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MAT: Multianchor Visual Tracking
With Selective Search Region
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Abstract—The core prerequisite of most modern trackers is a
motion assumption, defined as predicting the current location in
a limited search region centering at the previous prediction. For
clarity, the central subregion of a search region is denoted as
the tracking anchor (e.g., the location of the previous prediction
in the current frame). However, providing accurate predictions
in all frames is very challenging in the complex nature scenes.
In addition, the target locations in consecutive frames often
change violently under the attribute of fast motion. Both facts
are likely to lead the previous prediction to an unbelievable
tracking anchor, which will make the aforementioned prereq-
uisite invalid and cause tracking drift. To enhance the reliability
of tracking anchors, we propose a real-time multianchor visual
tracking mechanism, called multianchor tracking (MAT). Instead
of directly relying on the tracking anchor inherited from the
previous prediction, MAT selects the best anchor from an anchor
ensemble, which includes several objectness-based anchor pro-
posals and the anchor inherited from the previous prediction. The
objectness-based anchors provide several complementary selec-
tive search regions, and an entropy-minimization-based selection
method is introduced to find the best anchor. Our approach
offers two benefits: 1) selective search regions can increase the
chance of tracking success with affordable computational load
and 2) anchor selection introduces the best anchor for each frame,
which breaks the limitation of solo depending on the previous
prediction. The extensive experiments of nine base trackers
upgraded by MAT on four challenging datasets demonstrate the
effectiveness of MAT.

Index Terms—Anchor proposal, anchor selection, multianchor
visual tracking, object tracking, selective search region.
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I. INTRODUCTION

V ISUAL tracking plays a crucial role in intelligent
surveillance, human–computer interaction, and robot

vision systems. In the past decades, single-target trackers
have been widely studied based on a smoothness motion
assumption [1]–[6]. It assumes that trackers can predict the
target location in a sole search region centering at the previous
prediction. However, this assumption is often violated [7]. For
example, a low-quality prediction shown as the red solid box
in Fig. 1(a) may lead to an invalid search region shown as the
red dash box in Fig. 1(b). For clarity, we denote the central
subregion of a search region as a tracking anchor. Once the
previous prediction is not reliable as the tracking anchor in
the current frame, trackers depending solely on the previous
prediction will miss the chance to adjust their search regions
and fall into a background region.

Generally, there are two ways to mitigate this problem.
The first way is to design fine tracking models, which can
improve the quality of predictions (i.e., tracking anchors
in successive frames). Many tracking models based on
SVMs [1]; boosting [8], [9]; random forest [10], [11];
kernel ridge regression [2]; and deep learning [12]–[19] have
been optimized continually. Meanwhile, multitracker-based
methods [7], [20], [21] are also proposed to enhance the track-
ing capability. However, it is difficult for tracking models to
simultaneously handle multiple tracking challenges, such as
partial occlusion and object deformation. Thus, unbelievable
tracking anchors are inevitable. The second way is to enlarge
the search range, so as to weaken the influence of low-quality
tracking anchors. EBT [22] enlarges its search range to the
whole image. But arbitrarily enlarging the search range will
introduce more distractors, which possibly increase the risk
of tracking drift [23], [24]. In order to decrease the distrac-
tors, EBT [22] adopts an instance-special objectness estimation
based on EdgeBoxes [25] to propose candidate samples over
the entire image. Nevertheless, it has high time consumption
because an elaborate object proposal method [25] is expected
to obtain accurate samples over the entire image.

We argue that if the search range is enlarged in view
of discovering multiple selective local search regions rather
than arbitrarily using the whole image, object tracking will
be more robust with affordable computational load. In this
article, we propose a multianchor visual tracking mechanism
with selective search region discovery. For short, it is denoted
as multianchor tracking (MAT), which can discover selective
search regions by means of anchor proposals. An example is
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(a) (b)

Fig. 1. Illustration of the multianchor visual tracking mechanism. (a) In
frame t−1, the ground truth (i.e., a bear) is marked in the green box. The red
box is a low-quality prediction caused by fast motion and motion blur. (b) In
frame t, the solid boxes and the dash boxes represent the tracking anchors
and their corresponding search regions respectively. The red tracking anchor
is inherited from the prediction in frame t − 1. The blue and yellow anchors
are proposed according to an objectness estimation in frame t. It can be seen
that multiple anchors can increase the probability of tracking success while
the red anchor is inadequate for tracking. This figure is best viewed in color.

shown in Fig. 1. The red solid box in frame t is the tracking
anchor inherited from the prediction in frame t − 1. In such
a case, the red tracking anchor is a bad anchor because the
target is out of its search region. Tracking drift will occur due
to the one-fold adoption of the red anchor in frame t. The
introduced blue search region based on a proposed anchor
can provide a supplementary search region, which can effec-
tively avoid the potential tracking drift caused by the red
anchor.

