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ABSTRACT
Given a set of multiple view videos, which records the motion
trajectory of an object, we propose to find out the objects’ kine-
matic formulas with neural rendering techniques. For example, if
the input multiple view videos record the free fall motion of an
object with different initial speed 𝑣 , the network aims to learn its
kinematics: Δ = 𝑣𝑡 − 1

2𝑔𝑡
2, where Δ, 𝑔 and 𝑡 are displacement, grav-

itational acceleration and time. To achieve this goal, we design a
novel framework consisting of a motion network and a differen-
tiable renderer. For the differentiable renderer, we employ Neural
Radiance Field (NeRF) since the geometry is implicitly modeled
by querying coordinates in the space. The motion network is com-
posed of a series of blending functions and linear weights, enabling
us to analytically derive the kinematic formulas after training. The
proposed framework is trained end to end and only requires knowl-
edge of cameras’ intrinsic and extrinsic parameters. To validate the
proposed framework, we design three experiments to demonstrate
its effectiveness and extensibility. The first experiment is the video
of free fall and the framework can be easily combined with the
principle of parsimony, resulting in the correct free fall kinematics.
The second experiment is on the large angle pendulum which does
not have analytical kinematics. We use the differential equation con-
trolling pendulum dynamics as a physical prior in the framework
and demonstrate that the convergence speed becomes much faster.
Finally, we study the explosion animation and demonstrate that
our framework can well handle such black-box-generated motions.
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Figure 1: Illustration of the problem studied in the paper.
When the training is finished, the kinematic formulas can
directly derived from the motion network.
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1 INTRODUCTION
In 1971, along with the third crewed mission to land on the Moon,
a video1 is recorded to demonstrate free fall: Astronaut David Scott
released a hammer and a feather simultaneously. After watching
the video, we humans are convinced by Galileo’s discovery that
free falling objects fall with the same acceleration. As artificial in-
telligence has advanced greatly in recent years, a question naturally
arises: Can machines get wise to the fact from their observations
as well?

Learning or inferring physical status from vision data has been
widely studied over the past decades, such as fluid simulation and
capture [4], Particle Imaging Velocimetry [1, 10] and Particle Track-
ing Velocimetry [13, 26]. Previous works are mainly concerned with
complex physical phenomenons with a lot of knowledge about the
imaging system. Instead, we explore the possibility of finding out
simple physical patterns with little knowledge about the imaging
system. Specifically, we focus on the kinematics of rigid body in this

1https://moon.nasa.gov/resources/331/the-apollo-15-hammer-feather-drop/
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work, which is simple, while for the imaging systemwe only assume
camera intrinsic and extrinsic parameters as available knowledge,
which is little.

Though our scope is limited to simple kinematics, the learning
task is by no means a cakewalk. The first challenge is correctly
building the physical model of the rigid body to be studied. To study
the kinematics, we should be aware of the motion of the object thus
a temporal-consistent reconstruction of the object is needed. The
second challenge is the gap between physical object positions and
the observed video frames. That is, even if the physical model of the
object is known, we still need a non-trivial render-then-compare
step to judge whether the learned physical status is accurate.

To address the above challenges, we propose a framework con-
sisting of a differentiable rendering module and blending function
(also known as basis functions) based motion modeling network.
Specifically, we adopt the recently developed Neural Radiance Field
(NeRF) [14] for learning the physical model of the object. In NeRF,
the object geometry is represented implicitly by querying a multi-
layer perceptron (MLP), thus the challenge of temporal consistency
can be addressed by simply freezing the MLP network.

Moreover, for the second challenge, since the object is modeled
byMLP, we construct a motion network and connect it to NeRF. The
motion network consists of blending functions and linear weights
for combining them. In this way, the overall rendering flow remains
differentiable, so the motion network can be trained in an end-
to-end manner by comparing the rendered frames with observed,
which bridges the aforementioned gap effectively.

