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1 DATASET
1.1 Dataset Comparison
Data annotation comparisons between Campus3D and other point
cloud datasets are summarized by Table 1.
Table 1: Annotation Comparison between Campus3D and
other point cloud datasets of real environments.

Dataset Designed Task Hierarchical Instance # Class # Muti-label

ScanNet Object classification No 36,213 20 No
Semantic segmentation
CAD model retrieval

S3DIS Object detection No - 13 No
NYUv2 Semantic segmentation No 35,064 894 No
SemanticKITTI Semantic segmentation No - 25 No

Semantic scene completion 28
Semantic3D Semantic segmentation No - 8 No
Paris-Lille-3D Semantic segmentation No 2,479 9 No

Instance segmentation 50
Campus3D (Ours) Semantic segmentation Yes 2,530 24 Yes

Instance segmentation

1.2 Data Acquisition
The Campus3D dataset was constructed by the technique of Struc-
ture from Motion with Multi-View Stereovision (SfM-MVS) [3].
Here we describe our workflow of getting it. Devices to capture
imagery were DJI Phaton 4 Pro drones equipping cameras with a 1-
inch 2MP CMOS sensors, and the drone flight planning mobile apps
used in our application were DJI GS Pro and Pix4D Capture. The
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SfM-MVS software was Pix4Dmapper. The removal of pedestrians
and cars are done automatically by Pix4Dmapper. The keypoints of
non-static objects with changing relative positions on densely over-
lapped images were discarded by SfM process in the software[3].

To collect the data, drones were flown over all areas and took
images with exact GPS coordinates. And then points would be
generated by photogrammetry processing and registration from
captured images and coordinates. Figure 1 displays our overall
workflow.
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Figure 1: Workflow for point cloud generation.

The first step of workflow is to conduct the aerial survey includ-
ing setting the flight routes and drone flying. We applied two types
of flight routing strategies for the UAV photography: (1) grid and (2)
circular, which were accessible in the drone flight planning mobile
apps. Based on the height variance of objects in the targeted areas,
the flight routing strategy was chosen such that the images were
taken with the required overlap for the SfM software processing.
The grid flight is suitable for most environments where the heights
of buildings do not vary too much. In our image collection process,
the height of the grid flight was set to be 10 meters - 15 meters
above the highest building in the target area. The ground sampling
distance (GSD) was programmed to be around 2cm with the highest
of 1.63cm and the lowest of 3.48cm. Example camera positions from
grid flight for a typical scene are illustrated by Figure 2 (a); the
circular flight routing strategy is usually chosen for relatively high
buildings in image capturing, where the drone flies an ellipse as
shown in Figure 2 (b). This type of route guarantees that the images
are taken from all angles around the center of the building. For
extremely high buildings, we applied multiple circular flights at
different heights. During the UAV image capturing, the drone was
set as speed of 8m/s and flown when the clear view of image was
guaranteed by weather.

After image collection on set flight route, the second step is to de-
rive point clouds from images via SfM-MVS software, Pix4Dmapper.
In this step, images with removal of error or blurry data were fed
into Pix4Dmapper to perform matching based on the SIFT algo-
rithm. From the initial matches, the Automatic Aerial Triangulation
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(AAT) and Bundle Block Adjustment (BBA) were applied to gener-
ate a spare point cloud of feature tie points. Then we added ground
control points correction which were measured with Real-Time
Kinematics (RTK). Finally, multiple grid projections were combined
by the tie points and the point cloud is produced.

In the end, we note that, for side facades and areas under tree
canopy blockage, images are not able to be taken by drones. We
complemented the aerial photogrammetry point cloud via tripod
based terrestrial scanning around each building by FARO x330 scan-
ner. The complementary point clouds were then registrated with
origin data by two software, FARO Scene and Trimble Business Cen-
tre. This step makes sure that current point cloud dataset provides
holistic views of constructions.

(a) Grid (b) Circular
Figure 2: Camera positions for grid and circular flight.

1.3 Coordinate System
There are three coordinate systems for presenting the location of
the point data: (1) the SVY21 plane coordinate system with the
origin of projection at (28001.642 m(E), 38744.572 m(N)) which is
the raw data from GPS. (2) the campus coordinate system locating
the origin point at the corner of the campus with raw coordinate
(20774.967m(E), 30120.558m(W)). Comparing with the first system,
the campus coordinate system provides axis value within a small
scale. This results in memory reduction for processing the coordi-
nates and make it easier to capture the relationship among regions
and merge different regions. Therefore, users can easily change the
size of training and test datasets according to the tasks’ requirement;
(3) local coordinate system of each region: this coordinate system
with origins at the corner of each region can make the training set
and test set independent with each other.

