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ABSTRACT
Multi-label image classification aims to predict multiple labels for a

single image. However, the difficulties of predicting different labels

may vary dramatically due to semantic variations of the label as

well as the image context. Direct learning of multi-label classifi-

cation models has the risk of being biased and overfitting those

difficult labels, e.g., deep network based classifiers are over-trained

on the difficult labels, therefore, lead to false-positive errors of

those difficult labels during testing. To handle difficult labels of

multi-label image classification, we propose to calibrate the model,

which not only predicts the labels but also estimates the uncer-

tainty of the prediction. With the new calibration branch of the

network, the classification model is trained with the pick-all-labels

normalized loss and optimized pertaining to the number of posi-

tive labels. Moreover, to improve performance on difficult labels,

instead of annotating them, we leverage the calibrated model as the

teacher network and teach the student network about handling dif-

ficult labels via uncertainty distillation. Our proposed uncertainty

distillation teaches the student network which labels are highly

uncertain through prediction distribution distillation, and locates

the image regions that cause such uncertain predictions through

uncertainty attention distillation. Conducting extensive evaluations

on benchmark datasets, we demonstrate that our proposed uncer-

tainty distillation is valuable to handle difficult labels of multi-label

image classification.
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Figure 1: The difficulty levels of labels vary among images
and affect the learning of amulti-label classification network.
In the above two examples from VOC [5], the labels in red
color aremanually labeled as difficult, as provided by [5]. The
bar charts below show the prediction probabilities of multi-
label classification networks during training and testing. A
miscalibrated network has the risk of overfitting the difficult
labels, leading to false-positive labels during testing. For
a well-calibrated network [8], giving a proper confidence
on the difficult “cat” label during training will improve the
performance during testing. In other words, the network
shall not be over-trained on the “cat” instance, which is the
difficult label of the left image, therefore avoiding overfitting
the “cat” label.

1 INTRODUCTION
Multi-label image classification, which aims to predict multiple

labels simultaneously for a single image [13, 15, 20, 43, 44], is the

cornerstone for image annotation [30] and attribute recognition

[1, 10, 21, 38]. In a multi-label classification task, the neural network

model needs to predict all correct labels. However, the ground truth

labels are often correlated and not equally difficult to predict in

different images. In Fig. 1, we observe that the easy label in one

image may be rather difficult in another, due to lighting, view angle,

object deformation, and clutter background, etc.

The mixture of difficult and easy labels in multi-label classifica-

tions brings challenges to reliably predict all the labels in an image.

https://doi.org/10.1145/3474085.3475406
https://doi.org/10.1145/3474085.3475406


First of all, during the learning process, the classifier may tend to

overfit difficult labels because of being over-trained on those diffi-

cult labels. Therefore, the classifier may be biased towards difficult

labels during testing and makes false-positive prediction of those

difficult labels. For example, as demonstrated in Fig. 1, the network

is optimized to give a high confidence to a difficult label “cat” during

training, then may falsely predict “cat” to be positive during testing

even though the cat is absent. Second, the difficulty of predicting

individual labels is often image dependent. As an example, in Fig.

1, “sofa” is an easy label in the left image, but it is difficult in the

right image. One image label could be difficult to predict if the

corresponding object instance is partially visible, small in the scene,

or visually similar to other types of objects. However, the image

annotation does not provide such extra information to specify the

difficulty of the label. Although we may manually assign the degree

of difficulty to each image label, such an annotation is time consum-

ing and potentially biased too. As we shall not rely on hand-crafted
difficulty levels to optimize the classifier, automatic approaches are

preferred to quantify the difficulty of individual labels. Therefore,

we have to resort to the classification model to learn and infer the

label difficulty in individual images.

To address the first challenge of overfitting difficult labels, we

propose to calibrate the network [8] w.r.t difficulty of different

image labels, then avoiding the network output being biased by

difficult labels. Specifically, to calibrate the bias caused by over-

training on difficult labels, we propose to evaluate the difficulty of

the labels by estimating the uncertainty of predicting the labels,

which is achieved by adding a new calibration branch to the typical

sigmoid based multi-label classification network. For deep learning

based multi-label image classification, predicting uncertainty can

also provide a confidence score for each output label, which is also

known as model calibration [8]. As recent empirical and theoretical

results suggested [14, 18, 27], it is common that deep networks are

miscalibrated, especially when the widely used sigmoid activation

function is used for multi-label image classification networks [4, 54].

In our paper, motivated by the recent theoretical results on the loss

functions of multi-label classification [29], we show that the pick-

all-labels normalized loss [29] more effectively calibrates the model,

compared to the conventional binary cross entropy loss. By using

pick-all-labels normalized loss, the output probabilities of all labels

depend on each other, therefore preventing biased predictions and

over-confident on some labels.

