters.

Specifically, to obtain the shape parameters § as well as the pose
parameters, we pass the image context features generated from
ResNet and the 3D hand pose output from NART module through
three FC layers, respectively. In terms of the supervision, we apply a
root-relative 3D hand pose smooth L1 loss L, one shape regularizer
L to enforce the hand shape to be close to the average shape in the
MANO model, whichis f =0 € R1% and also one pose reularizer
Ly. Both regurlarization losses adopt the mean squared error. The
total loss is given below:

Ls=L; +.£9+2.£ﬁ. 8)

3.5 Training

We first pre-train the whole model on the ObMan [21] synthetic
dataset and then fine-tune on both FP-HO [10] and HO-3D [20]
datasets. The total loss for training is given below:

L=ML1+2 L+ 3L3+ 4Ly + A5 L5 ©

where A1 = 0.1, A = 1, A3 = 0.1, A4 = 0.1, and A5 = 0.5 are the
weight coeflicients to balance different loss functions and are set
by cross validation.

4 EXPERIMENTS

4.1 Datasets

4.1.1  First-Person Hand Action Benchmark (FPHAB) [10]. Tt is a
recently published large-scale video collection covering a variety
of hand-object interactions including 1175 videos with 45 types of
activities and 6 subjects in egocentric viewpoint. Visible magnetic
sensors are strapped on the human hands in order to automatically
annotate the 3D hand joints. A subset of this dataset contains 3D
mesh and 6D object pose annotations for 4 objects (juice bottle,
liquid soap, milk, and salt). There are 10 different action categories
involved in this subset, and we denote the subset as FP-HO.

4.1.2 HO-3D [20]. This dataset is also a recently published hand-
object interaction dataset, which contains sequences with hands
interacting with objects in third-person viewpoint. It is the first
markerless hand-object dataset of color images with 77k annotated
frames, corresponding depth maps, 65 sequences, 10 persons, and
10 objects. For the training set, it includes 66k frames with 3D pose
annotations for both hands and objects. In the testing set with 11k
frames, hands are only annotated with 3D location of the wrist.

4.1.3 ObMan [21]. This is a large-scale synthetic hand-object in-
teraction dataset with 141k training frames, 6.4k validation frames,
and 6.2k testing frames. Each image is generated via rendering given
3D hand meshs and 8 everyday object models from ShapeNet [6].

4.2 Evaluation Metrics

Following [45], we adopt mean 3D Euclidean distance error (in
mm) for evaluating both 3D hand pose and 6D object pose. We also
utilize the percentage of correct keypoint estimates (3D PCK) to

Table 1: Comparison with state-of-the-art method H+O [45]
on FP-HO [10]. The mean 3D distances (mm) is used as met-
ric (Lower is better).

Model Abs. HP  Abs. OP
H+O [45]  15.81 24.89
HOT-Net 15.18 21.37

Table 2: The AUC scores (Higher is better) for both FP-
HO [10] and HO-3D [20] on 3D PCK curve and PCP curve.

Dataset AUC on PCK AUC on PCP
FP-HO 0.829 0.595
HO-3D 0.819 0.567

measure accuracy on 3D hand pose estimation. For the accuracy
on 6D object pose estimation, we employ the percentage of correct
poses (PCP). Here, an object pose is correct if the 2D projection
error of model vertices is less than a certain threshold.