A general overview of the problem and our framework is demon-
strated in Fig. 1. We design three experiments with synthetic data to
validate the effectiveness and extensibility of our proposed frame-
work. First, we formulate the problem as learning kinematic formu-
las of an object moving with only the force of gravity. The inputs
are multiple view videos of an object moving with different initial
speed 𝑣 . We set the blending functions as the monomial basis and
introduce the sparsity penalty on the linear weights, which follows
the law of parsimony (Occam’s razor). Then we demonstrate that
the motion network can successfully discover the kinematic for-
mula, i.e., 𝑣𝑡 − 1

2𝑔𝑡
2. Next, we investigate if the motion network can

leverage physical priors by studying the kinematics of large ampli-
tude pendulum. The differential equation, 𝑑2𝜃

𝑑𝑡2
+ 𝑔

𝑙
sin𝜃 = 0, which

represents the motion of a simple pendulum is used as a penalty
term, to ensure that the learned kinematic follows the physical laws.
Finally, we validate the practical value of the learned kinematic
formulas by considering an animation of explosion. To sum up, our
contributions are as follows:

• We propose a novel framework for learning kinematic for-
mulas from multiple view videos, for which we only assume
the knowledge of camera intrinsic and extrinsic parameters.

• We design several experiments to validate the effectiveness
and extensibility of our framework. We demonstrate that
our framework can be easily combined with various prior
knowledge and readily applicable to animation tasks.

1.1 Related Works
1.1.1 Physics-informed deep learning. Data-driven machine learn-
ing schemes can be equipped with prior knowledge from physics

[8], whichmakes themodel more robust and explainable. In [18–20],
Raissi et al. consider two tasks: data-driven solution and data-driven
discovery of partial differential equations (PDEs). The authors suc-
cessfully solve nonlinear PDEs including continuous time models
like the Burgers’ equation, Shrödinger equation, and discrete time
models like the Allen-Cahn equation. Moreover, in [18] the authors
demonstrate that their framework is able to discover nonlinear
PDEs like Navier-Stokes equations and Korteweg–de Vries equa-
tion. In [7], the authors use neural networks to exploits conserva-
tion laws to make predictions and gain conceptual insights such as
Copernicus’ conclusion that the solar system is heliocentric. All of
the above existing works directly use physical status like locations
as inputs to the network, while we emphasize the exploitation of
vision data. More related work is [21], in which Raissi et al. use
fluid visualization images as a reference rather than real captured
images considered in our paper.

1.1.2 Physics from vision. In [24], Stewart et al. use physics priors
to train a deep network for extracting representations from sensor
inputs like images. Methods like partial image velocimetry and
partial tracking velocimetry are proposed to measure the velocity
field from imaging data [1, 13]. For example, Li et al. use a compact
lenslet-based light field camera to reconstruct the 3D fluid flow by
tracking dense particles floating in the fluid. Most of the existing
works focus on inferring complex physical values like velocity and
pressure fields of fluid from carefully controlled environments. As
a comparison, we are interested in learning simple kinematics from
commonmultiple video inputs. A more similar work is [2], in which
simple physical laws are studied with 2D object bounding boxes.

1.1.3 Scene reconstruction with neural radiance fields. A scene can
be effectively reconstructed with neural rendering techniques [25].
In this paper, we adopt the renderer neural radiance fields (NeRF)
proposed by Mildenhall et al. [14]. In NeRF, differentiable volume
rendering is employed to connect fields with images. Since NeRF
represents the scene implicitly and renders a novel view is time-
consuming, Neural Sparse Voxel Fields is proposed by Liu et al. [12]
to speed up querying the fields. NeRF has also been successfully
extended to modeling dynamic scenes. In [15, 17], deformations
are considered for reconstructing a non-rigidly deforming scene.
Also, in [3], Gafni et al. propose dynamic NeRF for facial avatar
reconstruction. Further, space-time constraints are considered in
[11, 28], therefore generating high-quality videos for novel views.
Our method can be viewed as an explicit version of the above
dynamic NeRF since we model the motion explicitly with blending
functions.