The second challenge, lacking proper ground truth of difficult

labels, is addressed by leveraging the calibrated outputs as pseudo-

supervision via the teacher-student knowledge transfermethod [12]

through uncertainty distillation. In other words, we use a calibrated

network as the teacher network, and then a new student network

will learn from the calibrated teacher network. By the teacher-

student model, label prediction uncertainty is learnt via knowledge

transfer from the teacher to the student network, thus relieving the

manually labeling burden. Recall that for the teacher network, a new

calibration branch is added, so the network now has two branches:

the original classification branch and the newly added calibration

branch. Note that the calibration branch is only used for training,

therefore no extra computational cost is introduced for inference.

For uncertainty attention distillation, we first backpropagate the

divergence between the classification branch and the calibration

branch, then an attention map is generated. The attention map is

further used to acquire an effective and robust student network. To

sum up, our contributions are as follows:

• Following theoretical analysis, we design a new model cali-

bration branch for modeling the uncertainty of predicting

labels. With the proposed calibration branch, the deep mod-

els are less likely to be biased by the difficult labels and avoid

some false multi-label predictions in testing.

• We propose to distill the prediction distribution of uncer-

tainty from one trained teacher network to another student

network. The employed teacher-student model enables us

to train a student network without the need for manually

annotating difficult labels.

• We propose the uncertainty attention distillation to further

teach the student network to capture image regions that

lead to uncertainty predictions. The uncertainty attention

distillation improves the performance of the student network

and enhances the interpretability of the student network.

2 RELATEDWORK
Multi-label image classification. One important issue of multi-

label image classification is how to leverage label dependencies.

With the label context, the models are able to deal with those diffi-

cult instances. When using convolutional neural networks (CNNs)

for multi-label image classification, a straightforward way is to mod-

ify the final output to a binary classifier, i.e., sigmoid activations.

Despite its good performance compared to non-deep learning mod-

els, such a straightforward baseline is unable to take into account

the dependencies among the labels. In [7], Gong et al. employed ap-

proximate top-𝑘 ranking objectives to fit the multi-label evaluation

criterion. Wang et al. [40] mapped the original label space into an

embedding space through recurrent neural networks (RNNs). Addi-

tionally, in [42, 54], an attention based representation was utilized.

Zhu et al. [54] designed a network module named Spatial Regular-

ization Net to help capture the underlying relations between labels.

Similarly, Wang et al. [42] used long short-term memory (LSTM)

units to iteratively locate the attentional regions to semantic labels.

Also, in [9], they enforced the attention consistency under image

transforms to capture the intrinsic dependencies. In a recent paper

[51], graph convolutional networks were used to directly model the

interaction between labels. Another recent work [24] attempted

to boost the performance on object categories with difficult labels.

They considered the difficulty of labels from the perspective of

the label space rather than for each image, which is different from

our method. In [49], the authors proposed a regional latent seman-

tic dependencies based model to predict small objects and visual

concepts. Unlike the above works, our work strives to avoid the

network exaggerating the gap between easy and difficult labels.

Uncertainty and model calibration. Guo et al. [8] systematically

analyzed miscalibrated deep networks and discussed some post-

processing based model calibration methods. They found that tem-

perature scaling is specifically effective, which was done by using

a temperature estimated on the validation set to rescale the log-

its. Kuleshov et al. [16] studied model calibration in the context

of regression problems. In [17], inspired by the binary calibration

in a pairwise or one-vs-rest fashion used on non-neural models,



Figure 2: Our proposed uncertainty distillation consists of two parts: prediction distribution distillation and uncertainty
attention distillation. With prediction distribution distillation, the student network learns the soft-label from the teacher
network for both classification branch and calibration branch. For uncertainty attention distillation, the student learns where
the uncertain image region is from the teacher. The input image is from VOC [5] and the label “dog” is manually labeled as
difficult by [5]. The attention induced by the divergence between two branches is the uncertainty attention.

the authors proposed Dirichlet calibration for neural networks. In

addition, probabilistic neural networks were adopted to calibrate

deep networks. Lakshminarayanan et al. [18] proposed a calibration

method based on the ensembles of several networks. Maddox et al.

[27] designed the Stochastic Weight Averaging Gaussian method,

in which a posterior distribution over neural network weights was

estimated. In [36], the authors studied the calibration results by

different methods at scale. Note that the motivation of our method

is to avoid being biased and overfitting those difficult labels, while

methods like Focal Loss [22] that focuses on learning with imbal-

anced data have the opposite target as ours. Therefore techniques

for imbalanced data are not included for comparison in our paper.