Aiming to discover selective search regions in each frame,
we introduce a real-time object proposal method to propose
tracking anchors. This method includes three main steps. First,
using color histograms of the previous predictions, a histogram
weight vector is learned to estimate a color histogram score
of each pixel in the current frame. To restrain the interference
of background and remote distractors, we define a pixel-level
object adobe mask and a Gaussian mask, respectively. The
pixel-level object adobe mask is calculated to label potential
object pixels, because object adobes can locate potential object
parts [26]. After obtaining the pixel-level histogram score fil-
tered by the two masks, the objectness score of a region is
computed through accumulating pixel-level histogram scores
in the region. Using a sliding window [27] with the size
of the previous prediction, we can obtain dense objectness
scores of all regions. Finally, the regions with high object-
ness scores are proposed as tracking anchors by nonmaximal
suppression [27]. Due to the favorable simplicity of our rep-
resentation, the procedure of proposing tracking anchors can
be done efficiently.

Next, we hope to find the best tracking anchor from a
tracking anchor ensemble, including anchor proposals and
the anchor inherited from the previous prediction. Ideally,
the best tracking anchor should have the ability to pro-
vide the search region where a base tracker can obtain high
tracking scores with low ambiguity. We design an entropy-
regularized loss function as the anchor selection criterion. The
entropy regularization term is designed to measure the track-
ing ambiguity [7], [28]. In the search region centering at the
best tracking anchor, the target location is predicted using the
base tracker.

To implement a base tracker1 in our multianchor
visual tracking mechanism, we choose nine base trackers:
1) ECO-HC [13], 2) STAPLE [4], 3) MEEM [7], 4) KCF [2],
5) STC [29], 6) CA_DCF [24], 7) CA_MOSSE [24],
8) HCF [12], and 9) UDT [30]. The reasons of choosing these
trackers are detailed in the experimental section. Extensive
experiments on standard benchmark datasets (OTB100 [31],
Temple Color [32], UAV123 [33], and VOT2018 [34]) are
carried out to evaluate the effectiveness of multiple anchors
and the anchor selection. The experimental results show that
the multianchor visual tracking mechanism performs well. For
example, on the Temple Color dataset, the distance precision
(DP) improvements of STAPLE [4] and HCF [12] are near
9% and 6%, respectively. Moreover, MAT using real-time base
trackers can also meet the real-time requirement.

Overall, the main contributions of this article include the
following.

1) We propose a MAT mechanism with selective search
region discovery, denoted as MAT. Different from the
traditional trackers based on a hypothetical valid search
region, MAT selectively increases the search range based
on anchor proposals and allows a base tracker to choose
the best one for predicting the target location. It can
facilitate numerous kinds of tracking paradigms.

2) A real-time object proposal method is introduced for
visual tracking to propose tracking anchors and a min-
imum loss criterion based on entropy regularization is
provided as the selection criterion.

The source code of this work is published online.2

The remainder of this article is organized as follows. The
related work is introduced in Section II. An overview of mul-
tianchor visual tracking is introduced in Section III. Then,
tracking anchor proposals and tracking anchor selection are
illustrated in Sections IV and V, respectively. Experimental
results and discussions are shown in Section VI. Section VII
concludes this article.

II. RELATED WORK

Great achievements in single-target visual tracking have
been made over past decades [30], [35]–[54]. In this sec-
tion, we first review two main solutions for alleviating this
problem caused by the motion assumption: 1) tracking model
optimization and 2) search range enlargement. Then, relevant
object proposal methods for visual tracking are summarized.

Tracking Model Optimization: Traditionally, most methods
incline to define high-performance tracking models to improve
the prediction quality. In these methods, trackers founded on
the generative model locate an object by measuring the similar-
ity between the object and its reference model [40]–[42], [55].
Trackers relying on the discriminative model introduce a large

1In this article, we pay more attention to lightweight trackers. Due to the
spoofability and equipment dependency of the convolutional neural network
(CNN), lots of classical lightweight trackers are still widely used. The other
reason is that the CNN-based methods with different depths have different
receptive fields at the last prediction layer, which needs fine-tuned sampling
parameters in the procedure of our tracking anchor selection according to the
characteristics of different CNN-based trackers.

