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Abstract

Weakly-supervised Temporal Action Localization (WS-TAL)
methods learn to localize temporal starts and ends of action
instances in a video under only video-level supervision. Ex-
isting WS-TAL methods rely on deep features learned for ac-
tion recognition. However, due to the mismatch between clas-
sification and localization, these features cannot distinguish
the frequently co-occurring contextual background, i.e., the
context, and the actual action instances. We term this chal-
lenge action-context confusion, and it will adversely affect
the action localization accuracy. To address this challenge,
we introduce a framework that learns two feature subspaces
respectively for actions and their context. By explicitly ac-
counting for action visual elements, the action instances can
be localized more precisely without the distraction from the
context. To facilitate the learning of these two feature sub-
spaces with only video-level categorical labels, we leverage
the predictions from both spatial and temporal streams for s-
nippets grouping. In addition, an unsupervised learning task
is introduced to make the proposed module focus on mining
temporal information. The proposed approach outperforms
state-of-the-art WS-TAL methods on three benchmarks, i.e.,
THUMOS14, ActivityNet v1.2 and v1.3 datasets.

1 Introduction
Temporal action localization (TAL) means to localize tem-
poral starts and ends of action instances in an untrimmed
video. It is a fundamental task in video understanding and
has numerous applications such as intelligent surveillance,
video retrieval and video summarization (Dan, Verbeek,
and Schmid 2013; Asadiaghbolaghi et al. 2017; Kang and
Wildes 2016). Since untrimmed videos can contain irrele-
vant content and multiple action instances, training fully su-
pervised TAL methods (Chao et al. 2018; Lin et al. 2018,
2019; Liu et al. 2019a; Xu et al. 2020a) requires temporal
boundary annotations of action instances. However, obtain-
ing such annotations is time-consuming, which drives the
research of weakly-supervised temporal action localization
(WS-TAL) methods.

WS-TAL learns to localize action instances with on-
ly video-level categorical labels provided during training.
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However, the mismatch between this video-level classifica-
tion supervision and the temporal localization task makes it
difficult to distinguish the actual action instances from their
frequently co-occurring contextual background (termed con-
text). For example, the action baseball pitch commonly co-
occurs with the context baseball field both temporally and
spatially. We term this challenge action-context confusion.

Most existing methods train a video-level classifier and
apply it snippet by snippet to achieve temporal action local-
ization, as shown in Figure 1. Unfortunately, this pipeline
can only exclude the irrelevant background but not the rele-
vant context from the localization results. While the former
is class-agnostic, the latter is action-specific: the context of
an action seldom co-occurs with other actions. Therefore,
irrelevant background is useless to classification, but con-
text can provide important classification cues. For example,
recognizing the baseball field will prevent the video from
being misclassified as diving. Therefore, features trained on
video-level categorical labels will look for contextual cues,
and the entire learned feature space will represent action and
context jointly. Consequently, snippets with only context are
frequently mistaken as part of the action instance.

The goal of this paper is to address the challenge of
action-context confusion in WS-TAL. Our idea is to learn
a feature space which can be explicitly split into two (fea-
ture) subspaces, i.e., the action subspace and the context sub-
space, as shown in Figure 1. After representing action visual
elements in a feature subspace separated from context vi-
sual elements, the target action instances can be localized
considering only action elements represented in the action
subspace. Therefore, the distraction from the context is al-
leviated, in spite of its temporal and spatial co-occurrence
with action.

However, learning explicit action and context subspaces
with insufficient supervision is nontrivial. The key chal-
lenge is how to collect snippets with action/only contex-
t/only irrelevant background (i.e., red dots/black dots/circles
in Figure 1). We take advantage of the two-stream video
representation, i.e., spatial (RGB) and temporal (optical
flow) streams for snippets grouping. Specifically, we con-
sider snippets receiving consistent positive/negative predic-
tions from both streams as snippets with action/only irrele-
vant background; snippets receiving inconsistent predictions
from two streams are regarded as snippets with only context.
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Figure 1: Illustration of a common WS-TAL pipeline with action-context confusion (left) and the main idea of our method
(right). The original feature space jointly represents action and context visual elements, resulting in confusion of actions (red
dots) and context (black dots). The proposed method learns an action subspace and a context subspace. By representing action
visual elements in a separate feature subspace, we can alleviate the distraction from the context during temporal localization.
In the action subspace, we require the black dots to be similar to snippets with only irrelevant background (circles) and distinct
from red dots. While in the context subspace, the black dots are similar to red dots due to the spatial co-occurrence between
action and context. We require both the black and red dots are distinct from circles in the context subspace.

