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Abstract
When adopting deep neural networks for a new vision task,
a common practice is to start with fine-tuning some off-
the-shelf well-trained network models from the community.
Since a new task may require training a different network ar-
chitecture with new domain data, taking advantage of off-the-
shelf models is not trivial and generally requires considerable
try-and-error and parameter tuning. In this paper, we denote a
well-trained model as a teacher network and a model for the
new task as a student network. We aim to ease the efforts of
transferring knowledge from the teacher to the student net-
work, robust to the gaps between their network architectures,
domain data, and task definitions. Specifically, we propose a
hybrid forward scheme in training the teacher-student mod-
els, alternately updating layer weights of the student model.
The key merit of our hybrid forward scheme is on the dy-
namical balance between the knowledge transfer loss and task
specific loss in training. We demonstrate the effectiveness of
our method on a variety of tasks, e.g, model compression,
segmentation, and detection, under a variety of knowledge
transfer settings.

Introduction
The flourish and success of deep learning community at-
tribute greatly to researchers who released their well-trained
neural network models for generic vision tasks, such as
object recognition (Simonyan and Zisserman 2014), detec-
tion (Ren et al. 2015), and image segmentation (Chen et al.
2017). These off-the-shelf models, such as VGG (Simonyan
and Zisserman 2014) and ResNet (He et al. 2016), are of-
ten employed as the backbone networks and a wise start-
ing point for new vision tasks. Leveraging the knowledge
encoded in a backbone model and transferring them to a
new model generally involves considerable efforts on tun-
ing network parameters and try-and-error, due to the wide
variety of vision tasks and training data distributions. In the
paper, we borrow the terms in knowledge distillation (Hin-
ton, Vinyals, and Dean 2015) and refer an off-the-shelf well-
trained model as a teacher network and a model dedicated
for the new task as a student network. This is in the sense
that we strive to transfer the knowledge, i.e., the strong fea-
ture extraction capability, from teacher networks to student
networks for new vision tasks.
Copyright c© 2021, Association for the Advancement of Artificial
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Figure 1: Illustration of different settings for transferring a
well-trained teacher network to a student network, with the
model, domain, and task gaps defined in this paper. We val-
idate the generality of the proposed hybrid forward exten-
sively on diverse knowledge transferring settings in the ex-
periments.

Fine-tuning a well-trained network tends to be more time
efficient and effective than training from scratch. Neverthe-
less, there are many issues to handle in practice. The di-
verse vision tasks require different network architectures, for
example, object recognition on a mobile phone requires a
lighter network than those trained for ImageNet recognition
on a server, or image segmentation requires a network to out-
put per pixel labeling than per image classification in scene
recognition. Moreover, data in different domains generally
present different distributions or bias, e.g., synthetic street-
view data generated by a simulator vs. real-world scenes col-
lected by multiple cameras. These challenges originate from
the disparate training settings for well-trained teacher and
new student networks. We abbreviate the differences of net-
work architectures, domain data distributions, and the task
definitions as the model gap, domain gap, and task gap be-
tween the teacher and student networks, as illustrated in Fig.
1. Last but not the least, in transferring from a well-trained
teacher network to a student, it is critical yet tricky to bal-
ance the transfer loss and the task loss, i.e., how much to
tune the backbone towards the new data and task.



In this paper, we investigate how to leverage knowledge
from a well-trained teacher network to obtain a student net-
work for new vision tasks. We propose a robust knowledge
transfer method embedded in the core neural network train-
ing procedure – feedforward pass and back-propagation. In
training a neural network, the forward pass processes data
samples through the network and the back-propagation up-
dates the network weights guided by a loss function. The
knowledge a network learns is encoded and memorized
in the connection weights and the parameters of neurons.
Therefore, in another word, the forward pass applies the
knowledge in the network to data samples and the back-
propagation updates the knowledge by the task specific loss.
In our method, we integrate the teacher and student networks
and train the combined network on the new task. Specif-
ically, the forward pass processes data samples alternately
through a sub-network of layers of one network and then
some other layers of the other network as shown in Fig. 2,
which we coin it as the hybrid forward. The pre-requisites
of this method are that 1) the spatial resolutions of feature
maps are scaled down accordingly for both teacher and stu-
dent networks; 2) the separation between the backbone net-
work for feature extraction and the output head network for
specific tasks. These pre-requisites are readily satisfied in
practice with some manipulation of network layers.