2https://github.com/fzw310/MAT-tracking.git
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variety of suitable learning models into visual tracking, such as
structured output SVMs [1]; boosting [8], [9]; online random
forest [10], [11]; kernel ridge regression [2], [56]; multiple
instance learning [57]; and deep learning [12]–[19]. In addi-
tion, several multitracker-based methods [7], [20], [21], [58]
are proposed to enhance the tracking capability. However,
these trackers share the common problem with single-anchor-
based trackers, that is, they would be unable to rectify their
tracking anchors if the previous prediction is unsuitable as the
tracking anchor in the current frame.

Search Range Enlargement: Another approach is to enlarge
the radius of a search region, so as to weaken the influence
of the low-quality tracking anchor. But arbitrarily expand-
ing search range introduces more distractors and possibly
increases the risk of tracking drift [24]. Lately, tracking
methods [59]–[61] based on particle filtering have been
widely researched. The particle filter in a large search scale
is employed to vote for the target location and estimate
the object scale on the basis of importance sampling [62].
Nevertheless, the initial random sampling is blind to the tar-
get information [22] and the computational complexity of
the resampling procedure is high [63]. In [60] and [61], the
anchors provided by particles focus on reducing the computing
load rather than selectively enlarge the search region. However,
the workload is still heavy (e.g., 1.8 fps for ten particles).
Differently, Zhu et al. [22] used modified EdgeBoxes [25] to
propose candidate samples over the entire image. The mod-
ified EdgeBoxes aims at improving the ranking quality with
high computational complexity.

Object Proposal Methods for Visual Tracking: In previous
works, object proposal methods efficiently promote high detec-
tion rate with a few proposals [25]–[27], [64]. Enlightened by
the high detection rate, several visual tracking methods [16],
[22], [65]–[67] have tried object proposal methods as a sup-
portive cue. In [65], a linear combination of tracking model
scores and adaptive objectness scores based on BING [27] is
utilized to compute the final scores. Huang et al. [66] treated
Edgeboxes [25] as a post-processing step to enhance the adapt-
ability to size variety. Zhu et al. [22] modified Edgeboxes [25]
to rerank proposals based on a separate classifier. For visual
tracking, dynamic objectness [67] based on the motion saliency
is proposed to obtain the clusters of similarly moving target
points. Inspired by [64], Li et al. [16] designed a region pro-
posal network to propose the samples according to the ground
truth object annotation in the first frame. However, due to the
deficiency of update mechanism, these object proposal methods
cannot adapt to the appearance changes. In [54], a three-step
proposal method based on Faster R-CNN [64] is introduced
to generate candidates. However, the initial proposals depend
on the general category information rather than the appearance
information of tracking targets, which would lead to tracking
drift caused by ambiguous category information in challeng-
ing scenes. In addition, the time consumption of [25] and
[26] is high and the application of the GPU-based object pro-
posal method [16], [54], [68] will be restricted due to special
equipments. Drawing support from updatable color histograms,
we propose an objectness method to propose tracking anchors,
which can discover selective research regions at real-time speed.

Fig. 2. Multianchor visual tracking with selective search region. The solid
boxes, the dash boxes and the red boxes with a red star inside represent
tracking anchors, search regions, and predicted results, respectively. 1) Build
a tracking anchor ensemble A based on color histograms in frame t. 2) Select
the best tracking anchor a∗ according to a loss function L from A. 3) Predict
the target location in the search region centering at a∗.

III. OVERVIEW

A good tracking anchor should have the ability of leading
a tracker to building a reliable search region that contains the
real target. Obviously, the smaller the distance between the
tracking anchor and the real target, the higher the probability
of covering the real target by the search region. According
to the motion assumption, traditional methods [1]–[5] simply
adopt the previous prediction as the tracking anchor in the
current frame. It assumes that trackers can predict the tar-
get location in the current frame around the previous result.
However, the previous prediction is not always reliable as they
suffer from multiple tracking challenges, such as partial occlu-
sion, fast motion, and object deformation [7]. These challenges
will make the tracking anchor far from the real target so the
corresponding search region is invalid. In addition, traditional
tracking methods lack the capability of adjusting their tracking
anchors while the anchors are not reliable.

Instead of using the tracking anchor inherited from the
previous prediction directly, we propose to discover multiple
tracking anchors and select the best one for each frame.
The proposed mechanism is denoted as multianchor visual
tracking. Fig. 2 is the visual representation and Algorithm 1
illustrates the execution flow of MAT. To find the tracking
anchors that have a small distance to the real target, we for-
mulate the tracking anchor discovery as an object proposal
problem because object proposal methods can coarsely locate
proto-objects efficiently [22], [26], [27]. In frame t, tracking
anchor candidates are collected by the sliding window method
and ranked according to the objectness score s(ϒ), which is
computed from the pixels included in a candidate region ϒ .
Using nonmaximal suppression [27], the top-N candidates are
selected as the anchor proposals depending on their objectness
scores s(ϒ). The formal definition of s(ϒ) and the details of
proposing anchors will be discussed in Section IV.