Intuitively, snippets containing typical static scenes (such as
a baseball field) provide useful appearance features but lack
meaningful motion. Thus, they are considered positive by
the spatial stream but negative by the temporal stream. Simi-
larly, snippets containing typical non-action motion (such as
the splash after diving or camera movement) are considered
positive by the temporal stream but negative by the spatial
stream. Besides, to further remedy the lack of supervision,
we introduce an additional unsupervised training task. To-
gether with a new temporal residual module, it makes our
method focus on mining useful temporal information.

In summary, our contributions are as follows. (1) We pro-
pose to address the challenge of action-context confusion
for WS-TAL by learning two feature subspaces, i.e., the ac-
tion subspace and the context subspace. It helps exclude the
contextual background from the localization results. (2) We
introduce a temporal residual module and an unsupervised
training task to make our method focus on mining useful
temporal information. (3) Our method achieves state-of-the-
art performance on three benchmarks.

2 Related Work
TAL with Full Supervision TAL with full supervision re-
quires temporal boundary annotations of the target action
class during training. Similar to 2D object detection, the
TAL task can be formulated as 1D object detection. Fol-
lowing its success in 2D object detection (Girshick 2015;
Ren et al. 2017), the two-stage pipeline is leveraged by
fully-supervised TAL methods (Escorcia et al. 2016; Shou,
Wang, and Chang 2016; Buch et al. 2017; Gao et al. 2017;
Xu, Das, and Saenko 2017; Zhao et al. 2017; Chao et al.
2018; Lin et al. 2018). Recently, instead of viewing tempo-

ral action proposals individually, the dependencies among
them are considered. BMN (Lin et al. 2019) introduces the
boundary-matching mechanism to capture the temporal con-
text of each proposal. Graph Convolutional Networks (GC-
N) is a popular tool to capture the proposal-proposal rela-
tions, as proposed in P-GCN (Zeng et al. 2019), G-TAD (Xu
et al. 2020b) and AGCN (Li et al. 2020).

TAL with Weak Supervision WS-TAL methods focus
on achieving TAL with only video-level categorical labels.
Without temporal boundary annotations for explicit supervi-
sion, the attention mechanism is widely used for distinguish-
ing action and action-agnostic background. Untrimmed-
Net (Wang et al. 2017) formulates the attention mechanis-
m as a soft selection module to localize target action. STP-
N (Nguyen et al. 2018) proposes a sparsity loss to improve
UntrimmedNet and leverage multi-layer structure for atten-
tion learning. W-TALC (Paul, Roy, and Roy-Chowdhury
2018) proposes a co-activity loss to enforce the feature simi-
larity among localized instances. AutoLoc (Shou et al. 2018)
designs an “outer-inner-contrastive loss” for proposal evalu-
ation, to facilitate the temporal boundary regression. Clean-
Net (Liu et al. 2019b) designs a “contrast score” by leverag-
ing temporal contrast in SCPs to achieve end-to-end training
of localization. BM (Nguyen, Ramanan, and Fowlkes 2019)
achieves better TAL performance via background modelling
and other unsupervised losses to guide the attention. CM-
SC (Liu, Jiang, and Wang 2019) exploits the action-context
confusion challenge by regarding frames with low optical
flow intensity as background.

However, the existing WS-TAL methods did not realize
the learned feature represents action and context visual el-
ements jointly, resulting the action-context confusion when
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Figure 2: An overview of our method (left) and the detailed architecture of the proposed Subspace module (right). Left: our
proposed method is mainly composed of three modules, i.e., feature embedding, Base module and Subspace module. Lever-
aging the Base module, we divide snippets into four sets, i.e., Ta,Tc1 ,Tc2 and Tbg in Eq. (11-14). Right: Using the Subspace
module, the snippet-level features in action and context subspaces are obtained. Only the output of action subspace is used for
localization to alleviate the distraction from context.

temporally localizing the target action instances. By learn-
ing explicit subspaces for action and context, the proposed
method can better avoid the distraction from the context, in
spite of its temporal and spatial co-occurrence with action.

3 Proposed Method
The overview of the proposed architecture is shown in the
left part of Figure 2. Identical architectures are applied for
both spatial (RGB) and temporal (optical flow) streams. For
notation simplicity, we omit the stream superscript without
causing confusion in Section 3.1-3.4.