In the proposed hybrid forward scheme, the knowledge
transfer from trained teacher networks to new student net-
works is supervised by the loss function and training sam-
ples in the new task. That is, the training loss of knowledge
transfer is evaluated by the same loss function in the target
task, which resolves a critical and tricky tradeoff in train-
ing a teacher-student pair. More precisely, after the sample
batches going through the teacher network, they are sent
into the task head of the student network to compute the
loss with the ground truth labels. Thus, we can measure the
teacher network’s relative impact on student network train-
ing. Therefore, we are relieved from tuning how to balance
the hybrid forward, by treating the knowledge transfer loss
and the task loss equally important. This robust knowledge
transfer deals with the aforementioned gaps in Fig. 1 be-
tween the training settings of a teacher and student network.
The technical contributions are as follows:

• We propose a novel hybrid forward scheme to pass the
knowledge from a teacher network to a student network,
enabling efficient transfer feature extraction capability for
a new task.

• We design a dynamic balancing strategy by employing the
loss function in a target task for knowledge transfer, thus
avoid manually tuning the tradeoff in our hybrid forward
scheme.

We validate the generality of the proposed robust knowledge
transfer on diverse vision tasks under a variety of settings,
e.g., different network architectures, different domain data,
or different target tasks. To list a few: model compression
from ResNet to MobileNetV1 on ImageNet, domain adap-
tation from synthetic to real-world image segmentation on
CityScapes, and utilizing pose estimation models for pedes-
trian detection on CityPersons. The proposed method ef-

fectively leverages well-trained networks on new tasks and
demonstrates competitive results with the SOTA.

Related Work
Leveraging a well-trained network for a new task has been
widely studied under many different settings. The practices
to transfer feature extraction capability from an off-the-shelf
network to a new network can be roughly categorized into
two classes: initialization based and teacher-student based.
In contrast, the proposed hybrid forward scheme constructs
a joint teacher-student network and update the sub-networks
in an alternating way.

Pre-trained model as an initialization
The straightforward practice to utilize a pre-trained model
is to use it to initialize the backbone network, which is fine-
tuned with additional output layers by new training data. For
example, reusing the classification models trained on Ima-
geNet often transfers abundant feature extraction knowledge
to other vision tasks. In these cases, usually models with the
same network architecture are fine-tuned on different data
and tasks, which are referred as domain and task gaps in
this paper. Later on, Net2Net (Chen, Goodfellow, and Shlens
2016) explored the possibility of knowledge transfer in pres-
ence of model gap. Similarly, (Wei et al. 2016; Wei, Wang,
and Chen 2019; Fang et al. 2019, 2020) proposed to migrate
the weights of a well-trained network to anther network with
a different network architecture.

Knowledge distillation and feature mimicking
In (Hinton, Vinyals, and Dean 2015), Hinton et al. first
proposed the knowledge distillation, i.e., using a cumber-
some network as a teacher to generate soft labels to su-
pervise the training of a compact student network. Later
the teacher-student training scheme has been extended in
(Romero et al. 2015; Zagoruyko and Komodakis 2017; Yim
et al. 2017), trying to match the intermediate features be-
tween the teacher and student network. More recent methods
(Srinivas and Fleuret 2018; Kim, Park, and Kwak 2018; Heo
et al. 2019b,a; Peng et al. 2019; Tung and Mori 2019; Wu
et al. 2020c,b,a) designed delicate transformations to ensure
only useful knowledge in a teacher network is transferred
to a student. All of these above methods focus on obtain-
ing a light-weight student model from the teacher, for the
same task and on the same dataset, which fall to the model
gap cases as only the network architectures are different.
Further, (Kundu, Lakkakula, and Babu 2019; Gong et al.
2021) transferred knowledge among tasks for unsupervised
domain adaptation. (Ye et al. 2019; Shen et al. 2019) stud-
ied the problem of learning from multiple teachers, which
is referred to as knowledge amalgamation. In our work, we
are concerned with how to effectively exploit the knowledge
in a well-trained network for a new task, with no access to
previous training data.

Sub-network training
In the proposed hybrid transfer, we first construct a large
network joining the teacher and student networks, then for
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Figure 2: We propose a hybrid forward scheme to transfer the knowledge encoded in a teacher network to a student network.
During the training process of a student network, the feedforward passes the training data through a sub-network of layers of
the student network and then a sub-network of a teacher network alternately, while the back-propagation updates the student
network only and leaves the teacher network fixed.