After gathering anchor proposals, an anchor ensemble A
is built to contain these proposed anchors and the anchor
inherited from the previous prediction. Intuitively, the best
one can be selected from the anchor ensemble according to
their objectness scores s(ϒ). Whereas, object proposal meth-
ods may introduce some false-positive proposals with high
objectness scores [69]. Therefore, it is not reliable to treat
the proposed anchor with the highest objectness score as the
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Algorithm 1 MAT: Multi-Anchor Tracking
Input: (1) frame t; (2) prediction in frame t−1; (3) foreground
color histogram Ht−1(F) and background color histogram
Ht−1(B); (4) base tracker T
Output: (1) prediction in frame t
Start
1. Update Ht(F) and Ht(B) using Ht−1(F) and Ht−1(B) by
Eqn. 11.
2. Learn a histogram weight vector ω by Eqn. 9.
3. Calculate the objectness scores of all pixels in frame t by
Eqn. 1, 3 and 4, and obtain an objectness score map.
4. Propose top-N tracking anchors from the objectness map
using Non-Maximal Suppression.
5. Build an anchor ensemble A including N anchor proposals
at frame t and the prediction at frame t − 1.
6. Select the best tracking anchor a∗ based on T from A by
Eqn. 12 and 13.
7. Predict the location using T in the search region centering
at a∗, and update the model of T .
End

best tracking anchor. So as to further select the best track-
ing anchor, a more effective evaluation criterion is needed.
We choose the best tracking anchor in the hope that a base
tracker can achieve high tracking scores with low ambigu-
ity in the search region centering at the best anchor. Given
a base tracker T , the size of each search region is decided
by the parameter of T . A loss function L is assigned to each
anchor, including a log likelihood term and an entropy regu-
larization term. The log likelihood term favors large tracking
scores, and the entropy regularization term prefers low ambi-
guity (i.e., without multiple peak tracking scores). The anchor
with the minimal loss will be selected as the best anchor in
frame t, and then the base tracker T can predict the target
location in the corresponding search region. Tracking anchor
selection will be illustrated in Section V.

IV. PROPOSING TRACKING ANCHOR

To propose tracking anchors, it is important to assign an
objectness score s(ϒ) to a candidate region ϒ . Fig. 3 illustrates
the major steps of obtaining the objectness score. Because the
color information is insensitive to shape variations and can
be extracted efficiently, the color histograms are selected to
compute the objectness score s(ϒ). Aiming to mine anchors
for visual tracking, a histogram weight vector ω is learned
based on the color histograms of previous predictions. Then,
given a pixel u characterized by a color histogram feature
ψ(u), we can obtain u’s color histogram score using ψ(u)
weighted by ω [i.e., (1)]. The score reflects the likelihood of
belonging to the tracking target. To reduce the interference
of background pixels and remote false object pixels, a pixel-
level object adobe mask and a Gaussian mask are defined for
pixel u, respectively. Weighted by the two masks, the color
histogram scores of all pixels in a candidate region ϒ are
accumulated as the objectness score s(ϒ) [i.e., (4)]. Over the
entire image, all tracking anchor candidates can be obtained by

Fig. 3. Procedure of calculating the objectness score. The foreground and
background bounding boxes are marked in green and pink, respectively.

Fig. 4. Illustration of the color histogram score weighted by an object adobe
mask M(u) and a Gaussian mask G(u).

a sliding window with the size of the previous prediction. Their
corresponding objectness scores form an objectness score map,
and nonmaximal suppression [27] is applied to propose top-N
tracking anchors from this map.

A. Objectness Score Estimation

Here, we will introduce the objectness score s(ϒ) in detail.
Given a K-dimension histogram feature ψ(u) of pixel u, the
color histogram score can be calculated as

O(u) = ωTψ(u) =
K∑

i=1

ωi · ψ i(u) (1)

where i is the dimension index and ω is a K-dimension his-
togram weight vector learned based on the color histograms
of previous predictions. The procedure of calculating ω will
be analyzed in Section IV-B.