3.1 Feature Embedding
Given an untrimmed video, we first divide it into T non-
overlapping snippets, which are the inputs of the feature em-
bedding module. The outputs are the corresponding features
of T snippets, denoted as Fo ∈ RDo×T . Fo(t) ∈ RDo is the
feature of the t-th snippet st. We term the feature space of
Fo “the original feature space”, as shown in Figure 1.

It is worth noting that the original feature space of
snippet-level features Fo jointly represents the visual ele-
ments of action and context, because they frequently co-
occur both temporally and spatially and only video-level
category labels are available during training. The Subspace
module will address this issue as detailed in Section 3.3.

3.2 Base Module
The Base module performs video-level classification with
the attention mechanism. Similar pipelines have been ex-
plored in (Nguyen et al. 2018; Nguyen, Ramanan, and
Fowlkes 2019). This part is not included in our contribution.

After obtaining Fo, the attention mechanism leverages Fo

to obtain snippet-level predictions (SAPs):

a(t) =Matt(Fo(t), φatt), a ∈ R1×T , (1)

whereMatt is a combination of a fully connected (FC) lay-
er and a sigmoid function. φatt is the corresponding learn-
able parameters. Afterwards, the video-level foreground and
background features are fused by temporal weighted average

pooling following (Nguyen, Ramanan, and Fowlkes 2019):

ffg =
1

T

T∑
t=1

a(t)Fo(t), ffg ∈ RDo , (2)

fbg =
1

T

T∑
t=1

(1− a(t))Fo(t), fbg ∈ RDo . (3)

After obtaining video-level features, video-level predic-
tions are obtained as

pfg =Mcls(ffg, φcls), pfg ∈ R(N+1), (4)

pbg =Mcls(fbg, φcls), pbg ∈ R(N+1), (5)

where Mcls is implemented as an FC layer to get classifi-
cation results. (N + 1) indicates the total number of action
classes including the background class.

Applying Mcls to features of each snippet Fo(t), the
snippet-level classification predictions are obtained as

Po(t) =Mcls(Fo(t), φcls), Po ∈ R(N+1)×T . (6)

3.3 Subspace Module
The goal of the Subspace module is to transform the origi-
nal feature space to a feature space explicitly combined by
two subspaces, i.e., the action subspace and the context sub-
space. The architecture is shown in the right part of Figure 2.
First, we transform the feature of the t-th snippet Fo(t) as

F(t) =MT (Fo(t), φT ), F ∈ R2D×T , (7)

whereMT is implemented as an FC layer with a ReLU ac-
tivation and φT denotes its trainable parameters. The com-
bined feature space is 2D dimensional, with D dimensions
for each subspace. Such a transformation is snippet indepen-
dent. To consider snippet contextual information, a tempo-
ral residual module (T-ResM) is leveraged to enhance the
learned features:

Fr = F +Mres(F, φres), Fr ∈ R2D×T , (8)

whereMres is implemented using two stacked temporal 1d-
convolutional layers, φres represents the learnable parame-
ters. Note that the T-ResM is optional. With only video-level



categorical labels available during training, additional layers
such asMres will adversely affect the training process due to
the lack of supervision. Therefore, an unsupervised training
task is introduced to facilitate the training of Mres, which
will be detailed in Section 3.4.

After obtaining features in the combined feature space
(i.e., Fr), features in the action subspace Fa ∈ RD×T and
features in the context subspace Fc ∈ RD×T are obtained
by directly splitting 2D channels into two parts, each with
D channels, i.e.,

Fr = [Fa,Fc], (9)

where [·] indicates vector concatenation.
Subsequently, for the t-th snippet, we can obtain its pre-

dictions from the action subspace (Pa(t) ∈ R(N+1)) and the
context subspace (Pc(t) ∈ R(N+1)) as

Pa(t) =Ma(Fa(t), φa), Pc(t) =Mc(Fc(t), φc), (10)

where Ma and Mc represent the classification layers for
action and context subspaces with trainable parameters φa
and φc, respectively.
Summary of the proposed architecture. For Base module,
in the training stage, its outputs are (1) pfg ∈ R(N+1) and
pbg ∈ R(N+1) for Base module training; (2) a ∈ R1×T for
Subspace module training. In the testing stage, the outputs
of Base module are (1) a for temporal action proposal (TAP)
generation; (2) Po ∈ R(N+1)×T for TAP evaluation.