4.3 Implementation Details

Given HOI RGB frame, We adopt ResNet-50 [22] as the backbone
network. The NART encoder is composed of 3 spectral GCN [5,
9, 28] layers following a standard Transformer encoder [50] with
layer number L; as 6. For the structured-reference extractor, we still
use spectral GCN with encoder-decoder structure, similar to [5, 9].
For NART decoder, we rely on the standard Transformer decoder
with some modifications: the Masked Multi-Head Attention layer
is replaced with a Non-Causal Multi-Head Attention layer [17] and
the final SoftMax layer is changed to 1 FC layer. Layer number
L, is set as 6. The header h is 8 and the d,;,,4,; is 128. We do not
use Position Encoding module for both encoder and decoder. For
the MANO layer, we mainly follow the setting in [21]. We use
Adam [27] as optimizer with batch size of 256. Instead of training
the whole model together, we first pre-train the ResNet on 2D pose
estimation and the structured-reference extractor. The learning
rate is 0.001 for both modules with a shrink factor of 0.5 every 200
epochs for ResNet and 0.9 every 500 epochs for the latter. Then, we
optimize the whole network with NART module and MANO layer
for 1000 epochs. The learning rate starts from 0.001 with a shrink
factor of 0.1 every 500 epochs. All experiments were conducted on
single NVIDIA TITAN Xp GPU using PyTorch framework. We use
official train/test splits.

4.4 Comparisons with the State-of-the-Arts

In this section, we report our model’s performance and compare
with the state-of-the-art methods on FP-HO. We do not compare
with [9] since it does not provide mean 3D distance for both poses
separately and its PCP curve is for 2D object pose. Note that in this
section and Section 4.5, we use Abs. to denote 3D pose in camera
coordinate system (c.s.) while Rel. represents root-relative 3D pose.
HP, OP, MP denote 3D hand pose, object pose, and MANO pose.
As shown in Table 1, in terms of the hand and object mean 3D
distance error, HOT-Net is superior to the state-of-the-art model
H+O [45], especially for the object pose. For the 3D PCK metric of



Figure 4: Qualitative results for FP-HO [10]. Our model can handle cases with different objects and severe mutual occlusions.
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Figure 5: Comparison of hand pose estimation with
H+0 [45] and Hernando et al. [10] on 3D PCK curve.

hand pose, we compare with H+O as well as another depth-based
methods [10]. As can be seen in Fig. 5, our method outperforms
H+O by a certain margin. and also achieves better performance than
the depth-based model especially in the range of error thresholds
from 15 mm to 60 mm. More importantly, our method directly
operate on input full image without the need of hand bounding
box, in contrast to [10]. In terms of PCP curve in Fig. 6 for object
pose, we compare with H+O and another object pose estimation
technique, SS6D [46]. While our method is slightly better than

—— 556D
—— H#O
—— HOT-Net (AUC=0.595)

0.8

0.6

0 10 20 30 40 50
Pixel thresholds

Figure 6: Comparison of object pose estmation with
SS6D [46] and H+O [45] on PCP curve.

H+O, the object-only estimation approach [46] is inferior to both
H+O and our HOT-Net. This indicates the effectiveness to model
correlations between hand and object for both 3D poses estimation.

We also report our Area Under Curve (AUC) scores for both FP-
HO and HO-3D on the PCK curve for hand pose and the PCP curve
for object pose. Note that the AUC on PCK for HO-3D are measured
in terms of the hand wrist since we do not have the complete hand
pose annotations for the testing dataset. The PCP for HO-3D is
based on 2D projection of object corners. Since HO-3D is a less



Table 3: Ablation study for the effectiveness of different
structured modeling techniques on FP-HO [10].

Framework Abs.HP Rel. HP Abs. OP Rel. MP

H+O[45] 15.81 - 24.89 -
GCN 18.20 12.45 25.13 23.52
ART 20.75 15.26 29.48 27.16

HOT-Net 15.18 10.41 21.37 21.94

Table 4: Ablation study for the effectiveness of modeling cor-
relations between hand and object on FP-HO [10].

Framework Abs. HP Rel. HP Abs. OP Rel. MP

H+O0[45] 15.81 - 24.89 .
Hand-Only 16.84 12.18 - 23.12
Object-Only - - 27.59 -

HOT-Net 15.18 10.41 21.37 21.94

Table 5: Ablation study for the effectiveness of different
structural constraints for hand pose on FP-HO [10].