Knowledge Distillation. Distillation focuses on how to transfer

valuable knowledge encoded in a large network to a small net-

work [12, 37, 53]. The knowledge distillation method proposed in

the seminal work [12] plays a fundamental role in this field due

to its robust performance. Later, a large number of works were

proposed to exploit the information in the intermediate layers. In

[32], Romero et al. proposed FitNet to enforce the intermediate

feature maps of the student net to be close to the teacher net. They

call the idea of matching the feature maps as hint learning. For

the practical training strategies in FitNet, the student net was first

trained with the loss from the 𝑙2 loss and then with the Knowl-

edge Distillation (KD) loss [12] in the following epochs. Following

the idea in hint learning, Zagoruyko et al. [48] proposed to match

the attention maps between the student net and the teacher net.

Also, in [39], the authors studied the equivalence between adding

noise on inputs and matching the Jacobian of the two nets. Among

the above representative works, their proposed loss functions are

combined with the KD algorithm. In [25], the authors studied how

to apply knowledge distillation in multi-label classification with

weakly-supervised detection. In [3], the authors used both distribu-

tion distillation and attention distillation for incremental learning.

In [41], the authors keep the model fixed and instead attempt to

distill the knowledge from a large training dataset into a small one.

3 PRELIMINARIES
Before introducing our method, we first briefly define the multi-

label problem and model calibration which is to be used to avoid

overfitting difficult labels.

3.1 Multi-label classification
For multi-label classification, an input x, which is drawn from the in-

put spaceX, will be associatedwith a set of labels. Assume that there

are 𝐶 classes, then the label for x will be a vector y = (𝑦1, · · · , 𝑦𝐶 )
from the label space Y = {0, 1}𝐶 . 𝑦𝑖 = 1 means 𝑖th label is associ-

ated with x. The multi-label image classification network is a scorer

𝑓 : X → [0, 1]𝐶 , which predicts a confidence score from [0, 1] for
each label. Next, the multi-label scorer is evaluated by precision

and recall metrics [19].

3.2 Model calibration
In our work, we propose to avoid overfitting the difficult labels

by calibrating the network. Intuitively, if we regard a model as

well-calibrated, the model should present a proper confidence for

each prediction. Formally, the perfect calibration [8] is defined as

P(𝑦𝑖 = 1|𝑓𝑖 = 𝑝) = 𝑝,∀𝑝 ∈ [0, 1], (1)

where 𝑓𝑖 means the predicted confidence for the 𝑖th label. Intuitively,

the left side of Eq. (1) can be approximated by the accuracy of the

model, while the right side can be viewed as the corresponding

confidence. The performance on the difficult labels are worse than

those easier ones, so the model should not always give a high



confidence to the prediction, otherwise the model is miscalibrated.

Finally, the degree of being calibrated is evaluated by Expected

Calibration Error (ECE) [8, 16], defined as

ECE(𝑓 ) = E
𝑖

[
E
𝑓𝑖

[��P(𝑦𝑖 = 1|𝑓𝑖 ) − 𝑓𝑖
��] ] . (2)

4 PROPOSED METHOD
Before introducing our method in details, we first show how some

well-established theories are connected with the difficult label set-

tings.

4.1 Pick-all-labels normalized loss and its
property

While there are many loss functions proposed for multi-label classi-

fication tasks, they are not designed to avoid overfitting the difficult

labels. Our goal is to find a loss function capable of calibrating the

network along with the classification. In [29], the authors discussed

the commonly used loss functions and their corresponding theo-

retical properties. In the context of multi-label image classification,

the most widely used loss is the one-versus-all (OVA) loss, which

trains 𝐶 independent binary classifier and defined as

ℓOVA = −
∑︁

𝑖∈[𝐶 ]
𝑦𝑖 log 𝑓𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑓𝑖 ), (3)

where [𝐶] = {1, 2, · · · ,𝐶}, indicating all the possible labels. Besides
the OVA loss, the loss we find to be better for calibration is the

pick-all-labels normalised (PAL-N) loss,

ℓPAL−N = −
∑︁

𝑖∈[𝐶 ]

𝑦𝑖∑
𝑗 ∈[𝐶 ] 𝑦 𝑗

log 𝑓𝑖 . (4)

For the PAL-N loss, the basic idea is to pick one positive label out

each time, then solve a single-label classification task for this posi-

tive label [31]. Although OVA and PAL-N have similar expressions,

they are theoretically different, as shown in the proposition below,

Proposition 1 (Proposition 5 [29]). Given a scorer 𝑓 : X →
[0, 1]𝐶 , the multilabel risks for OVA and PAL-N loss are:

𝑅OVA (𝑓 ) =
∑︁

𝑖∈[𝐶 ]
E

(𝑥,𝑦𝑖 )
[ℓBC (𝑦𝑖 , 𝑓𝑖 (𝑥))] (5)

𝑅PAL−N (𝑓 ) = E
(𝑥,𝑧′)

[ℓMC (𝑧′, 𝑓 (𝑥))], (6)

where a discrete random variable 𝑧′ over [𝐶] is defined as

P(𝑧′ = 𝑖 |𝑥) = P(𝑦𝑖 = 1|𝑥) · E
𝑦¬𝑖 |𝑥,𝑦𝑖=1

[
1

1 +∑
𝑗≠𝑖 𝑦 𝑗

]
, (7)

where 𝑦¬𝑖 denotes the vector of all but the 𝑖th label, i.e.,
(𝑦1, . . . , 𝑦𝑖−1, 𝑦𝑖+1, . . . , 𝑦𝐿).