2 PRELIMINARIES
We employ an implicit scene representation, Neural Radiance Fields
(NeRF), as the differentiable renderer in our framework. NeRF is a
volume rendering framework proposed in [14]. In NeRF, the scene is
represented by a neural field 𝐹Θ, which is a multi-layer perceptron
that takes 3D point locations p = (𝑥,𝑦, 𝑧) and viewing direction
d = (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧) as input. For the field, we have (c, 𝜎) = 𝐹Θ (p, d),
where c = (𝑟, 𝑔, 𝑏) is the color and𝜎 is density. Final image colors are
rendered from the field 𝐹Θ through differentiable volume rendering:
Denote a camera ray emitted from the center o with direction d as



Figure 2: Illustration of computing the color of a ray r. During training, a batch of samples (3D points) are randomly selected
on each ray and motion for the points are computed with the motion network.

p = r(𝑢) = o + 𝑢d, then the expected color 𝐶 (r) with near and far
bounds 𝑢𝑛, 𝑢𝑓 is

𝐶 (r) =
∫ 𝑢𝑓

𝑢𝑛

𝑒
−

∫ 𝑢

𝑢𝑛
𝜎 (r(𝑣))𝑑𝑣

𝜎
(
r(𝑢)

)
c
(
r(𝑢), d

)
𝑑𝑢. (1)

In our framework, since we only care about the motion, input view
direction d is not used as an input. The integrations in the above
equation are numerically estimated. First, the interval [𝑢𝑛, 𝑢𝑓 ] is
partitioned into 𝐾 bins and then one sample is randomly drawn
from each bin for summation. Specifically, in each bin a sample is
uniformly drawn and for 𝑖th bin we have

𝑢𝑖 ∼ U
[
𝑢𝑛 + 𝑖 − 1

𝑁
(𝑢𝑓 − 𝑢𝑛), 𝑢𝑛 + 𝑖

𝑁
(𝑢𝑓 − 𝑢𝑛)

]
. (2)

Once we have the samples {𝑢𝑘 }𝐾𝑘=1, the integration is computed as

𝐶 (r) =
𝐾∑
𝑘=1

𝑒−
∑𝑘−1

𝑘′=1 𝜎𝑘′𝛿𝑘′ (1 − 𝑒−𝜎𝑘𝛿𝑘 )c𝑘 , (3)

where 𝜎𝑘 = 𝜎 (r(𝑢𝑘 )), c𝑘 = c
(
r(𝑢𝑘 )

)
and 𝛿𝑘 = 𝑢𝑘+1 − 𝑢𝑘 is the

distance between the two samples. Positional encoding is employed
to map the coordinate inputs to a higher dimension. The encoding
function is defined as

𝛾 (𝑝) =
(
sin

(
20𝜋𝑝

)
, cos

(
20𝜋𝑝

)
, · · · , sin

(
2𝐿−1𝜋𝑝

)
, cos

(
2𝐿−1𝜋𝑝

))
.

(4)
The function is applied to each input coordinates (i.e., 𝑥,𝑦, 𝑧) and 𝐿
is set to 10. Finally, the field is trained with the reconstruction loss
between the rendered and true pixel colors:

𝐿rec =
∑
r

∥𝐶 (r) −𝐶gt (r)∥22, (5)

where 𝐶gt is the ground truth RGB colors for ray r.

3 PROPOSED FRAMEWORK
Eqn. (5) is the learning of static scenes using NeRF [14]. However
in our problem, the modeling of dynamic scene is required. The
key idea in our framework is to represent the motion with a set
of weighted blending functions of time. After the training process
is finished, the whole motion network can be explicitly written
as a kinematic formula, composed by the weighted summation of
blending functions such as {𝑡, 𝑡2, ..., 𝑡𝑛}.

3.1 Motion Network
As introduced before, for each point r(𝑢) input on the ray r, the
neural field outputs a color c and an occupancy score 𝜎 . For each
frame, the motion of a point is computed from a set of blending
functions. We denote the motion network as𝑀 (𝑡) : R→ R3, where
𝑡 means the time. Then the new point becomes r(𝑢) +𝑀 (𝑡) and the
𝜎 and c in Eqn. (3) becomes

𝜎𝑘 = 𝜎 (r(𝑢𝑘 ) +𝑀 (𝑡)), c𝑘 = c(r(𝑢𝑘 ) +𝑀 (𝑡)) . (6)
After finishing the forward process of all the samples on the ray r,
the generation of the final color of ray r is computed with Eqn. (3).
The whole forward path is demonstrated in Fig. 2.