For Subspace module, in the training stage, its outputs are
(1) Pa ∈ R(N+1)×T and Pc ∈ R(N+1)×T for the training
of Subspace module; (2) Fr ∈ R2D×T for the training of
T-ResM. In the testing stage, the output is Pa for both TAP
generation and evaluation. The context subspace is only used
for facilitating the training process and not considered for
performing TAL.

The above architecture is applied for both spatial and tem-
poral streams. Adding the superscript “rgb” or “flow” to no-
tations above, we can obtain the notations for the spatial or
temporal stream. This also applies the training process be-
low.

3.4 Training Process for Classification
This section introduces how to learn explicit action and con-
text subspaces with only video-level labels. The training of
the Base module has been well explored and is not our main
contribution. Please refer to our supplementary material for
details.

An Overview of the Training of Subspace Module Our
training objective is to ensure the obtained action/context
subspace and the feature Fr ∈ R2D×T have three properties.
The first property is about the similarities among features in
different subspaces, guided by the triplet loss Lt. The sec-
ond property is about the classification predictions of fea-
tures in different subspaces, guided by the subspace classi-
fication loss Ls. The third property is that Fr ∈ R2D×T

should contain temporal information, guided by an option-
al temporal residual loss Lr. The three properties and their
corresponding losses are detailed below.

Preparation before Loss Calculation The sets of snip-
pets with action/only context/only irrelevant background
(denoted as Sa/Sc/Sbg) are required for calculation of losses.
Specifically, we first collect four snippet index sets as

Ta = {t | argb(t) > θh & aflow(t) > θh}, (11)

Tc1 = {t | argb(t) > θh & aflow(t) < θl}, (12)

Tc2 = {t | argb(t) < θl & aflow(t) > θh}, (13)

Tbg = {t | argb(t) < θl & aflow(t) < θl}, (14)
where θh and θl are the high and low thresholds, defined as

θh = 0.5 + α, θl = 0.5− α, (15)
where α is the hyper-parameter controlling the gap between
θh and θl. Subsequently, Sa (or Sbg) is obtained by col-
lecting snippets with consistent positive (or negative) pre-
dictions from both streams, i.e., Sa = {st|t ∈ Ta} (or
Sbg = {st|t ∈ Tbg}). Similarly, Sc is obtained by collect-
ing snippets with inconsistent predictions from two streams
as Sc = {st|t ∈ Tc1 ∪ Tc2}.
First Property and Triplet Loss The first property: In the
action subspace, the representation of st ∈ Sc should be
similar with that of st ∈ Sbg, because both sets of snippets
contain no action. Meanwhile, the representation of st ∈ Sc
should be distinct from that of st ∈ Sa. On the contrary, in
the context subspace, the representation of st ∈ Sc should be
distinct from that of st ∈ Sbg. Meanwhile, the representation
of st ∈ Sc should be similar to that of st ∈ Sa because of
the spatial co-occurrence between action and context. This
property can be naturally guided by the triplet loss.

In the action subspace, we obtain three video-level fea-
tures representing action, context and irrelevant background
snippets as

Aa =
1

|Ta|
∑
t∈Ta

Fa(t), (16)

Ac =
1

|Tc|
∑
t∈Tc

Fa(t), (17)

Abg =
1

|Tbg|
∑
t∈Tbg

Fa(t), (18)

where | · | denotes the number of elements. Similarly, in the
context subspace, we obtain video-level features represent-
ing action, context and irrelevant background snippets as

Ca =
1

|Ta|
∑
t∈Ta

Fc(t), (19)

Cc =
1

|Tc|
∑
t∈Tc

Fc(t), (20)

Cbg =
1

|Tbg|
∑
t∈Tbg

Fc(t). (21)

Afterwards, we leverage the triplet loss as
Lt = max(d̄(Ac,Abg), d̄(Ac,Aa) +m, 0)+

max(d̄(Cc, Ca)− d̄(Cc, Cbg) +m, 0), (22)
where d̄(p,q) is the Euclidean distance between the `2 nor-
malized p and q. m is the margin set as 1.



Second Property and Subspace Classification Loss The
second property: In the action subspace, ∀st ∈ Sa should
be predicted as having target action class (Eq. (23)). While
∀st ∈ Sc ∪ Sbg should be predicted as the background class
(Eq. (24)). In the context subspace, ∀st ∈ Sc should be clas-
sified as the target action class (Eq. (25)), while ∀st ∈ Sbg
should be predicted as the background class (Eq. (26)). No
explicit constraint is imposed on the predictions of st ∈ Sa
in the context subspace.