2 EXPERIMENT SETTING AND RESULTS
2.1 Experiment Setting of HL Method
The proposed method is based on PointNet++[1]. Here we present
the parameter settings of it. The SA, FP and FC represent Set Ab-
straction Layer, Feature Propagation Layer and Fully Connected
Layer respectively, the meaning of which are presented in [1].
• Encoder: SA(1024, 0.5, [32,32,64])→ SA(256, 1, [64,64,128])
→ SA(64, 2, [128,128,256])→ SA(16, 4, [256,256,512])
• Decoder: FP(256, 256) → FP(256, 256) → FP(256, 128) →
FP(128, 128, 128)
• Classification head: FC(128, 128) → FC(128, Kℎ), where
Kℎ is number of labels in h𝑡ℎ level.

Moreover, we list the parameter setting of multitask loss. With
definitions in the main paper,
• Prediction loss: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 1
• Consistency loss: 𝛾1 = 𝛾2 = 𝛾3 = 𝛾4 = 𝛾5 = 0.05

Other parameter settings of training:
• LossWeights: To deal with the imbalance label distribution,
we applied 1/log(𝑁𝑐 /𝑁 + 𝑡 ) as weights for each class where
𝑁𝑐 is the points number of 𝑐𝑡ℎ class, 𝑁 is the whole number
of points, 𝑡 is set as 1.2. Optimizer: Adam
• Decay: exponential decay with step 200000 and rate 0.7.
• Epoch: 150, Sample Size: 2048 points,Minibatch Size:16

For consistency loss (CL), we conducted analysis on various weight
𝛾 . Two observations were obtained: 1.As CL becomes more vital, the
consistency rate grows and accuracy drops a lot. 2.Initial CL with
large magnitude makes model only learn hierarchical relationships
but not classification. For the sake of this, we applied a two-stage
training policy for the proposed MT learning:
• 0-40 epoch: training without consistency loss.
• After 40 epoch: training with consistency loss.

2.2 Results of Validation Set for HL Methods
Results of validation set for different HL methods are provided by
Table 3 and Table 2.

Table 2: Validation results (class IoU%) for HL methods

Granularity Method
Level Class MC MC+HE MTnc MT MT+HE

𝐶1 ground 87.3 89.4 89.3 89.3 89.4
construction 64.2 70.2 69.8 70.1 70.0

𝐶2
natural 81.1 82.1 81.7 82.1 82.1
man_made 46.8 48.6 47.3 48.8 48.8
construction 68.6 70.2 68.4 70.0 70.0

𝐶3

natural 81.0 82.1 81.9 82.0 82.1
play_field 2.0 9.5 13.8 22.0 20.7
path&stair 2.9 2.8 3.4 0.0 0.0
driving_road 41.3 44.2 43.4 44.7 44.5
construction 69.1 70.2 69.0 70.0 70.0

𝐶4

natural 81.3 82.1 82.1 82.0 82.1
play_field 14.8 9.5 12.6 20.6 20.7
path&stair 3.7 2.8 3.5 0.0 0.0
vehicle 42.6 45.2 44.0 51.0 51.0
not vehicle 40.8 43.0 42.5 43.0 43.2
building 66.6 69.3 68.7 70.0 70.2
link 0.3 0.4 0.9 0.0 0.1
facility 0.1 0.1 0.0 0.0 0.0

𝐶5

natural 81.7 82.1 82.0 81.9 82.1
play_field 16.0 9.5 15.2 18.6 20.7
sheltered 0.0 0.0 0.0 0.0 0.0
unsheltered 1.4 1.0 1.5 0.0 0.0
bus_stop 0.0 0.0 0.7 0.0 0.0
car 46.4 47.4 47.6 54.4 54.5
bus 5.9 7.6 2.3 0.7 0.7
not vehicle 42.1 43.0 42.4 43.0 43.2
wall 50.6 50.3 50.1 50.3 50.3
roof 52.7 54.1 54.5 55.1 55.0
link 0.7 0.4 0.7 0.1 0.1
artificial_landscape 0.0 0.0 0.0 0.0 0.0
lamp 0.0 0.0 0.0 0.0 0.0
others 0.0 0.1 0.0 0.0 0.0

Table 3: Validation results (OA%) for different HL methods

Method Granularity Level
𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

MC 89.7 83.7 81.5 80.9 78.6
MC+HE 91.5 84.7 82.8 82.1 78.9
MTnc 91.4 84.2 82.5 81.9 78.9
MT 91.5 84.8 83.1 82.7 79.5
MT+HE 91.5 84.8 83.1 82.7 79.6