In addition to the color reconstruction, we add a constraint for the
accumulated occupancy along a ray based on silhouette image. The
reason for the extra constraint is that the geometry is not unique
with only color reconstruction: For the background area, space can
be either empty or filled with points of the background color. Thus
the constraint is to avoid such unnecessary points which make
the motion network hard to train. Specifically, the accumulated
occupancy along a ray is computed by

�̂� (r) =
𝐾∑
𝑘=1

𝑒−
∑𝑘−1

𝑘′=1 𝜎𝑘′𝛿𝑘′ (1 − 𝑒−𝜎𝑘𝛿𝑘 ). (7)

From the equation, we have �̂� (r) ∈ [0, 1], where �̂� (r) = 0 means
the ray r hits nothing. Therefore, for empty space, not only the color
of r should be consist with the background, but also the accumulated
occupancy �̂� (r) should be zero. Since binary silhouette images are
easy to acquire, we improve the reconstruction loss 𝐿rec in Eqn. (5)
to make sure the background space is empty:

𝐿∗rec =
∑
r,𝑡

∥𝐶 (r, 𝑡) −𝐶gt (r, 𝑡)∥22 + 𝛼
∑
r,𝑡

∥�̂� (r, 𝑡) −𝑂gt (r, 𝑡)∥22, (8)

where 𝛼 is set to 0.1 for all experiments and 𝑂gt (r) is the binary
value on the silhouette image for the ray.

3.2 Regularization for motion network
Motion network consists of a linear combination of blending func-
tions. Compared to deep networks with nonlinear activations like
ReLU, the proposed motion network is easier to be interpreted
since we can turn the network into an analytical function, i.e., kine-
matic formulas. A major benefit brought by the interpretability is



Figure 3: Adopting sparsity regularization in our framework.
With a proper ℓ𝑝 norm (0 ≤ 𝑝 ≤ 1), the framework learns a
concise kinematic formula from multiple view inputs.

that we can infuse prior knowledge into the network by simply
adding a regularization term 𝐿reg (𝑀). Therefore, the final loss is
the combination of the reconstruction loss and the regularization
term, i.e.,

𝐿 = 𝐿∗rec + 𝛽𝐿reg (𝑀), (9)
where 𝛽 is a balancing parameter.

In the following parts of the section, we introduce several ex-
amples of extending our framework with different regularization
terms, therefore learning different kinematic formulas of interest.

3.2.1 Case 1: Sparsity Regularization. The principle of parsimony
is the principle that “entities should not be multiplied without ne-
cessity”. For representing the motion of an object, we usually have
many solutions for fitting the observed moving frames. That is,
in our framework, we can have different sets of blending weights
({𝑤𝑖 }) when minimizing 𝐿rec. Therefore, from all possible solu-
tions, we follow the principle of parsimony and aim to pick out the
simplest kinematic formula.

Since the blending weights {𝑤𝑖 } directly control the combi-
nation of the functions, enforcing sparsity on the weight vector
w = [𝑤1, · · · ,𝑤𝑘 ] will leads to simple kinematic formulas. An illus-
tration is demonstrated in Fig. 3. The sparsity constraint is added
to the system by adopting ℓ𝑝 norm (0 ≤ 𝑝 ≤ 1) to the blending
weights. ℓ𝑝 norm for vector w is defined as

∥w∥𝑝 =

(
𝑘∑
𝑖=1

|𝑤𝑖 |𝑞
) 1
𝑞

. (10)

The regularization with ℓ𝑝 norm will introduce sparsity to the final
{𝑤𝑖 } solution [27].

3.2.2 Case 2: Regularization from Differential Equations. Compared
to the motion caused solely by gravity, it is more common that there
does not exist a closed-form expression for the physical dynamics,
such as thermodynamics controlled by heat equation, molecular
dynamics controlled by Poisson-Boltzmann equation. To simulate
the dynamics, numerical methods and approximation functions are
usually used. A successful example is the usage of Fourier series in
spectral methods [23].

In our framework, we can simply set the blending functions
to the basis used in spectral methods. A benefit brought by our
framework is that known physical priors, which are in the form of
differential equations, can be easily employed as a regularization
term in the loss function.

Figure 4: Physical priors, which are in the form of differen-
tial equations, can be employed in the framework as a reg-
ularization term. The equation of motion d2𝜃

d𝑡2 + sin𝜃 = 0 for
the simple pendulum is used as a regularization.