To obtain the subspace classification loss Ls, the snippet-
level classification labels of predictions from action and con-
text subspaces (i.e., Pa ∈ R(N+1)×T and Pc ∈ R(N+1)×T )
are required. Following the second property, we assign the
labels to Pa and Pc as

∀t ∈ Ta, Pa(t)|n ← 1, Pa(t)|0 ← 0, (23)
∀t ∈ Tc ∪ Tbg, Pa(t)|n ← 0, Pa(t)|0 ← 1, (24)

∀t ∈ Tc, Pc(t)|n ← 1, Pc(t)|0 ← 0, (25)
∀t ∈ Tbg, Pc(t)|n ← 0, Pc(t)|0 ← 1, (26)

where the video is annotated as having the n-th action class
and |n indicates the classification prediction of the n-th ac-
tion. The 0-th class indicates the background class.

After assigning the predictions with binary expectations
as Eq. (23-26), we can train the Subspace module using a
binary logistic regression loss Ls. Please refer to our sup-
plementary material for detailed formula derivation of the
Ls based on the predictions and binary expectations.

Third Property and Temporal Residual Loss The third
property: Fr should contain temporal information as T-
ResM is the only module that can provide cross-snippet
information in the Subspace module. However, we ob-
serve that without additional constraints, temporal 1d-
convolutional layers cannot enhance the temporal features.
So we introduce an auxiliary training task to ensure that
property, and the temporal residual loss Lr is the corre-
sponding loss of this task.

Specifically, the auxiliary unsupervised task is “snippet-
level four-class classification”. Regarding snippet indexes
belonging to different index sets as different classes, we col-
lect four classes indicated by Eq. (11-14). Afterwards, we
perform the four-class prediction as

Pr(t) =Mr(Fr(t), φr), Pr ∈ R4×T , (27)

where Mr is a classification layer only used for this addi-
tional task. Lr is the corresponding cross-entropy loss:

Lr = − 1

|T′|
∑
t∈T′

log(Pr(t)|n), (28)

where T′ = {Ta ∪ Tc1 ∪ Tc2 ∪ Tbg}, and n = 0/1/2/3 if
t ∈ Ta/Tc1/Tc2/Tbg. This prediction involves cross stream
information. To achieve this goal, Fr is required to account
for snippet contextual information. Since the Subspace mod-
ule of each stream is trained independently and T-ResM is
the only module that can provide cross-snippet information,
minimizing Lr can guide the T-ResM to focus on mining
snippet contextual information.

Finally, the total loss for the training of the Subspace mod-
ule is L = Lt + Ls + Lr.

3.5 Testing Process for TAL
The TAL results can be achieved using the outputs from the
Base module or the Subspace module in the testing process.
Firstly the outputs from two streams are fused by weighted
average with a hyper-parameter β, i.e.,

ā = βargb + (1− β)aflow, ā ∈ R1×T , (29)

P̄o = βPrgb
o + (1− β)Pflow

o , P̄o ∈ R(N+1)×T , (30)

P̄a = βPrgb
a + (1− β)Pflow

a , P̄a ∈ R(N+1)×T . (31)

To achieve TAL, there are two necessary steps, i.e., tem-
poral action proposal (TAP) generation and TAP evaluation.
With only Base module, the TAP generation is achieved by
thresholding ā using 0.5 (C1 in Table 1). Given a TAP, its
confidence score containing the n-th action is evaluated by
Outer-Inner-Contrastive (Shou et al. 2018) as

s(ts, te, n, P̄o) = mean(P̄o(ts : te)|n)−
mean([P̄o(ts − τ : ts)|n, P̄o(te : te + τ)|n]), (32)

where ts and te are the starting and ending snippet indexes of
the given TAP. P̄o(ts : te)|n indicates the fused prediction
scores of the n-th action from the ts-th snippet to the te-th
snippet. τ = (te − ts)/4 denotes the inflation length and
mean(·) is the mean function.

Instead of using Base module for TAL, our contribution
is to leverage the output of the Subspace module (i.e., Pa)
to achieve better TAL results, as evaluated in Table 4. With-
out the attention mechanism in Subspace module, the TAP
generation is achieved by thresholding the sum of all non-
background classes (

∑N
n=1 P̄a|n) using 0.5 (C2 in Table 4).

