A Unified 3D Human Motion Synthesis Model via Conditional Variational
Auto-Encoder

1. Derivation of the Conditional Variational Auto-Encoder (CVAE)

Given the observed regions X; in a pose series, we attempt to synthesize a plausible pose sequence Xg = {X,, Xu}
without losing the prior knowledge of the input key frames. Mathematically, our goal is to maximize the posterior probability
P(Xyu|X;)

To this end, we resort to a CVAE [8] (conditional variational auto-encoder) based framework, which estimates a parametric
distribution py(z,|X;) of the unseen regions over a latent space, from which to sample the latent vector z, and further
generate the full sequence Xg. Similar to the original derivation, we start with the posterior formulation that we wish to
maximize:
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After taking logs and applying Jensen’s inequality, we obtain the variational lower bound of the conditional log-likelihood of
the observation:
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where KL is the Kullback-Leibler divergence, z, the sampled latent vector, g, (z,|X,,) the posterior sampling function,

Py (24|X;) the conditional prior, and pg(X,|2,,) is the likelihood. The conditional probability distributions gy, ps, pe can be
parameterized by deep neural networks.

+ log(

2. Implementation Details

Our network is implemented in Pytorch framework. Following [10}[11], we applied spectral normalization [6] to stabilize
the adversarial training. All networks are initialized with Orthogonal Initialization [[7]] and trained from scratch with a fixed
learning rate of 10~%. We used the Adam optimizer with 3; = 0 and 3 = 0.99. The appearance match loss in Equation 6
and Equation 7 of our main paper is used in four output scales, while the discriminator is only added after the final output
series. For data-processing, the input and generated results are represented in 3d joint positions. The masked areas are set
with zero values. The 3d joint positions are root-relative without removing global orientation. We trained each model on a
single GTX V100 GPU, with a batch size of 128.

One may also be curious about how to variable length sequences. A straightforward way to handle variable pose series
is to train the model with different lengths 7. However, this may not be optimal when we wish to process different length



series with the same model. To this end, we assume two scenarios. If the input length 7 < 7', we can directly take the first
7 frames as the generation result. If 7 > T', we suggest to first generate 7" frames and iteratively take a small number of the
previously generated frames as input constraints to produce future motions.

3. Detailed Network Architecture

Our network architecture is inspired by SA-GAN [9]] and BigGAN [1] and PICNet [10]. Details of our basic blocks and
all of the network modules (including encoder, decoder, discriminator and action classifier) can be found in Figure |Z| and

Figure[3]
4. Extensive Experiments
4.1. Two branch CVAE vs Single branch CVAE.

We found that using one-branch CVAE with both reconstruction and generative constraints led to limited diversity of the
generated series, where the diversity score of “ours w/o action” on Human3.6 dropped from 0.26 (two-branch CVAE) to 0.16
(one-branch CVAE). This is because the network tends to focus more on reconstructing the single solution ground truth. For
two-branch CVAE, the upper branch focuses on generating plausible pose series, while the lower branch targets at accurate
reconstruction, thus performing better in generating both diverse and high-quality results.

5. Qualitative Evaluation

5.1. Generation Diversity

We qualitatively evaluate the generation diversity of our proposed method in Figure @ As can be seen, given the same
input constraints, our model is able to produce diverse and plausible results by sampling multiple times from the latent
distribution.

5.2. More Visualization Results

We provide more visual examples of our proposed method for various tasks in Figure [5| To gain more insight into the
quality of the generated series, we present our results in attached videos. As shown in these videos, our approach can not
only address different motion-based tasks with coherent and realistic results, but also manipulate the animation styles of the
synthesized series according to the given action labels.

5.3. Additional Results on AMASS dataset

To show the generalization ability of our proposed method, we also provide qualitative results on AMASS dataset [4], we
follow the train/test split of [3] to process data. The results can be found in Figure[I] showing that our proposed method is
capable of generating plausible results on different datasets.

T444 58488 R%A ﬁﬁﬁ ¢
TE508¢ O A
KRESRRREFFT ;ﬁ,WWWFWfW?W”F$}%%%
A A A A O A N N A S O Y N S N

Figure 1. Qualitative examples of our proposed model on AMASS dataset. Gray poses are the pre-defined input frames (or partial body of
some frames), while the red & blue skeleton sequences are the synthesized poses.
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Figure 2. Illustration of the Basic Residual Blocks used in our model. (a) The start Residual Block for the encoder and discriminator
networks. (b) The Residual Block used in all networks. (c) The Residual Block up used in the decoder (generator) network. The ResBlock
downsample in Figure [5jmeans adding an average pooling layer after the Residual Block (b).
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Figure 3. Architectures for our frameworks, including encoder, decoder, discriminator, and action classifier. For the discriminator, the input
is the concatenation of generated sequence and action labels. For the action classifier, the input is the generated sequence. TO = 128, T1 =
64, T2=32,T3=16,T4=15,C1 =128, C2 =256, C3 =1 for discriminator and the number of classes for action classification network.
K is the number of parameters describing each pose.
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