Figure 5: Example training frames for learning the kinemat-
ics of free fall. To demonstrate the generality of ourmethod,
the hotdog object with complex geometry and textures is se-
lected. Note that the planeswith checkerboard pattern is not
used in experiments and added only for visualization.

An illustration of employing physical priors for a pendulum is
presented in Fig. 4. It is known that the motion equation of a simple
pendulum is

d2𝜃
d𝑡2

+ 𝑔
𝑙
sin𝜃 = 0, (11)

where𝑔 is the gravitational acceleration, 𝑙 is the length of the pendu-
lum and 𝜃 is the angle from the vertical to the pendulum. Without
loss of generality, we set 𝑔

𝑙
= 1 in the following text. For small

oscillations, when 𝜃 is small, the sin𝜃 term can be approximated by
𝜃 and then there is a closed form solution for Eqn. (11). However, if
𝜃 gets large, e.g., 𝜃 = 𝜋

2 , there is no analytical solution for 𝜃 (𝑡).
During training, for each frame 𝑡 , 𝜃 is generated from the motion

network. We then calculate the gradient with respect to 𝑡 and new
computation graphs are created for minimizing the regularization
term. In this way, the motion network is regularized to follow the
physical prior, i.e., differential equation.

4 EXPERIMENTS
We conduct three experiments with synthetic data for validating
our proposed framework. The first experiment is to validate the
sparsity regularization proposed in Section 3.2. We set three dif-
ferent initial speed for the model of a plate of hotdog, which has
complex geometry and textures. We calculate the location per frame
based on the well-known kinematics of free fall: 𝑣𝑡 − 1

2𝑔𝑡
2. The



Figure 6: The learned kinematic formula for free fall with and without sparsity regularization. Along the curve of reconstruc-
tion loss, we demonstrate the learned kinematic formulas every 50000 iterations. Also, we present the trajectory of the object
with the learned formulas. In the trajectory visualization, the three different colors represent three different initial speeds.
Points marked by × are the observed points for training, while all other points are ground-truth future locations and plotted
for evaluating the extrapolation of the learned kinematic formulas. The formulas in the red box are the final output formulas.

second experiment corresponds to the regularization from the dif-
ferential equation. The synthetic data is a pendulum with the object
being a burger. The initial angle is set to 𝜋

2 so theoretically there
is no closed form kinematic formula. We calculate the 𝜃 at each
frame numerically with ODEPACK [5]. Finally, we run experiments
with the explode effect in Blender, which can be viewed as a black
box. For the animation, 100 frames are generated and we uniformly
extract 14 frames, which are as the supervision signal. The motion
is associated with both translation and rotation, thus more chal-
lenging than the previous two experiments. We study the ability
of interpolation and extrapolation of our motion network. More-
over, we demonstrate that the motion network generates a smooth
trajectory with simple dynamics prior.

For all the experiments, we set 24 cameras uniformly distributed
on the upper hemisphere of the scene. Adam optimizer [9] is used
for training the network and the initial learning rate is set to 4e-5
for all experiments. For each training iteration, we select 5 × 210
camera rays (pixels) from one image and the random ray sampling
strategy makes sure 90% rays will hit the objects (i.e., pixels inside
the silhouette mask). Moreover, we first train the whole network
for 10000 iterations only on the first frame. Then we freeze the
neural field 𝐹Θ and train the motion network on all frames. The
above strategy is based on the idea that we should first reconstruct
the geometry and then focus on the motion of the object.

Figure 7: The change of 𝑤𝑖 during training for with and
without sparsity regularization. Adding extra regularization
terms has little impact on the convergence speed.

4.1 Kinematics of Free Fall
We set the initial speed 𝑣 to three values {[0, 0, 0], [1, 1, 0], [1, 1, 2]}
and then generate three video sequence with different speed. We de-
fine gravity as the negative 𝑧 direction. Example frames are demon-
strated in Fig. 5. To better visualize the motion, we add planes with



Figure 8: Example frames of the large angle pendulum experiment.

Figure 9: The learned kinematic formula for large angle pendulum with and without physical regularization. Dotted back-
ground curves are the numerical results generated with ODEPACK, which can be viewed as ground truth. Points marked by ×
are the points for supervision and solid dot points are used to validate the extrapolation loss of the learned kinematics.
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Figure 10: MSE between the future 𝜃 values predicted with
ODEPACK and predicted with the learned formulas. The er-
ror is computed on the solid points demonstrated in Fig. 9.

a checkerboard pattern as the background and they are not used
for real training.