The proposition shows that the OVA loss is for the marginal

label probabilities, while PAL-N is for the transformed probabilities

that take the number of labels into account. Note that our goal is

to calibrate the network to avoid overfitting the difficult labels. In

[29], PAL-N loss is shown to be consistent with recall, we will later

demonstrate that such transformed probabilities are beneficial for

calibrating a multi-label classification network.

The key intuition is that the difficulty of figuring out all the labels

is related to the number of labels, since more labels indicating a

larger chance of including difficult ones. For example, if the labels

are the objects in an image, then many objects indicate possible

small scale or partial occlusion, which is generally challenging to

discern their differences. Formally, this assumption can be stated

as below.

Assumption 1. For two images and their labels (x1, y1), (x2, y2),
if one image contains more labels than the other,

∑
𝑖∈[𝐶 ] 𝑦1,𝑖 ⩾∑

𝑖∈[𝐶 ] 𝑦2,𝑖 , then for a model 𝑓 , ∀𝑖 ∈ [𝐶] we have

P
(
E
[
𝑦1,𝑖 = 1|𝑓𝑖 (x1)

]
⩽ E

[
𝑦2,𝑖 = 1|𝑓𝑖 (x2)

] )
⩾ 0.5. (8)

From above Eq. (8), we actually assume it is more likely that

the performance on the image with more labels is worse than the

one with less labels. Now we are going to show how 𝑅PAL−N (𝑓 ) is
related to ECE(𝑓 ) based on this assumption. Let the loss in Eq. (6)

be the ℓ1 loss [29], that is

𝑅PAL−N (𝑓 ) = E
(𝑥,𝑧′)

[ℓMC (𝑧′, 𝑓 (𝑥))]

= E
(𝑥,𝑦𝑖 )

[����𝑓𝑖 (𝑥) − P(𝑦𝑖 = 1|𝑥) · E
𝑦¬𝑖 |𝑥,𝑦𝑖=1

[
1

1 +∑
𝑗≠𝑖 𝑦 𝑗

] ����] . (9)

Observing that E𝑦¬𝑖 |𝑥,𝑦𝑖=1
[

1

1+∑𝑗≠𝑖 𝑦 𝑗

]
is smaller if more labels are

associated with the image sample 𝑥 , we expect 𝑓𝑖 (𝑥) can be also

smaller such that 𝑅PAL−N (𝑓 ) is further minimized. Meanwhile, ac-

cording to our previous assumption 1, if more labels are associated

with 𝑥 , the term E𝑓𝑖 [𝑦𝑖 = 1|𝑓𝑖 ] in Eq. 8 will be smaller. Then, by

ECE we can see that a smaller ECE in Eq. 2 indicates a smaller 𝑓𝑖
value. Since Eq. 8 and Eq. 2 have similar regularization of 𝑓𝑖 when

the label number increases, a smaller 𝑅PAL−N (𝑓 ) can help better

calibrate the model, i.e., reaching a smaller ECE value. In the fol-

lowing section, we will present how to optimize the PAL-N loss in

a multi-label classification network.

4.2 Calibration branch
As discussed before, the PAL-N loss is beneficial for calibrating the

model. Now we introduce the details of implementing ℓPAL−N on a

deep image multi-label classification network using the proposed

calibration branch. The ℓPAL−N is calculated with the probability

outputs, which is calculated by partial softmax in our method.

4.2.1 Partial softmax. Different from the sigmoid based outputs,

which computes the probability in one-versus-self manner, we im-

plement the computation as one-versus-negative manner. Specifi-

cally, we select a positive label and combine it with all other negative

labels, then apply the standard softmax and cross-entropy loss. We

name the process as partial softmax, since each time the output

logits are partially involved into the computation of probabilities.

Formally, assume that a sample will be assigned with a set of

positive labels 𝐶𝑝 and a set of negative labels 𝐶𝑛 , where |𝐶 | =
|𝐶𝑝 | + |𝐶𝑛 |. The partial softmax is computed as

𝑓𝑖 (𝑥) = P
(
𝑌𝑖 = 1|𝑥,𝑌𝑗 = 0 (∀𝑗 ∈ 𝐶𝑛)

)
=

𝑒𝑧𝑖∑
𝑗 ∈𝐶𝑛

𝑒𝑧 𝑗 + 𝑒𝑧𝑖
.