Figure 3: Existing knowledge transfer schemes and our pro-
posed hybrid forward scheme. (Left) Knowledge distillation
supervises the training of a compact student network by the
soft labels generated by a teacher. (Middle) Feature mimick-
ing aligns the intermediate feature maps. (Right) Our hybrid
forward scheme passes the sub-networks of a teacher and
student network alternately for transferring the knowledge.

each data batch, sample a sub-network to train in a particu-
lar way. The idea of training only a sub-network in a large
network has been adopted for optimizing the network archi-
tecture (Yu et al. 2019; Yu and Huang 2019; Bender et al.
2018). Besides, Gao et al. (Gao et al. 2019) proposed to
fuse the intermediate feature maps for multi-task training.
A more related recent work (Xu et al. 2020) used the hy-
brid forwarding scheme for compressing NLP models. Our
method works in a different way from the above methods,
by alternating the sub-networks from the teacher and stu-
dent networks in feedforward, while updating the student
network alone in back-propagation.

Proposed Method
We strive to develop a general method that enables trans-
ferring knowledge from a well-trained teacher network to
a student network for new vision tasks, robust to the model,
domain and task gaps. We propose a hybrid forward scheme,
which integrates a teacher network into the forward pass of a
student network and process training samples through sub-
networks in a particular manner. This is a novel approach
taking advantage of off-the-shelf well-trained models, as il-
lustrated in Fig. 3, in contrast to knowledge distillation (Hin-
ton, Vinyals, and Dean 2015) deriving soft-labels from a
teacher for the student network training, or feature mimick-

ing (Srinivas and Fleuret 2018; Kim, Park, and Kwak 2018;
Heo et al. 2019b) aligning feature maps between a teacher
and student network.

To train the network that integrates both the teacher and
student on a new task, we need to properly scale the outputs
of loss functions so that they are on a common ground to
compare. Thus, we propose to balance the losses of teacher
and student networks dynamically by scaling the loss of
a teacher network w.r.t its output of some training data
batches.

Hybrid Forward
We design a novel and effective hybrid forward scheme, in
which the forward pass is computed on the sub-networks
of a student and a teacher network alternately. As demon-
strated in Fig. 2, there are three components in our methods:
the teacher backbone, the student backbone and the student
head for the current task. During the training process of of
the integrated teacher and student network, the input data
will flow through one sub-network of the student and then
one sub-network of the teacher in an alternating fashion.
Specifically, the forward pass will switch to another network
before entering the downsampling layer. The reason why we
switch before the downsampling layer is due to the conven-
tion that the feature maps before the downsampling layer are
commonly used for task specific predictions. That is, the fea-
ture map extracted right before the downsampling layer is a
good representation at that image scale. Many structures are
proposed to fully exploit the knowledge contained in these
intermediate outputs, such as FPN (Lin et al. 2017).

However, the network width, the channels of the feature
maps of the two networks may be different, which is an is-
sue preventing us from directly using the feature maps from
the teacher as inputs to the student. To solve this issue, we
add 1×1 convolutions before switching in the forward path.
In other words, each feature map is processed by a 1×1 con-
volution to match the required shape of the next stage. Al-
though the scales between the two stages are the same, the
size of the feature map may not be the same probably due to
different padding settings. So, in some cases, we also need
an interpolation step after the 1×1 convolution layer.

Finally, after we obtain the feature maps generated by for-



warding with sub-networks from both the teacher and the
student, we send the feature maps to the student head net-
work, which generates outputs for the current task. Note
that during the above training process, all sub-networks from
the teacher network are frozen and not updated by back-
propagation, to preserve the feature extraction knowledge in
the teacher network unchanged.

Dynamic Balancing
Through the proposed hybrid forward scheme, training sam-
ples may start with the sub-network of the teacher or the
sub-network of the student, thus this results in two paths to
the student task head and two loss function outputs. Both
of these two losses are evaluated by the samples and loss
function in the current task, which is the major difference be-
tween our method and previous knowledge distillation meth-
ods. In other words, transferring knowledge is achieved by
minimizing the loss related to the current task, i.e., the task
that the student network aims to solve.

Given using the same task related loss in knowledge trans-
fer, we are able to quantitatively evaluate the teacher net-
work’s impact to training the student network. The ability
of measuring the teacher and student networks on a com-
mon ground is the vital factor towards bridging those gaps
between a well-trained teacher network and the student net-
work. Since we employ the same loss function in the current
task, we can compare the losses of two knowledge transfer-
ring paths with the normal loss of forwarding a data sample
batch through the student network. As illustrated in Fig. 4,
Loss1 and Loss2 are the losses for passing through either
staring from the teacher’s sub-network or the student’s sub-
network, while Loss3 is the loss of a normal forward for
supervised training the student network. Let us denote the
three losses asL1, L2 andL3 respectively.L1,L2 andL3 are
all computed by a same loss function, such as Cross-Entropy
loss if the student network is for classification. Since L1, L2

and L3 are comparable, we can simply evaluate the values of
these losses and then quantitatively find out the gap between
the two networks.