To train the motion network, we set the blending functions to be
{𝑡, 𝑡2, 𝑡3, 𝑡4}. In this experiment, there are eight blending weights
and the motion network can be written as

𝑀 (𝑣, 𝑡) = 𝑣 ·
4∑
𝑖=1

𝑤𝑖𝑡
𝑖 +

4∑
𝑖=1

𝑤𝑖+4𝑡𝑖 . (12)

It is obvious that the correct solution should be 𝑤1 = 1,𝑤6 =

−5(𝑔 = 10) and all other𝑤𝑖 = 0. However, as shown in Fig. 5, the
time range is short in the experiments, there can be many solutions

if no regularization is used. In this experiment, we set 𝑝 = 1
10 for

regularizing a sparse solution and 𝛽 is set to 1e-3.
A comparison of the learned formulas between the two schemes

is presented in Fig. 6. The final formula learned with sparsity regu-
larization is

0.99𝑣𝑡 − 4.97𝑡2

and learned without sparsity regularization is

(1.06𝑡 − 0.51𝑡2 + 0.5𝑡3 + 1.19𝑡4)𝑣 − 0.2𝑡 − 3.38𝑡2 − 2.52𝑡3 − 1.09𝑡4 .

From the results, we can easily observe that our framework can
be well equipped with the sparsity regularization and generate
the optimal solution in this experiment. A noteworthy point in
Fig. 6(a) is that the output formula without sparsity regularization
fits in the given points quickly, but failed to learn the compact
form. This observation validates our claim that there are many
possible solutions given only a short clip of object motion and our
framework is able to converge to the global optima.

Moreover, we study the convergence speed of𝑤𝑖 in Fig. 7. The
change of𝑤𝑖 values is smooth and not trapped by potential local
minimal, as the sparsity regularization with ℓ 1

10
norm is non-convex.

The results demonstrate that our framework is well compatible with
regularization terms like sparsity norm and convergence speed is
hardly affected by the introduced regularization terms.



Figure 11: Visualization of rendered frames for the large angle pendulum experiment. Motion network trained with physical
regularization is used for demonstration.

Figure 12: An animation of the explosion effect. Functions
controlling the animation is unknown, so the motion of ob-
jects is generated by a black box.

4.2 Kinematics of Large Angle Pendulum
As introduced in Section 3.2, there is no analytical kinematic equa-
tion for large angle pendulum, and finding approximate solutions
has been a long standing challenge [6]. To synthesize training data,
we set the initial angle as 𝜃0 = 𝜋

2 and 𝜃 is numerically calculated. In
total 101 frames are used for supervising the kinematic formula in
this experiment. Some example frames are demonstrated in Fig. 8.
The second derivative in the regularization term is computed with
PyTorch autograd package [16].

In this experiment, the motion network is constructed with co-
sine basis functions:

{𝑤1 cos(𝜔𝑡),𝑤2 cos(2𝜔𝑡), · · · ,𝑤6 cos(6𝜔𝑡)},
where {𝑤1, · · · ,𝑤6} and 𝜔 are trainable parameters. The balancing
parameter 𝛽 is set to 1e-3, which is the same as the previous free
fall experiment.

Results of the leaned kinematics are presented in Fig. 9. We can
observe that both of the two learned kinematics fit the data well
and finally converge to the same formula:

𝜃 (𝑡) = 1.598 cos(0.847𝑡) − 0.026 cos
(
2.541𝑡3

)
,

which is consistent with the approximation theoretically derived in
[6]. However, a remarkable phenomenon is that the convergence
speed is much faster when physical regularization is adopted. To
further study the convergence speed, in Fig. 10 we compute the

Figure 13: Interpolating frames of the explosion animation
with our proposed framework.

Mean Squared Error (MSE) on the points not observed in the future
time, which are the solid dots in Fig. 9. The reason for converging
to the same good formula may be that the supervision signal (101
frames) is enough for the cosine basis functions. Besides, the faster
convergence speed brought by physical regularization may due to
the reason that the regularization of the differential equation pro-
duces a good optimization trajectory. The experiments demonstrate
that our framework is highly extensible.