(10)

Finally, the loss for a sample is computed with the cross entropy

by averaging through all positive labels. The loss can be formally



expressed as

𝐿ps = ℓPAL−N = − 1

|𝐶𝑝 |
∑︁
𝑖∈𝐶𝑝

log 𝑓𝑖 . (11)

The final training loss is the summation of cross entropy loss from

all training samples in a batch.

4.2.2 Network architecture. The partial softmax needs image la-

bels as an input, therefore we only use it during training and the

outputs from classification branch are used for inference. During

training, we add an auxiliary branch for calibration and name it as

the calibration branch. When training with the two branches, the

losses computed on the two branches are added up with a balancing

parameter 𝜆, i.e.,

𝐿 = 𝐿
b
+ 𝜆𝐿ps, (12)

where 𝐿
b
is the binary cross entropy loss. Note that in the auxiliary

branch, we insert an embedding feature, which is computed by

FC→BN→ReLU.

4.3 Uncertainty Distillation
The uncertainty output can be further used for guiding other net-

works. Our uncertainty distillation is composed of two parts: predic-

tion distribution distillation and uncertainty attention distillation.

Inspired by the knowledge distillation, we push the distribution

of uncertainty of the student move towards that of the teacher via

minimizing the Kullback–Leibler divergence. For the uncertainty

attention distillation, we aim to pass the knowledge of localiza-

tion of uncertainty to the student further. The overall workflow

is demonstrated in Fig. 2. Intuitively, prediction distribution distil-

lation tells the student what the uncertainty is, while uncertainty

attention distillation tells the student the attribution of uncertainty

in corresponding image regions.

4.3.1 Prediction Distribution Distillation. To apply the knowledge

distillation onto multi-label classifiers, we use the outputs from

both of the two branches to guide the student. Specifically, for the

sigmoid based branch, each sigmoid is treated as a classifier and then

we apply knowledge distillation on each classifier. Mathematically,

denote the sigmoid outputs of the teacher network and the student

network by 𝑇𝑜
and 𝑆𝑜 respectively, then the binary cross entropy

loss is changed into

𝐿′
b
(𝑥) = 1

|𝐶 |
∑︁
𝑖∈𝐶

KL(𝑇𝑜
𝑖 (𝑥) ∥ 𝑆𝑜𝑖 (𝑥)), (13)

where KL is the Kullback–Leibler divergence. For the calibration

branch output, we directly apply KL on the softmax of all the output

logits. That is, on the partial softmax branch, if we denote the

softmax output from the teacher and the student as 𝑇𝑎
and 𝑆𝑎 ,

respectively, then the distillation loss is

𝐿′
ps
(𝑥) = KL(𝑇𝑎 (𝑥) ∥ 𝑆𝑎 (𝑥)) . (14)

After teaching the student with the distribution of uncertainty, we

can further consolidate the uncertainty knowledge by teaching

which image regions causes such a uncertainty by the following

uncertainty attention distillation.

Table 1: Baseline results on VOC2007 with ResNet-101.

Methods CutOut Cos Decay mAP Best Worst

ML-GCN [9] 94.0 - -

Baseline

93.30 ±0.06 93.41 93.22

✓ 93.56 ±0.11 93.74 93.38

✓ 93.65 ±0.06 93.76 93.56

✓ ✓ 93.75 ±0.08 93.86 93.60
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Figure 3: Statistics of the confidence output with and with-
out the calibration branch. The gap between the accuracy
and confidence becomes smaller after using the calibration
branch.

4.3.2 Uncertainty Attention Distillation. There are two branches
in our designed network for different purposes. The classification

branch cares about the binary classification accuracy, while the

calibration branch cares about the calibrated prediction. Therefore,

the difference between the two branches reflects which label the

network is uncertain about. By visualizing the divergence between

the two predicted distributions, the uncertain image region can be

inferred unsupervisely. Here, we use GradCAM [34] to draw the

uncertainty attention map due to its stable visualizing performance.

Specifically, we backpropagate the KL divergence of the distri-

butions from the two branches to the intermediate feature maps

before pooling, denoted as Z ∈ R𝐶×𝐻×𝑊
, then let

w𝑐 =
∑︁
ℎ,𝑤

𝜕KL(𝑇𝑎 (𝑥) ∥ 𝑇𝑜
𝑖
(𝑥))

𝜕Z𝑐ℎ𝑤
. (15)

For obtaining the uncertainty attention, we sum the feature map Z
by the channels 𝐶 with weight w, i.e.,

Attention = Aℎ𝑤 =
∑︁
𝑐

w𝑐 · Z𝑐ℎ𝑤 . (16)

Next, we let the student learn from the teacher’s uncertainty atten-

tion by minimize the 𝑙2 loss

𝐿a𝑡𝑡 = ∥A𝑇 − A𝑆 ∥, (17)

where the subscript𝑇, 𝑆 means the attention map from teacher and

student, respectively. Combining all the above losses together, the

final loss for a student network becomes

𝐿 = 𝐿′
b
+ 𝛼𝐿′

ps
+ 𝛽𝐿a𝑡𝑡 , (18)

where we set 𝛼 = 𝛽 = 0.5 empirically.