Framework Abs. HP Rel. HP Abs. OP Rel. MP
H+O[45] 15.81 - 24.89 -
wo Mesh_Rec 15.28 10.76 21.39 -

wo Bone_Len 15.31 10.82 21.51 22.20
wo Bone_Dir 15.30 10.92 21.66 21.95
wo Bone_Loss 15.16 11.05 21.43 22.37

HOT-Net 15.18 10.41 21.37 21.94

constrained dataset with more object categories, it is more difficult
to get better results. Some qualitative results for FP-HO are given
in Fig. 4, which shows our model’s ability to handle different poses,
object categories, and severe occlusions.

4.5 Ablation Study

We use FP-HO to analyze the impacts of several components of
HOT-Net and evaluate the results using the mean 3D distance
error (in mm) metric (Lower is better). We also keep the results of
H+O [45] in each table for analysis.

4.5.1 Effectiveness of Non-Autoregressive Structured Decoding. To
show the effectiveness of proposed non-autoregressive decoding
mechanism, we compare with two other learning frameworks. One
is GCN-based model and the other one is autoregressive frame-
work. For the comparison with GCN, we simply replace the NART
module with another spectral GCN module [5, 9, 28] for direct
3D pose estimation. Similarly, for the autoregressive framework,
we replace the core NART module with a typical ART model [50].
The bone-related constraints and mesh reconstruction are kept for
both models. The results are given in Table 3. We can observe that
both modules are inferior to HOT-Net and do not work well on
both hand and object poses estimation. Spectral GCNs mainly rely
on the edge connections to model correlations among adjacent
nodes, this mechanism is not friendly towards modeling long-range
dependencies. Thus, it might not be able to fully understand the
correlations among hand joints and object corners. Attention can

be a solution since it captures input dependencies without regard
to their distance. As for the ART, it helps verify our point that, the
sequential modeling is not suited towards the joint pose estimation
problem. More importantly, due to the sequential nature of ART
model, it runs much slower compared with the other methods.

4.5.2  Effectiveness of Modeling Correlations among Hand Joints and
Object Corners. We perform this set of ablation study to understand
the impact of modeling dependencies between hand joints and ob-
ject corners. Hand-only and Object-only mean that we only model
3D hand pose or object pose using HOT-Net. According to the re-
sults on Table 4, HOT-Net and H+O both outperform the hand-only
or object-only methods. This demonstrates the significance to use
the help from object for hand pose estimation, and vice versa. It is
worthy noting that the help from hand for object pose estimation
leads to a large improvements based on our object pose results.

4.5.3  Effectiveness of structural Constraints on Hand Pose. To ex-
amine the impact of imposing structural constraints for hand pose,
including bone length loss, bone direction loss, and mesh recon-
struction loss, we conduct 4 sets of experiments as shown in Table 5.
The experiments from top to bottom correspond to HOT-Net with-
out mesh reconstruction, without bone length loss, without bone
direction loss, and without both bone-related losses. The results in
Table 5 suggest that bone-related constraints and cooperative con-
straints can improve the root-relative hand poses but do not have
much effect on the hand poses in camera c.s.. It is also worthy not-
ing that when we remove both bone losses, the relative hand pose
becomes worse while the absolute hand pose actually is slightly
better than our final results reported in the last row. It should not be
hard to understand since the extra constraints mainly focus on the
relative hand pose itself without paying much attention to the root
location and it is also equivalent to asking learning model to put
more efforts in learning the relative representation, which might
lead to worse root location estimation.

5 CONCLUSION

In this paper, we propose to relate the joint 3D hand-object pose
estimation problem with structured output learning mechanism
commonly used in the sequence transduction tasks from NLP field.
Besides modeling dependencies from extracted 2D hand-object
pose, the proposed NART framework imposes structured output
pose patterns into the decoding process to help each 3D keypoint
localization. Moreover, we further optimize the articulated hand
structure via a common physical constraint and a novel coopera-
tive constraint. The latter encourages the hand pose to cooperate
with hand shape information in order to generate full hand mesh.
Our method outperforms the state-of-the-art methods and runs in
real-time speed. The proposed attention-based non-autoregressive
structured learning framework and the cooperative constraint can
be further extended to other structured output prediction tasks, in-
cluding human pose estimation, multi-hands interaction scenarios.
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