Generally, if both L1 and L2 are constantly larger than
L3, the student network itself may underfit the current task
when training with the sum of the three losses. That is, the
learning task is dominated by the knowledge transfer loss.
To avoid the risk, we just need to multiply a balancing pa-
rameter to L1 and L2. Fortunately, the balancing parameter
is quite straightforward to determine in our formulations.

As our ultimate goal is to obtain a good student network,
the main loss is the supervised task loss, i.e., L3. Thus, we
propose to adjust the scale of L1 and L2 according to the
scale of L3, to ensure the student network itself properly fit-
ting the data of current task. More precisely, for each train-
ing mini-batch, after three losses are computed, a balancing
parameter α is calculated by

α =
2 ∗ L3

L1 + L2
. (1)

Then the final loss for this mini-batch is L = α(L1 +L2) +
L3. By multiplying the weight on the loss values, we are in

Table 1: Results of model compression on ImageNet. Only
the model gap exists between the teacher network and the
student network.

Network Method Top-1 Top-5

ResNet-50 Teacher 76.16 92.86

MobileNet-v1

Baseline 68.87 88.76
KD (Hinton, Vinyals, and Dean 2015) 68.58 88.98
AT (Zagoruyko and Komodakis 2017) 69.56 89.33

FT (Kim, Park, and Kwak 2018) 69.88 89.5
AB (Heo et al. 2019b) 68.89 88.71

Ours 71.39 90.47

fact balancing the gradients introduced by each loss to back-
propagate through the student network, that is, if W is the
weights of the student network, then we have

∂L

∂W
= α

(
∂L1

∂W
+
∂L2

∂W

)
+
∂L3

∂W
, (2)

where W means the parameters of the network.

Experiments
To validate the effectiveness of our proposed method, we
conduct experiments on four different settings, as introduced
in the introduction of the paper (Fig. 1).

Challenge: Only Model Gap
We begin our experiments with the gap between the teacher
and the student: the model gap. Such a setting is also known
as the distillation based model compression. In the experi-
ments, a teacher network that is well-trained on ImageNet
(Deng et al. 2009) will be used to guide a shallower stu-
dent network. To test how the model gap affects the trans-
fer process, we select the teacher network to be ResNet-50
(He et al. 2016) and the student network to be MobileNet-
v1 (Howard et al. 2017), which is also tested in (Heo et al.
2019a). The model gap between ResNet-50 and MobileNet-
v1 is in two aspects: First is the depth of the two networks,
i.e., 50 layers for ResNet and 28 layers for MobileNet-v1;
The second is the convolution kernel types, i.e., the normal
convolution and the depth-wise convolution.

Comparison with SOTA. Since there is only the model
gap, during training, we simply add the supervised task loss
with the loss from the hybrid forward path. For training
hyper-parameters, we use the same parameters as (Heo et al.
2019a): Batch size is set to 256; Learning rate is initial-
ized with 0.1 and decay by 0.1 every 30 epochs. Also, for a
fair comparison, the teacher network adopts the ResNet-50
trained by Torchvision. The final model compression results
are shown in Tab. 1. We can see that our method outperforms
4 very recent methods.

Curves of training loss and training accuracy. Apart
from the final results of the student network, we demonstrate
the curves of training loss and training accuracy in Fig. 5.



Figure 4: Losses computed from 3 different forwarding paths are balanced in a dynamic manner. Loss1 and Loss2 are the
loss of knowledge transfer, passing a mini-batch starting with the sub-network of student (teacher) network then to the teacher
(student) network. Loss3 is the conventional training loss of the student network in the current task.
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Figure 5: Training loss and training accuracy with and with-
out the teacher network on ImageNet with ResNet-50 as the
teacher and MobileNet-v1 as the student.

We can see that the training loss with the teacher is always
higher than the loss without the teacher, but the training ac-
curacy with the teacher becomes higher than those without
the teacher after the first time learning rate decay. The higher
training loss is in accordance with our designed knowledge
transferring rule, in which the training loss is the sum of the
loss from the items L1, L2, and L3.