Table 2: Supervised training with hard encoding (0-1 encoding) ground truth labels. Cal denotes using the calibration branch
or not. We construct a subset of the validation set by including the images that have at least one difficult label. The Difficult
column means the mAP on the difficult subset.

(a) VOC2007

Backbone Cal? mAP Difficult

FeV+LV [47] - 90.6 -

RLSD [49] - 91.5 -

RLSD+ft-RPN [49] - 93.3 -

ML-GCN (Res101) [51] - 94.0 -

ResNet-101 [11]

✗ 93.75 88.22

✓ 94.11 89.01

VGG-19-BN [35]

✗ 91.29 86.13

✓ 91.87 86.77

MobileNet-v2 [33]

✗ 90.00 85.49

✓ 90.37 85.71

ResNet-18 [11]

✗ 88.91 83.77

✓ 89.50 84.72

(b) COCO

Backbone Cal?
All Top 3

mAP CF1 OF1 CF1 OF1

SRN [54] - 77.1 71.2 75.8 67.4 72.9

ME [6] - - 74.9 78.4 70.6 74.7

ML-GCN (Res101) [51] - 83.0 78.0 80.3 74.6 76.7

ResNet-101 [11]

✗ 82.41 80.09 77.3 76.48 73.83

✓ 82.84 80.78 77.45 76.89 73.85

VGG-19-BN [35]

✗ 76.25 75.48 71.00 72.35 67.88

✓ 77.79 76.51 71.72 73.29 68.38

MobileNet-v2 [33]

✗ 75.99 74.84 70.12 71.92 67.14

✓ 77.22 75.90 71.32 72.69 68.11

ResNet-18 [11]

✗ 74.31 73.86 68.78 71.01 65.87

✓ 75.48 74.88 69.77 71.87 66.78

5 EXPERIMENTS
We verify our proposed uncertainty distillation on two popular

benchmark datasets:

• PASCAL Visual Object Classes Challenge (VOC2007 [5]) is a

widely-used dataset for multi-label recognition. It contains

9,963 images and each image is labeled with 20 object cat-

egories. Following the settings in [9, 42], the trainval set is

used for training and the test set is used for evaluation.

• MS-COCO [23] is originally proposed for object recognition

tasks. It contains 82,783 training images and 40,504 validation

images, and each image is labeled with 80 object categories.

We adopt the label-based metrics to evaluate the performance of the

models, that is, mean Average Precision (mAP), average per-class

precision (CP), recall (CR), F1 (CF1), average overall precision (OP),

recall (OR) and F1 (OF1).

5.1 Implementation details
Our implementation

1
is based on the released code of [9], so we

follow their experimental settings, such as the same input image

size 448 × 448. Note that all of pre-trained models are from the

official torchvision library in our experiments. Moreover, we im-

prove the training settings [9] in terms of data augmentation and

learning rate decay policy. First, we employ random erasing [52],

which is also known as CutOut [2], to help the network capture

the context information. Second, we use the cosine learning rate

decay strategy [26] and change the epochs on VOC2007 to 20. For

COCO, the training epochs are doubled, i.e., set to 40. With these

two modifications, we obtain a strong baseline that is comparable

to recent methods. In Tab. 1, we show the improvements of the

two training tricks. We can see that our best model in the repeated

experiments reaches 93.86%, making our simple baseline network

competitive to recent methods.

1
Available at https://github.com/LcDog/ud

5.2 Supervised training with ℓPAL−N
To validate the effectiveness of the calibration, we show the sta-

tistics of confidence for the models with and without calibration

branch in Fig. 3. We can see that the gap between accuracy and

confidence becomes smaller if the calibration branch is used.

Next, we show the results when training with the calibration

branch. For the choice of the balancing parameter, we set 𝜆 = 0.1

via grid search. We present the results with 3 popular backbone

networks, including ResNet-101 and ResNet-18 [11], VGG-19 with

BN layer [35] and MobileNet-v2 [33]. Quantitative comparisons

are presented in Tab. 2. We observe the following facts from the

table: First, adding the calibration branch is beneficial for not only

large models, but also lightweight models; Second, the variance

tends to be a little larger (except MobileNet-v2) with the auxiliary

partial softmax branch; Third, comparing the performance gain

on VOC2007 and COCO, the improvement on the COCO dataset

is more significant. Also, in Tab. 2, we extract images that have at

least one manually labeled difficult label from the validation set to

form a Difficult subset. The improvement on this subset is larger

than on the whole validation set, verifying that our method can

help handle the difficulty of labels.