For TAP evaluation, we use P̄a to replace P̄o in Eq. (32)
for better evaluation (C3 in Table 4) because P̄a can better
avoid the distraction from the context.

4 Experiments
4.1 Experimental Setting
Evaluation Datasets. THUMOS14. (Jiang et al. 2014)
We use the subset of the THUMOS14 dataset with tem-
poral boundary annotations provided. It includes 20 ac-
tion categories. Following conventions, we train the pro-
posed method using the validation set with 200 untrimmed
videos and evaluate it on the test set with 213 untrimmed
videos. On average, each video contains 15.4 action in-
stances and 71.4% frames are non-action background.
ActivityNet. (Fabian Caba Heilbron and Niebles 2015)
The v1.2/v1.3 provides temporal boundary annotations for
100/200 activity classes with a total of 9, 682/19, 994 videos.
Since the temporal boundary annotations of the test set is not
publicly available, we conduct experiments and report the
performance on the validation set. The training set includes
4, 819/10, 024 untrimmed videos and the validation set in-
cludes 2, 383/4, 926 untrimmed videos. On average, each
video contains 1.5/1.6 action instances and 34.6%/35.7%
non-action background, which indicates a relatively lower
noise ratio compared with THUMOS14.
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Figure 3: The spacial visualization of the original feature
space, action subspace and context subspace. The original
feature space jointly represents both action and context visu-
al elements. Compared with the context subspace, the action
subspace focuses on the action areas (soccer penalty, basket-
ball dunk and tennis swing) instead of context areas (soccer
field, basketball court and tennis court).

Table 1: Four notations indicating different experiment set-
tings used for ablation studies. C1 is defined for compari-
son with Based module. C2 and C3 respectively represent
the contribution of the Subspace module towards TAP gen-
eration and evaluation. C4 is defined to solely evaluate the
effect of T-ResM.

Explanation
C1 Thresholding ā with 0.5 for TAP generation.
C2 Thresholding

∑N
n=1 P̄a|n with 0.5 for TAP generation.

C3 Using P̄a to replace P̄o in Eq. (32) for TAP evaluation.
C4 Using T-ResM to enhance F following Eq. (8).

Evaluation metric. Following conventions, we evaluate the
TAL performance by mean average precision (mAP) val-
ues at different IoU thresholds. For the evaluation on THU-
MOS14, the IoU thresholds are [0.1 : 0.1 : 0.9]. For Activi-
tyNet, the IoU thresholds are [0.5 : 0.05 : 0.95].

4.2 Ablation Study
Spatial Visualization of Action Subspace. To validate
the learned action subspace focuses on the action visual ele-
ments, we visualize the predictions in it spatially. To achieve
the spatial visualization, we use the features before glob-
al average pooling and obtain P̄o, P̄a and P̄c for every s-
patial location on the feature maps. Facilitated by snippets
with only context (i.e., Sc) as negative training samples, P̄a

can distinguish action from context. However, due to action-
s seldom appear without their context spatially, our method
is lack of snippets with only action (e.g., snippets with ac-

Table 2: Sensitivity test of hyper-parameters α (in Eq. (15))
and β in Eq. (29-31) on THUMOS14 test set.

α β
mAP(%)@IoU AVG0.3 0.4 0.5 0.6 0.7

0#(β=0.4) 38.4 30.5 21.5 14.5 7.3 22.4
0#(β=0.5) 31.4 23.4 15.8 9.5 4.8 17.0
0#(β=0.6) 27.2 20.3 13.6 7.6 4.0 14.5

0.1
0.4 50.6 41.7 29.7 20.2 10.4 30.5
0.5 49.7 41.3 30.1 19.6 10.6 30.3
0.6 49.9 41.0 29.9 19.7 10.1 30.1

0.2
0.4 50.8 41.7 29.6 20.1 10.7 30.6
0.5 50.4 41.7 30.3 20.0 10.4 30.5
0.6 48.8 40.3 29.0 19.8 9.8 29.5

0.3
0.4 50.2 41.4 29.9 20.0 10.6 30.4
0.5 48.8 40.8 30.1 20.0 10.1 30.0
0.6 49.2 39.5 28.3 18.6 9.3 29.0

0.4
0.4 49.7 41.6 30.0 20.6 10.5 30.5
0.5 47.6 40.3 29.7 20.3 10.9 29.8
0.6 47.9 38.5 27.5 17.6 9.7 28.3

tion soccer penalty but without a soccer field), which makes
P̄c cannot directly distinguish context from action. To elim-
inate action elements in P̄c, we use max(P̄c − P̄a, 0) for
every spatial location to illustrate the context subspace. As
shown in Figure 3, the outputs of different feature spaces are
visualized by heat maps imposed on the original images.