Another thing we find interesting is the training loss and
training accuracy of the three forward paths (in Fig. 4)
shown in Fig. 6. The first thing we observe is that the curve
of the normal path, i.e., the student network, is in the mid-
dle of the hybrid transfer paths. We check the detailed con-
figs of the three paths and find that hybrid path 1 consists
of 46 layers and hybrid path 2 consists of 32 layers. Recall
that the normal training path of MobileNet v1, consists of 28
layers, the number of layers among the paths demonstrates
that a deeper depth does not always have a lower training
loss. The type of convolution is also an important factor in
our case since the hybrid path involves the computation of
a hybrid of depth-wise convolution and normal convolution.
Another interesting observation is that before the first de-
cay of the learning rate, the training loss of the hybrid paths
is lower than the normal path, and the training accuracy is
higher. This phenomenon shows that the knowledge embed-
ded in the teacher network is helpful. Moreover, it indicates
that forwarding with some sub-networks from the teacher
network is able to utilize the pre-trained knowledge in the
teacher network.
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Figure 6: Training loss and training accuracy of the three
forward paths on ImageNet with ResNet-50 as the teacher
and MobileNet-v1 as the student.

Table 2: Results of the student network on CityScapes with
different teachers. The CS det teacher means the Faster
RCNN network trained on the CityScapes dataset. The
GTA5 seg teacher means the DeepLab v2 network trained
on the GTA5 dataset.

Teacher Transfer Method mIoU

No Teacher - 59.7

CS det
(task gap)

FitNet (Romero et al. 2015) 59.9
AT (Zagoruyko and Komodakis 2017) 60.0

Ours 60.2

GTA5 seg
(domain gap)

FitNet (Romero et al. 2015) 60.0
AT (Zagoruyko and Komodakis 2017) 60.4

Ours 60.7

Challenge: Model + Domain/Task Gap

Now we consider the other two gaps: the domain gap and the
task gap. For the domain gap, the teacher network is trained
on the same task with the same labels, but on a different
dataset. For the task gap, the teacher network is trained on
the same dataset but for a different task. As mentioned be-
fore, some knowledge of the teacher network may be be not
relevant to the current task, therefore we need to balance the
3 training losses. For experimental settings, we follow the
setup in recent progress on domain adaptation (Tsai et al.
2018; Song et al. 2020b,a). It is worth noting that in unsu-
pervised domain adaptation the target domain, which is the
dataset for our student network, is unlabeled. Since we hope
to study how the teacher network from another domain is
going to help, we assume the target domain is labeled.



Table 3: The results of the student network on GTA5 with
different teachers. The performance of the student on GTA5
improves more when using the teacher from GTA5.

Model mIoU

DeepLab v2 (Teacher) 65.1

w/o Teacher 33.5
w/ CS det 33.6

w/ GTA5 seg 34.2

Datasets. Following (Tsai et al. 2018), the datasets used in
this section are GTA5 (Richter et al. 2016) and CityScapes
(Cordts et al. 2016). The GTA5 dataset has 24966 images
and we randomly select 500 images out as the validation set
for training the teacher network. Apart from the above, to
better investigate on which gap is more challenging, we em-
ploy a multi-task setting on the CityScapes dataset. We first
train a teacher network on CityScapes for detection and then
use the detection teacher network for helping the segmenta-
tion task, which is the new task for the student network.

Network and training details. For the teacher networks,
we choose the DeepLab v2 (Chen et al. 2017) with ResNet-
101 as the backbone for domain adaptation, and the Faster
RCNN (Ren et al. 2015) with ResNet-50 as the backbone
for multi-task testing. Besides, DeepLab v2 with VGG 16 as
backbone is chosen to be the student network. In this way,
when running the transfer process with our method, we are
also dealing with the model gap at the same time. When
training the student network with the above two teachers,
we use the same training hyper-parameters: batch size of 8,
40000 iterations and learning rate starting from 1e-3 with
polynomial decay.

The student network performance. Since we are inter-
ested in whether the knowledge from the teacher can help
the student, we first present results on the CityScapes vali-
dation set with the above two teachers. For comparison, we
report the results with two intermediate feature alignment
based knowledge transfer methods: FitNet (Romero et al.
2015) and AT (Zagoruyko and Komodakis 2017). To get
a fair comparison, we tune the balancing parameter of the
mimic loss for the above two methods under our settings.
The results are presented in Tab. 2, from which we can come
to the conclusion that the teacher trained on GTA5 is better
than the teacher trained on CityScapes detection. We think
the reason why the teacher from GTA5 is better is that GTA5
is a much larger dataset compared to CityScapes.