2.3 Sampling Method
In this section, we present the pseudo-code of two sampling meth-
ods: (1) RC-KNN and (2) 𝑙-𝑤 RBS, in the following Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1: Random Center-KNN (RC-KNN) Sampling.
Global: voxel size 𝑑
Global: # of points per sample 𝑛, # of samples𝑚
Input: points set 𝑆
Output: {𝑆′1, 𝑆′2, . . . , 𝑆′𝑚 }

1: Initialization;
2: 𝑘 = 𝑛

3: if isTraining then
4: for 𝑖 = 1 to𝑚 do
5: 𝑝𝑐 ← RandomSampling(𝑆, 1)
6: 𝑆′

𝑖
← QuerykNN(𝑆, 𝑝𝑐 , 𝑘)

7: else
8: forall 𝑝𝑐 of RandomVoxelSampling(𝑆,𝑑,𝑚) do
9: 𝑆′

𝑖
← QuerykNN(𝑆, 𝑝𝑐 , 𝑘)

Input: point set 𝑆
Output: center points set 𝑆𝑐𝑒𝑛𝑡𝑒𝑟

10: Function RandomVoxelSampling(𝑆,𝑑,𝑚):
11: 𝑆𝑣𝑜𝑥𝑒𝑙 ← VoxelSampling(𝑆,𝑑)
12: 𝑆𝑐𝑒𝑛𝑡𝑒𝑟 ← RandomSampling(𝑆𝑣𝑜𝑥𝑒𝑙 ,𝑚)

Algorithm 2: 𝑙 −𝑤 Random Block Sampling (𝑙-𝑤 RBS).
Global: block size (𝑙, 𝑤) , overlap ratio 𝑟𝑜
Global: # of points per sample 𝑛, # of samples𝑚
Input: points set 𝑆
Output: {𝑆′1, 𝑆′2, . . . , 𝑆′𝑚 }

1: Initialization;
2: if isTraining then
3: for 𝑖 = 1 to𝑚 do
4: 𝑝𝑐 ← RandomSampling(𝑆, 1)
5: 𝑆𝑏𝑙𝑜𝑐𝑘 ← QueryBlock(𝑆, 𝑝𝑐 )
6: 𝑆′

𝑖
← RandomSampling(𝑆𝑏𝑙𝑜𝑐𝑘 , 𝑛)

7: else
8: forall 𝑝𝑐 of TravelsalCenter(𝑆, 𝑟𝑜 ) do
9: 𝑆𝑏𝑙𝑜𝑐𝑘 ← QueryBlock(𝑆, 𝑝𝑐 )
10: 𝑆′

𝑖
← RandomSampling(𝑆𝑏𝑙𝑜𝑐𝑘 , 𝑛)

Input: point set 𝑆 , center point 𝑝𝑐
Output: block points set 𝑆𝑏𝑙𝑜𝑐𝑘

11: Function QueryBlock(𝑆, 𝑝𝑐):
12: 𝑆𝑏𝑙𝑜𝑐𝑘 = ∅
13: (𝑥𝑐1 , 𝑥𝑐2 , 𝑥𝑐3 ) = 𝑝𝑐

14: forall (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) of 𝑆 do
15: if 𝑥𝑖1 ∈ [𝑥𝑐1 −

𝑙
2 , 𝑥

𝑐
1 +

𝑙
2 ] and 𝑥𝑖2 ∈ [𝑥𝑐2 −

𝑤
2 , 𝑥

𝑐
2 +

𝑤
2 ]

then
16: 𝑆𝑏𝑙𝑜𝑐𝑘 ← 𝑆𝑏𝑙𝑜𝑐𝑘 ∪ {(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) }

17: return 𝑆𝑏𝑙𝑜𝑐𝑘

2.4 Sampling Parameters
For RBSmethod, the essential setting is the block size. To investigate
the setting of this parameter, we counted the number of points for
different block sizes and presented the 20/80 percentile of points
number in Figure 3.

Given that the fixed input size of models is 2048, we choose 12m
x 12m as block size since (1) blocks in this size with small points
number and/or sparse points distribution still contain sufficient
points, and (2) blocks in this size with dense points distribution
and/or large points number are not overfull and do not suffer severe
information loss from the sampling.
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Figure 3: Points number per block for different block sizes.