Furthermore, we visualize the rendered images from different
training iterations in Fig. 11. Recall that our goal is not to generate
photorealistic images, but to learn the motion of an object through
the render-then-compare pipeline. The visualization validates the
effectiveness of our framework since we can clearly observe the
tendency of approaching supervisory frames for the rendered im-
ages.

4.3 Kinematics of Explosion
The third experiment is to study the kinematics of the explosion
effect generated by Blender, which can be viewed as a black box
since we have no knowledge about the internal animation func-
tions. In Fig. 12, we demonstrate several frames that are used for
supervision. As can be observed from the frames, we set a large
time range between frames to make the task challenging. In total 14



Figure 14: Comparison of the frame interpolation results. For MVS, we use the point cloud computed from COLMAP [22] for
determine its position. Images with red bounding boxes are the supervisory frames.

𝛼 0 0.001 0.01 0.1 1
FreeFall 0.91 0.04 0.01 0.00 NaN
Pendulum 1.34 0.16 0.00 0.00 NaN

(a)
𝛽 0 0.0001 0.001 0.01 0.1

FreeFall 0.37 0.08 0.00 0.00 0.00
Pendulum 0.26 0.07 0.00 0.00 1.15

(b)
Table 1: Analysis of hyper-parameters. MSE on validation
points are reported. NaN means the training does not con-
verge.

frames are used for supervision. For modeling the motion, we set
the blending functions to be sine functions with different periods
and there are 32 nodes for linearly combining the functions.

We first demonstrate the results of interpolating frames of the
explosion animation in Fig. 13. We interpolate the object locations
and rotations from the motion network and then render a new
image with the inferred values. From the figure, we can observe
that the change of object positions is smooth, which validates the
effectiveness of our proposed framework.

Moreover, we design a baseline method as a comparison. Since
there are multiple views for each frame, a straightforward solution
is to reconstruct the object frame by frame and then calculate the
motion on the reconstructed objects. Specifically, we reconstruct
the object per frame with multi-view stereo (MVS) implemented in
COLMAP [22] and calculate the positions from the reconstructed
surface. A comparison of the straightforward solution and the pro-
posed framework is demonstrated in Fig. 14. By comparing the
interpolation results from the first frame to the second frame, the
simple MVS based solution performs worse than our framework in
this case. The main difference is that the MVS baseline cannot well
handle the vertical (𝑧 axis) rotation. We think the reason is that the
vertical rotation is small between the two frames, leading to a small
loss of motion on this axis. In our framework, the motion is trained
with reconstruction loss, so the motion network is able to capture
the difference brought by the small rotation.

4.4 Analysis of Hyper-parameters
There are two hyper-parameters in the loss function:𝛼 for balancing
empty space reconstruction and 𝛽 for balancing the regularization
on the motion network. Though we set 𝛼 = 0.1 and 𝛽 = 0.001 for all
experiments, the proposed framework’s sensitivity to the two hyper-
parameters is still unclear. Therefore, in Tab. 1 we quantitatively
study the impact of the two hyper-parameters. Several interesting
points can be observed from the table: First, the training process of
the network does not converge if 𝛼 is 1, which indicates that a large
𝛼 makes fitting the geometry hard. Second, overall the framework
is not very sensitive to 𝛼 and 𝛽 , but the impact of 𝛽 varies among
the experiment. The results in the table demonstrate the reliability
of the proposed framework.

5 CONCLUSION
In this paper, we propose a novel framework for learning kinematic
formulas from a set of multiple view videos. The framework consists
of two parts: a motion network and a differentiable renderer. The
idea behind the motion network is to set up a series of blending
functions and trainable weights for combining the functions. Thus
after training, the kinematic formulas can be directly exported from
the motion network. We employ NeRF as the differential renderer
because the geometry is represented by querying the coordinates in
the space. We design three experiments to validate our framework:
The experiment of free fall show that our framework can converge
to the correct formula with sparsity regularization; The experiment
of large angle pendulum show that our framework converges faster
when equipped with physical priors; The experiment of explosion
animation validates the practical value of our framework. Finally,
as all the experiments are carried with synthetic data, which means
all input data are clean, conducting experiments with real-world
data is important for future work.
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