Performance on teacher’s domain. When we use the
teacher from another dataset, which is in fact another
domain, the student network may also benefit from the
teacher’s knowledge about the other domain. Therefore, we
also test the performance of the student on the other domain,
which is the GTA5 dataset. In Tab. 3, we show the results
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Figure 7: The dynamically computed balancing parameter of
the hybrid loss and the training loss of the student network.

on the GTA5 validation set, which is split previously to ac-
quire a teacher network on the GTA5. The student taught by
the teacher from GTA5 performs better than the one without
the teacher. This result implies that by our hybrid forward
scheme, the student is able to learn domain specific knowl-
edge, even without seeing any data from the other domain.

Balancing parameter along with training. The balanc-
ing parameter reflects the ratio of the loss from the normal
training of the student network and the loss from the the
two hybrid forward paths. That is, the balancing parameter
is able to reflect how much the teacher is helping the student.
In Fig. 7, we draw the value of balancing parameters with re-
spect to the training steps. We can observe: 1) The balancing
parameter becomes smaller along with the training, which
means that the student network learns more from the teacher
network. 2) In our setting, it is hard to tell which teacher
is more helpful, since the balancing parameters of the two
teachers are about the same. However, the initial value of
the detection teacher is much larger than the GTA5 teacher,
maybe because they are trained on the same dataset and less
noisy at the beginning.

Challenge: Model + Domain + Task Gap

Now, we move to the settings with all the gaps, i.e., the gen-
eral knowledge transfer setting shown in Fig. 1. The teacher
network and the student network will be trained on differ-
ent datasets and for different tasks. The teacher network and
the student network will are still semantically relevant. In
our experiments, the teacher network is a human pose esti-
mation while the student network is a pedestrian detection
network.

Datasets and networks. For human pose estimation, we
directly use the well-trained network from (Kreiss, Bertoni,
and Alahi 2019) which is public available. The teacher net-
work uses ResNet-50 as backbone. For the student net-
work, we use Faster RCNN with MobileNet v1 as back-
bone. The dataset for the student network is CityPersons
(Zhang, Benenson, and Schiele 2017), which uses the im-
ages from CityScapes and the pedestrian are manually re-
labeled. Again, all the training hyper-parameters are kept the
same when training with and without the teacher.



Table 4: Pedestrian detection performance of the student net-
work on CityPersons validation set. The metric is miss-rate
and a smaller value is better. R means reasonable and per-
formance on the R subset is usually more important (Zhang,
Benenson, and Schiele 2017). The teacher is a human pose
estimation network, so we are dealing with all the three gaps.

Model R R
small

R
occ heavy All

w/o Teacher 17.20 21.87 61.76 47.09

FitNet (Romero et al. 2015) 16.70 22.20 61.13 46.89
AT (Zagoruyko and Komodakis 2017) 16.69 21.42 65.50 46.86
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Figure 8: The dynamically computed balancing parameter of
two student networks. The only difference between the two
student network is their backbone networks, ResNet-50 and
MobileNet-v1.

Results of knowledge transfer. Firstly, we evaluate how
much the teacher network will help the student network. The
results on CityPersons validation set are presented in Tab. 4.
Comparison methods are chosen with the same settings as
in Tab. 2. From the table, we can see that with the help from
a human pose estimation teacher, most of the metrics are
improved. Among all the metrics, the improvements on the
reasonable subset is the most significant, which is usually
more practical important. For the heavily occluded subset,
we presume that it is caused by the knowledge passed by the
teacher, which is a pose estimation network and unable to
handle the heavily occluded pedestrian.

How the model gap affects knowledge transfer? In our
previous analysis, we claim that the model gap is the easiest
gap among the three gaps. The intuition is that the model gap
will only affect how the knowledge can be passed to the stu-
dent. However, when we face all the three gaps, we can no
longer analyze the three gaps separately. So the model gap
can be also hard to deal with as the other two gaps when all
the there gaps present. To answer the question, we train an-
other Faster RCNN network on CityPersons with the same
teacher, but the backbone is ResNet-50, which is the same
as the teacher. Therefore, by looking into the balancing pa-
rameter, we can have a sense of whether the model gap is
a serious issue or not. In Fig. 8, the curves of the dynami-
cally computed balancing parameter concerning two differ-
ent backbone settings are drawn. The first conclusion we can
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Figure 9: Results on general knowledge transfer with differ-
ent fixed balancing parameters.

have is that the model gap is indeed not a serious issue. The
reason is similar to our previous analysis: The balancing pa-
rameter reflects how knowledge transfer loss is contributing
to the current task. Another interesting result from the curves
is that the model gap has some impact in the middle of the
learning process. We zoom in some middle steps (4000 -
6000) of the training and get the curves on the right. We can
see that generally the ResNet-50 based student has a larger
balancing parameter than the MobileNet v1 based student.
This indicates that the knowledge from the teacher is more
helpful if the model gap is smaller.