Effect of Each Component on TAL Task. To evaluate
the contribution of the proposed Subspace module, we first
define notations indicating different experiment settings as
listed in Table 1. The effect of the proposed Subspace mod-
ule on the TAL task is reflected in two aspects, i.e., using P̄a

to improve both TAP generation and TAP evaluation steps
(C2 and C3 in Table 1). Comparing 1# (or 2#) with 0#, we
can solely evaluate the contribution of C3 (or C2). Combin-
ing C2 and C3, the major improvement (48.8% in UNT and
78.5% in I3D) is achieved against the Base module. Facili-
tated by the T-ResM with the proposed unsupervised train-
ing task, the TAL performance can be further improved, as
validated by the comparison between 3# and 4#. Compared
with using I3D features, T-ResM plays a more important role
when using UNT features, due to UNT features contain less
temporal information compared with I3D features. Our pro-
posed components (i.e., C2, C3 and C4) contribute to most
of the performance gain (89.5% in UNT and 90.8% in I3D).
Finally, with all the components, 5# achieves the best per-
formance with both feature backbones.

Hyper-parameter Sensitivity. To explore the impact of
the hyper-parameters, we adopt different settings of α and
β, as summarized in Table 2. The Base module only depends
on β. Compared with results from Base module, our method,
strengthened by the proposed Subspace module, shows ro-
bustness towards all hyper-parameters.

4.3 Comparisons with State-of-the-Art Methods
As presented in Table 5, our method significantly outper-
forms existing WS-TAL methods with both feature back-



Table 4: Ablation studies of our method on the THUMOS14 dataset by using mAP under different IoU thresholds and the
average mAP under the IoU thresholds from 0.3 to 0.7. Notations indicating experiment settings are defined in Table 1. UNT
and I3D represent UntrimmedNet and I3D feature backbones, respectively. The gain of average mAP against the Base module
(0#) of every variants are listed. Our proposed components (i.e., C2, C3 and C4) contribute most of the performance gain.

Ablated Feature C1 C2 C3 C4
mAP(%)@IoU AVG GainVariants 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (0.3:0.7)

0# UNT X 50.0 43.6 35.7 29.0 21.7 14.2 7.4 2.5 0.3 21.6 -
1# UNT X X 51.3 45.4 37.3 30.4 22.5 15.0 7.8 2.7 0.3 22.6 1.0|21.1%
2# UNT X 50.9 45.1 38.3 30.0 22.9 15.4 7.7 2.4 0.3 22.8 1.2|26.2%
3# UNT X X 52.8 47.6 40.6 31.2 23.5 15.9 8.2 2.3 0.2 23.9 2.3|48.8%
4# UNT X X X 54.8 48.9 41.8 33.7 26.1 18.0 9.4 3.4 0.5 25.8 4.2|89.5%
5# UNT X X X X 54.7 49.1 42.1 34.2 26.7 18.5 9.7 3.5 0.5 26.3 4.6|100%
0# I3D X 48.9 44.7 38.4 30.5 21.5 14.5 7.3 2.6 0.3 22.4 -
1# I3D X X 58.9 54.8 47.4 38.3 26.9 17.7 8.9 3.2 0.3 27.9 5.5|66.6%
2# I3D X 51.6 47.9 41.4 33.1 23.5 15.3 8.8 3.4 0.5 24.4 2.0|24.5%
3# I3D X X 60.2 56.4 49.2 40.1 27.6 17.7 9.6 3.2 0.5 28.8 6.4|78.5%
4# I3D X X X 62.2 58.2 50.7 40.6 28.3 19.2 10.4 4.0 0.5 29.8 7.4|90.8%
5# I3D X X X X 61.7 58.0 50.8 41.7 29.6 20.1 10.7 4.3 0.5 30.6 8.2|100%

Table 3: TAL performance comparison on ActivityNet v1.2
and v1.3 validation set, in terms of average mAP at IoU
thresholds [0.5 : 0.05 : 0.95]. All results are obtained us-
ing I3D features.