2.5 Evaluation Metric for Benchmark
The benchmark applied two common metrics for evaluation of
the point cloud semantic segmentation task: mean Intersection-of-
Union (mIoU) and Overall Accuracy (OA). Here we provide their
definitions. Let 𝑀 be an 𝑁 × 𝑁 confusion matrix of the chosen
classification method, where each entry𝑚𝑖 𝑗 is a number of samples
from ground-truth class 𝑖 predicted as class 𝑗 . In terms of semantic
segmentation, the definition of OA is eq. (1),

OA =

∑𝑁
𝑖=1𝑚𝑖𝑖∑𝑁

𝑗=1
∑𝑁
𝑘=1𝑚 𝑗𝑘

, (1)

which mainly evaluates accuracy of point-wise predictions. And
mIoU is defined in eq. (2), where IoU𝑖 is the IoU for 𝑖th class.

mIoU =

∑𝑁
𝑖=1 IoU𝑖
𝑁

where IoU𝑖 =
𝑚𝑖𝑖

𝑚𝑖𝑖 +
∑

𝑗≠𝑖𝑚𝑖 𝑗 +
∑
𝑘≠𝑖𝑚𝑘𝑖

(2)

For instance segmentation, we applied coverage (Cov) andweighted
coverage (WCov) introduced into 3D tasks by Wang and Jia [2],
with the definition as eq. (3), where 𝑟 G and 𝑟 O are ground-truth
and predict grouping points respectively.

Cov(G,O) = ∑ |G |
𝑖=1

1
|G | max𝑗 IoU

(
𝑟𝐺
𝑖
, 𝑟𝑂

𝑗

)
wCov(G,O) = ∑ |G |

𝑖=1 𝑤𝑖 max𝑗 IoU
(
𝑟𝐺
𝑖
, 𝑟𝑂

𝑗

)
𝑤𝑖 =

|𝑟𝐺𝑖 |∑
𝑘

��𝑟𝐺
𝑘

��
(3)



3 DATA STATISTICS
3.1 Region Full Name
Here we provide the full name for the six regions in Table 4. Each
region is a complete outdoor scene in the NUS campus.

Table 4: Full Names of Regions.

Name Full Name
FASS Faculty of Arts and Social Sciences
FOE Faculty of Engineering
PGP Prince George’s park Residences
YIH Yusof Ishak House
UCC University Culture Centre
RA Ridge Area

3.2 Instance Distribution
Table 5 displays the instance distribution across regions and classes,
where “vehicle" in the category of “driving_road", “roof " and “wall"in
the category of “building" take the majority of number . We note
that the small number of instances of “others" is defined by the
class label’s definition. And it is hard to identify plants instances
in “natural", because it is connected with each other and covers at
least 30% area at each region (see. Figure 3).

Table 5: Number of instances in each class and region

Labels Area
FASS FOE PGP RA UCC YIH Total

Unclassified N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Ground N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Construction 42 63 64 75 11 37 292
Man-made (ground) 55 25 39 52 22 56 249
Natural 1 1 1 1 1 1 6
Play field 6 2 3 2 0 1 14
Path&stair 46 21 13 47 13 49 189
Driving Road 3 2 23 3 9 6 46
Buidling 33 31 58 47 8 20 197
Link 3 20 6 9 3 11 52
Facility 6 12 0 19 0 6 43
Sheltered (path) 1 6 0 2 3 9 21
Unsheltered (path) 40 12 12 22 8 40 134
Bus stop 5 3 1 23 2 0 34
Vehicle(Driving road) 391 143 107 192 74 107 1014
Without vehicle(Driving road) 3 2 23 3 9 6 46
Car 374 143 103 188 73 107 988
Bus 17 0 4 4 1 0 26
Wall 33 31 58 47 8 20 197
Roof 146 165 229 152 52 140 884
Artificial landscape 2 1 0 0 0 3 6
Lamp 4 10 0 10 0 3 27
others 0 1 0 9 0 0 10

3.3 Leaf Node Class Distribution Among
Regions

For the class of leaf node in the label tree, a pie chart summary of
each region is provided by Figure 4. It demonstrates significant dif-
ferences among regions in terms of class composition. This property
is good for constructing training sets with strong generalization
ability and comprehensive test sets with uniqueness of features.

3.4 Dataset Visualization
In the end, we provide additional visualization for six regions’ scene
covered by the Campus3D in Figure 5.

REFERENCES
[1] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++:

Deep hierarchical feature learning on point sets in a metric space. In Advances in
neural information processing systems. 5099–5108.

[2] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and Jiaya Jia. 2019. Asso-
ciatively segmenting instances and semantics in point clouds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4096–4105.

[3] Matthew J Westoby, James Brasington, Niel F Glasser, Michael J Hambrey, and
Jennifer M Reynolds. 2012. ‘Structure-from-Motion’photogrammetry: A low-cost,
effective tool for geoscience applications. Geomorphology 179 (2012), 300–314.



(a) 1(a): FASS (b) 1(b): Pie chart summary (c) 2(a): FOE (d) 2(b) Pie chart summary
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Figure 4: Visualization and pie chart summary of leaf node label’s distribution in the six regions.
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Figure 5: Visualization of the six regions.
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