Comparison with fixed balancing parameter. One of the
main contributions in our method is that we adjust the bal-
ancing parameter in a dynamic manner. In Fig. 9, we man-
ually tune the balancing parameter for the hybrid forward
loss and the task loss, with the same teacher-student setting
as in Tab. 4. From the figure, we can see that if we manually
tune the balancing parameter, the best result does not achieve
the accuracy of our dynamic balancing strategy. However,
after carefully tuning the balancing parameter, the pedes-
trian detection network works better than the one without
the teacher, thereby verifying the effectiveness of our hybrid
forward scheme.

Conclusion
In this paper, to achieve the goal of robust knowledge trans-
fer, we propose a hybrid forward scheme to pass the knowl-
edge from a teacher network to a student network. Since
employing the task specific loss functions to measure the
losses of hybrid forward paths, we design a dynamic balanc-
ing strategy to enable the knowledge being transferred more
robust. To validate that our proposed hybrid forward scheme
can deal with different gaps between the teacher and student,
we first test our method on the conventional model compres-
sion setting, which means only the model gap exists. Next,
we study the settings that two gaps are presented. Finally,
we use a human pose estimation network as the teacher and
use a pedestrian detection network as the student, which
deals with three gaps between the teacher-student pair. All
of the experiments demonstrate that our method effectively
enables knowledge transfer from the teacher to the student,
despite the gaps between them.
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PMLR.

Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille,
A. L. 2017. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 40(4):
834–848.

Chen, T.; Goodfellow, I. J.; and Shlens, J. 2016. Net2Net: Acceler-
ating Learning via Knowledge Transfer. In International Confer-
ence on Learning Representations.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.;
Benenson, R.; Franke, U.; Roth, S.; and Schiele, B. 2016. The
cityscapes dataset for semantic urban scene understanding. In IEEE
Conference on Computer Vision and Pattern Recognition, 3213–
3223.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
IEEE Conference on Computer Vision and Pattern Recognition,
248–255.

Fang, J.; Sun, Y.; Peng, K.; Zhang, Q.; Li, Y.; Liu, W.; and Wang, X.
2019. Fast Neural Network Adaptation via Parameter Remapping
and Architecture Search. In International Conference on Learning
Representations.

Fang, J.; Sun, Y.; Zhang, Q.; Peng, K.; Li, Y.; Liu, W.; and Wang, X.
2020. FNA++: Fast Network Adaptation via Parameter Remapping
and Architecture Search. arXiv preprint arXiv:2006.12986 .

Gao, Y.; Ma, J.; Zhao, M.; Liu, W.; and Yuille, A. L. 2019. NDDR-
CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural
Discriminative Dimensionality Reduction. In IEEE Conference on
Computer Vision and Pattern Recognition.

Gong, X.; Chen, S.; Zhang, B.; and Doermann, D. 2021. Style
Consistent Image Generation for Nuclei Instance Segmentation. In
Winter Conference on Applications of Computer Vision.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learn-
ing for Image Recognition. In IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Heo, B.; Kim, J.; Yun, S.; Park, H.; Kwak, N.; and Choi, J. Y.
2019a. A Comprehensive Overhaul of Feature Distillation. In IEEE
International Conference on Computer Vision.

Heo, B.; Lee, M.; Yun, S.; and Choi, J. Y. 2019b. Knowledge trans-
fer via distillation of activation boundaries formed by hidden neu-
rons. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 3779–3787.

Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.;
Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861 .

Kim, J.; Park, S.; and Kwak, N. 2018. Paraphrasing complex net-
work: Network compression via factor transfer. In Advances in
Neural Information Processing Systems, 2760–2769.

Kreiss, S.; Bertoni, L.; and Alahi, A. 2019. PifPaf: Composite
Fields for Human Pose Estimation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 11977–11986.

Kundu, J. N.; Lakkakula, N.; and Babu, R. V. 2019. UM-Adapt:
Unsupervised Multi-Task Adaptation Using Adversarial Cross-
Task Distillation. In IEEE International Conference on Computer
Vision.

Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; and Be-
longie, S. 2017. Feature pyramid networks for object detection.
In IEEE Conference on Computer Vision and Pattern Recognition,
2117–2125.