Method v1.2 / v1.3 mAP(%)@IoU Avg0.5 0.75 0.95
AutoLoc (2018) v1.2 27.3 15.1 3.3 16.0

TSM (2019) v1.2 28.3 17.0 3.5 17.1
W-TALC (2018) v1.2 37.0 12.7 1.5 18.0
CleanNet(2019b) v1.2 37.1 20.3 5.0 21.6

CMCS (2019) v1.2 36.8 22.0 5.6 22.4
RPNet (2020) v1.2 37.6 23.9 5.4 23.3

Ours v1.2 39.2 25.6 6.8 25.5
STPN (2018) v1.3 29.3 16.9 2.6 -
TSM (2019) v1.3 30.3 19.0 4.5 -
CMCS (2019) v1.3 34.0 20.9 5.7 21.2
BM (2019) v1.3 36.4 19.2 2.9 -

BaSNet (2020) v1.3 34.5 22.5 4.9 22.2
Ours v1.3 35.1 23.7 5.6 23.2

bones on THUMOS14. As presented in Table 3, our method
also achieves the best average mAP compared with previous
WS-TAL methods on ActivityNet v1.2 and v1.3. However,
the performance improvement is not as significant as that
on THUMOS14, possibly due to the lower non-action frame
rate in ActivityNet v1.2 and v1.3. With less distraction from
non-action context, the improvement brought by our method
will be less significant.

In summary, the effectiveness of our method is validat-
ed by extensive experiments on different feature backbones
and benchmarks. Via spatial visualization, we validate that
the original feature space indeed jointly represents both ac-
tion and context visual elements. While in the learned action
subspace, action visual elements are separated from context
visual elements. Through detailed ablation studies, the con-
tribution of the proposed Subspace module is evaluated, and
the robustness towards hyper-parameters is validated. Final-
ly, we have compared our method with state-of-the-art WS-

Table 5: Results on the THUMOS14 test set. We report mAP
values at IoU thresholds 0.3:0.1:0.7. Recent works in both
full and weak supervision settings are reported. Our method
outperforms the state-of-the-art methods on both backbone
settings.

Method Feature mAP@IoU AVG0.3 0.4 0.5 0.6 0.7

Fu
ll SSN (2017) UNT 51.9 41.0 29.8 19.6 10.7 30.6

MGG (2019a) I3D 53.9 46.8 37.4 29.5 21.3 37.8

W
ea

k

UNet (2017) UNT 29.8 22.8 15.4 8.3 4.2 16.1
STPN (2018) UNT 31.1 23.5 16.2 9.8 5.1 17.1

W-TALC (2018) UNT 32 26.0 18.8 10.9 6.2 18.8
AutoLoc (2018) UNT 35.8 29.0 21.2 13.4 5.8 21.0

CleanNet (2019b) UNT 37.0 30.9 23.9 13.9 7.1 22.6
RPNet (2020) UNT 37.8 29.4 21.2 13.9 6.8 21.8

Ours UNT 42.1 34.2 26.7 18.5 9.7 26.3

W
ea

k

STPN (2018) I3D 35.5 25.8 16.9 9.9 4.3 18.5
MAAN (2019) I3D 41.1 30.6 20.3 12.0 6.9 22.2

W-TALC (2018) I3D 40.1 31.1 22.8 14.5 7.6 23.2
CMCS(2019) I3D 41.2 32.1 23.1 15.0 7.0 23.7
BM (2019) I3D 46.6 37.5 26.8 17.6 9.0 27.5

ASSG (2019) I3D 50.4 38.7 25.4 15.0 6.6 27.2
BaSNet (2020) I3D 44.6 36.0 27.0 18.6 10.4 27.3
RPNet (2020) I3D 48.2 37.2 27.9 16.7 8.1 27.6

Ours I3D 50.8 41.7 29.6 20.1 10.7 30.6

TAL methods on three standard benchmarks, and significant
improvement is observed.

5 Conclusion
We propose to address the action-context confusion chal-
lenge for WS-TAL, by learning explicit action and con-
text subspaces. Leveraging the predictions from spatial and
temporal streams for snippets grouping and introducing an
auxiliary unsupervised training task, the two subspaces are
learned and the distraction from the context is better avoid-
ed during temporal localization. Our method significantly
outperforms existing WS-TAL methods on three standard
datasets. Visualization results and detailed ablation studies
further validate the contribution of the proposed method.
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