5.3 Uncertainty distillation
Previous results show that the calibration branch is helpful for

supervised training with hard encoding labels. In this part, we show

that distilling the uncertainty can further boost the performance.

5.3.1 Teacher-student distillation. Tab. 3, we conduct experiments

on distillation from a large teacher network to a lightweight student

network. Among the different teacher-student pair settings, we can

observe the validity of uncertainty distillation. Moreover, some

observations: a) The improvement of performance with uncertainty

distillation is remarkable. For example, for ResNet-18 with ResNet-

101 as the teacher, the mAP increases about 1.6 percent on COCO.

b) The improvement on COCO is larger than on VOC. Perhaps due

to the larger scale of the COCO dataset and thus more suitable



Table 3: Comparisons between our uncertainty distillation with other methods. Baseline means directly training using our
training hyperparameters. Ours - KD means only applying the knowledge distillation [12] on the classification branch. Ours -
UD means applying proposed uncertainty distillation.

(a) VOC2007

Backbone Method Teacher mAP CP CR CF1 OP OR OF1

ResNet-18

Baseline - 90.48 82.48 83.77 83.12 84.36 86.24 85.29

ML-GCN [51] - 90.64 79.08 88.59 83.56 80.73 85.29 82.95

Ours - KD VGG-19-BN 90.99 82.44 85.63 84.01 82.55 87.92 85.15

Ours - UD VGG-19-BN 91.24 83.94 84.62 84.28 85.86 87.12 86.49

Ours - KD ResNet-101 91.41 85.56 87.44 86.49 83.64 85.37 84.49

Ours - UD ResNet-101 91.67 85.39 87.95 86.65 83.90 85.71 84.79

MobileNet-v2

Baseline - 90.89 81.77 84.38 83.05 82.13 86.91 84.45

ML-GCN [51] - 91.10 82.56 84.57 83.55 84.78 87.12 85.94

Ours - KD VGG-19-BN 91.46 83.08 85.51 84.28 84.64 87.91 86.24

Ours - UD VGG-19-BN 91.78 83.69 85.47 84.57 85.09 87.79 86.42

Ours - KD ResNet-101 92.01 85.87 88.07 86.95 83.85 86.10 84.96

Ours - UD ResNet-101 92.22 85.40 88.50 86.92 83.82 86.50 85.14

(b) COCO

Backbone Method Teacher
All Top 3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ResNet-18

Baseline - 75.60 81.10 61.92 70.22 84.29 67.25 74.81 84.07 55.78 67.06 88.67 60.35 71.82

ML-GCN [51] - 75.64 85.12 66.50 74.66 80.92 61.24 69.72 89.12 60.08 71.78 84.30 55.45 66.89

Ours - KD VGG-19-BN 75.90 81.61 62.58 70.84 84.00 67.90 75.10 84.10 56.01 67.24 88.72 60.62 72.03

Ours - UD VGG-19-BN 76.12 81.75 62.80 71.04 83.98 68.26 75.31 84.20 56.31 67.49 88.60 61.03 72.28

Ours - KD ResNet-101 76.05 81.24 62.33 70.54 84.51 67.66 75.15 84.42 55.95 67.29 88.94 60.60 72.08

Ours - UD ResNet-101 77.19 87.23 66.46 75.44 84.33 60.75 70.62 91.51 59.71 72.26 87.68 54.79 67.44

MobileNet-v2

Baseline - 77.33 83.22 62.50 71.39 86.55 67.41 75.79 86.58 56.66 68.49 90.62 60.72 72.72

ML-GCN [51] - 77.50 83.65 62.14 71.30 86.88 67.07 75.70 86.94 56.33 68.37 90.86 60.52 72.65

Ours - KD VGG-19-BN 77.67 83.72 62.78 71.76 86.73 67.77 76.09 86.95 56.83 68.74 90.75 60.94 72.92

Ours - UD VGG-19-BN 77.92 84.08 62.85 71.93 87.47 67.48 76.19 87.25 57.03 68.98 91.29 60.85 73.03

Ours - KD ResNet-101 77.77 78.07 64.23 70.48 81.14 73.55 77.16 79.32 63.86 70.76 82.39 73.26 77.56

Ours - UD ResNet-101 78.12 87.20 68.00 76.41 83.85 63.38 72.20 91.16 61.18 73.22 87.06 57.39 69.18

for distillation. c) By comparing the teacher-student settings, it

is straightforward that that a better teacher will lead to a better

student.

5.3.2 Self distillation. Another hot topic in recent progress on

distillation is self distillation [45, 46, 50]. Instead of using an already

trained network, self distillation relieves the burden of obtaining

a teacher net, by using the target network itself as the teacher. In

this part, we test a simple yet useful baseline method in [46] to

verify the value of uncertainty distillation. Specifically, following

the ideas in [46], we use cosine annealing learning rate and set the

training epochs to be 80 with one restart. That is, we first train

the network for 40 epochs with hard encoding labels and when

finished training for 40 epochs the previous best network is used

as the teacher network in distillation.