Peng, B.; Jin, X.; Liu, J.; Li, D.; Wu, Y.; Liu, Y.; Zhou, S.; and
Zhang, Z. 2019. Correlation Congruence for Knowledge Distilla-
tion. In IEEE International Conference on Computer Vision.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, 91–99.

Richter, S. R.; Vineet, V.; Roth, S.; and Koltun, V. 2016. Playing for
data: Ground truth from computer games. In European conference
on computer vision, 102–118. Springer.

Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2015. FitNets: Hints for Thin Deep Nets. In Interna-
tional Conference on Learning Representations.

Shen, C.; Xue, M.; Wang, X.; Song, J.; Sun, L.; and Song, M. 2019.
Customizing Student Networks From Heterogeneous Teachers via
Adaptive Knowledge Amalgamation. In IEEE International Con-
ference on Computer Vision, 3504–3513.

Simonyan, K.; and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 .

Song, L.; Wang, C.; Zhang, L.; Du, B.; Zhang, Q.; Huang, C.; and
Wang, X. 2020a. Unsupervised domain adaptive re-identification:
Theory and practice. Pattern Recognition 102: 107173.

Song, L.; Xu, Y.; Zhang, L.; Du, B.; Zhang, Q.; and Wang,
X. 2020b. Learning from Synthetic Images via Active Pseudo-
Labeling. IEEE Transactions on Image Processing .

Srinivas, S.; and Fleuret, F. 2018. Knowledge Transfer with Jaco-
bian Matching. In International Conference on Machine Learning,
4730–4738.

Tsai, Y.-H.; Hung, W.-C.; Schulter, S.; Sohn, K.; Yang, M.-H.; and
Chandraker, M. 2018. Learning to Adapt Structured Output Space
for Semantic Segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Tung, F.; and Mori, G. 2019. Similarity-Preserving Knowledge
Distillation. In IEEE International Conference on Computer Vi-
sion.

Wei, T.; Wang, C.; and Chen, C. W. 2019. Stable Network Mor-
phism. In International Joint Conference on Neural Networks, 1–8.

Wei, T.; Wang, C.; Rui, Y.; and Chen, C. W. 2016. Network Mor-
phism. In International Conference on Machine Learning, 564–
572.



Wu, J.; Song, L.; Wang, T.; Zhang, Q.; and Yuan, J. 2020a. For-
est R-CNN: Large-vocabulary long-tailed object detection and in-
stance segmentation. In Proceedings of the 28th ACM International
Conference on Multimedia, 1570–1578.

Wu, J.; Zhou, C.; Yang, M.; Zhang, Q.; Li, Y.; and Yuan, J.
2020b. Temporal-Context Enhanced Detection of Heavily Oc-
cluded Pedestrians. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 13430–13439.

Wu, J.; Zhou, C.; Zhang, Q.; Yang, M.; and Yuan, J. 2020c. Self-
mimic learning for small-scale pedestrian detection. In Proceed-
ings of the 28th ACM International Conference on Multimedia,
2012–2020.

Xu, C.; Zhou, W.; Ge, T.; Wei, F.; and Zhou, M. 2020. BERT-of-
Theseus: Compressing BERT by Progressive Module Replacing.
In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 7859–7869. Association
for Computational Linguistics.

Ye, J.; Ji, Y.; Wang, X.; Ou, K.; Tao, D.; and Song, M. 2019. Stu-
dent Becoming the Master: Knowledge Amalgamation for Joint
Scene Parsing, Depth Estimation, and More. In IEEE Conference
on Computer Vision and Pattern Recognition, 2829–2838.

Yim, J.; Joo, D.; Bae, J.; and Kim, J. 2017. A Gift from Knowledge
Distillation: Fast Optimization, Network Minimization and Trans-
fer Learning. IEEE Conference on Computer Vision and Pattern
Recognition 7130–7138.

Yu, J.; and Huang, T. S. 2019. Universally Slimmable Networks
and Improved Training Techniques. In IEEE International Confer-
ence on Computer Vision.

Yu, J.; Yang, L.; Xu, N.; Yang, J.; and Huang, T. 2019. Slimmable
Neural Networks. In International Conference on Learning Repre-
sentations.

Zagoruyko, S.; and Komodakis, N. 2017. Paying More Attention
to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer. In International Conference on
Learning Representations.

Zhang, S.; Benenson, R.; and Schiele, B. 2017. CityPersons: A
Diverse Dataset for Pedestrian Detection. In IEEE Conference on
Computer Vision and Pattern Recognition.