In Tab. 4, we report our self distillation results on VOC2007.

Again, our uncertainty distillation clearly helps networks find better

local minima, under various backbone settings. After employing

self distillation, the mAPs with both ResNet-18 and MobileNet-v2

increase 0.6 %, but with ResNet-101 the improvement becomes

Table 4: Self distillation results on VOC2007.

Backbone UD? mAP (%)

ResNet-101

✗ 93.78 ±0.07
✓ 94.27 ±0.13

ResNet-18

✗ 89.15 ±0.14
✓ 90.81 ±0.13

MobileNet-v2

✗ 90.10 ±0.10
✓ 91.34 ±0.10

less prominent. It shows that for large networks, distillation is

not as powerful as those shallower backbones. Note that in our

results, when using ResNet-101 as the backbone, the results with

uncertainty distillation outperform current state-of-the-art results

[51], validating the potential of our work as it is easy to be combined

with other methods.

5.3.3 Visualization of uncertainty attention. To validate the effec-
tiveness of our uncertainty distillation, we demonstrate the change



Figure 4: Visualizations of the improvements by uncertainty distillation.We demonstrate the uncertainty attention of a network
before our uncertainty distillation and after our uncertainty distillation. “Before UD Student” means the results of not using
our uncertainty distillation, while “After UD Student” means using uncertainty distillation.

of uncertainty attention with and without the proposed uncer-

tainty distillation in Fig. 4. We use the self-distilled ResNet-101 on

VOC2007 as the teacher network and a ResNet-101 directly trained

on VOC2007 as the student. We draw the uncertainty attention

before our uncertainty distillation and after our uncertainty distil-

lation. The interpretability of the student network is enhanced and

uncertainty attention regions better meet our expectations, which

validates the effectiveness of our proposed uncertainty distillation.

5.3.4 Ablation studies of uncertainty distillation. To further ver-

ify the performance of uncertainty distillation, we select several

representative baseline methods for comparing the performance

gain brought by different components. The first baseline method is

another form of softmax in [28]. Although they originally used it

in the scenario of large scale semi-supervised training on a multi-

label task, it is reasonably able to enhance the entanglement among

labels. Specifically, if a sample is associated with 𝑘 labels, they turn

each positive label to 1/𝑘 , which is originally labeled with 1.

Next, we choose two baseline methods: (1) using temperature

based softmax and (2) using label smoothing trick. Since the loss

changes significantly when setting temperature 𝑇 as 3 for distilla-

tion, we conduct experiments with solely temperature based soft-

max to study the impact of the temperature. Moreover, label smooth-

ing can also help the network avoid overfitting, bymanually turning

the hard labels to soft labels. Since the original label smoothing trick

is designed for single-label classification where softmax is used,

we adapt the label smoothing trick for sigmoid based classifiers.

Specifically, we set the target positive and negative output logits as

9 and -9 respectively. That is, the probabilities are set as (1+ 𝑒±9)−1
and then minimizing the KL divergence between outputs and the

soft targets.

In Tab. 5, we present the results of three baseline methods on

VOC2007. From the table, we can observe an interesting point that

simply using the softmax with temperature will lead to a consid-

erable performance gain. However, we do not observe a similar

improvement when using ResNet-101. Such difference suggests

that in the context of multi-label tasks, adding temperature to soft-

max (or sigmoid) will worth a try when using a relatively small

Table 5: Comparisons with baseline methods. Results on
VOC2007 and with ResNet-18 as backbone are presented.

Method mAP (%)

Trained with hard label 88.91 ±0.10

Softmax with temperature 90.27 ±0.24
Label smoothing 90.48 ±0.12
1

𝑘
Softmax [28] 91.37 ±0.09

Distillation from ResNet-101

w/o uncertainty attention distillation 91.46 ±0.05
w/ uncertainty attention distillation 91.67 ±0.09

backbone. Another point worth noting is the performance of the

label-smoothing trick. With label-smoothing, the result further

reaches 90.8, proving the practical value of soft labels.

6 CONCLUSION
In this paper, we propose to use PAL-N loss for calibrating a multi-

label image classification network, so that it can better handle

difficult labels. Specifically, we introduce a calibration brach after

the pooling layer and the probabilities are computed with partial

softmax. The network trained with the calibration branch general-

izes better than the baseline network for multi-label classification

with different difficulty levels. Moreover, the uncertainty predicted

by the calibration branch can be used for guiding other networks,

which is called uncertainty distillation in our paper. Finally, ex-

periments with several popular backbones show that uncertainty

distillation can effectively help a multi-label image classification

network handle difficult labels.
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