According to (1), all pixels have color histogram scores
shown as O(u) in Fig. 4. Obviously, nontarget pixels with
nonzero scores will impact the objectness estimation. So it is
hoped to highlight potential pixels belonging to the tracking
target and restrain nontarget pixels. Adobe Boxes [26] intro-
duces that object adobes can highlight the potential object
parts and achieve high performance of discovering potential
objects. In [26], an object adobe is defined as the salient super-
pixel, whose distance from the background is larger than that
from the foreground. However, the high time consumption of
extracting superpixels is not suitable for visual tracking. Thus,
we define a pixel-level object adobe mask as

M(u) =
{

1, D(ψ(u),H(B)) > D(ψ(u),H(F))
0, otherwise

(2)
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where M(u) = 1 means that pixel u is labeled as an object
adobe pixel, H(Z),Z ∈ {F,B} are the K-dimension his-
tograms of the foreground F and background B regions, and
D(ψ(u),H(Z)) are the histogram intersection distances [70]
between the histogram feature ψ(u) of pixel u and H(Z).

Filtered by M(u), the histogram score O(u) is transformed
to OM(u) shown as Fig. 4. We can see that most nontarget
noises are restrained and a large number of potential pixels
of the target are maintained. To further restrain remote false
object pixels, OM(u) is weighted by a Gaussian mask G(u)
with a standard deviation σ . Because of the high reliability
of the annotated bounding box in the first frame [65], σ is
set to the maximum of width and height of the initialized
bounding box in the first frame [22]. Moreover, the centre of
the Gaussian mask is decided by the centre of the previous
prediction. A sample of the weighted color histogram score
OG(u) is provided in Fig. 4. OG(u) can be computed as

OG(u) = OM(u)× G(u) = O(u)× M(u)× G(u). (3)

After obtaining OG(u) of each pixel, we scan over the image
to get dense tracking anchor candidates using the sliding-
window method. The size of candidates is equal to the size of
the previous prediction. A candidate region ϒ is scored with
an accumulating function of OG(u) in ϒ as

s(ϒ) = 1

|ϒ |
∑

u∈ϒ
OG(u) (4)

where s(ϒ) is the objectness score of ϒ , and | ∗ | denotes
the cardinality of ∗. Using nonmaximal suppression [27], we
select top-N locations, which correspond to the positions of
tracking anchors in the source image. The size of tracking
anchors is the same as the size of the previous prediction.
Especially, our multianchor visual tracking can handle scale
variation while the base tracker takes a multiscale approach to
implement the prediction.

B. Calculating the Histogram Weight Vector ω

1) Calculating ω: In this section, we will introduce the
procedure of calculating the K-dimension histogram weight
vector ω. Given a foreground region F and its surround-
ing region B, linear regression [4] is applied to each pixel
independently over F and B for per-frame using objective as

�(ω,F,B)= 1

|F|
∑

u∈F

(
ωTψ(u)−1

)2+ 1

|B|
∑

u∈B

(
ωTψ(u)

)2
(5)

where ψ(u) is the K-dimension histogram feature of pixel u.
Let b(u) present the bin assigned to the color components of
pixel u. Thus, ψ(u) is a sparse vector that is 1 at index b(u)
and 0 everywhere else. Equation (5) can be represented with
per feature dimension as

�(ω,F,B) =
K∑

i=1

[
Ci(F)

|F| · (
ωi − 1

)2 + Ci(B)

|B| · (
ωi)2

]
(6)

where Ci(Z) = |{u ∈ Z : b(u) = i}| represents the number
of pixels in the region Z ∈ {F,B} for which b(u) = i. The

solution is computed by setting the derivative of (6) to be 0,
and the result can be written as

ωi = ηi(F)

ηi(F)+ ηi(B)
(7)

where ηi(Z) = ([Ci(Z)]/|Z|) is the proportion of pixels in a
region Z ∈ {F,B} for which the ith dimension of the histogram
feature is nonzero. ωi is set to 0 while ηi(F) and ηi(B) are both
equal to 0. The expression ηi(Z) = ([Ci(Z)]/|Z|) also is the
ith dimension of the normalized color histogram of region Z.
Thus, ηi(F) and ηi(B) can be replaced by Hi(F) and Hi(B) as

ωi = Hi(F)

Hi(F)+ Hi(B)
(8)

where i is the dimension index.
2) Updating ω: Because visual tracking is an online appli-

cation, (8) will be further represented with the frame index for
frame t as

ωi
t = Hi

t(F)

Hi
t(F)+ Hi

t(B)
(9)

where t and i are the frame indices and the dimension index,
respectively. To adapt to the appearance changes, a linear inter-
polation [2]–[4], [12] is used to update Hi

t(F) and Hi
t(B)

in (9) as

Hi
t(F) = (1 − β)Hi

t−1(F)+ βHi
t−1(F)

Hi
t(B) = (1 − β)Hi

t−1(B)+ βHi
t−1(B) (10)

where β is an update rate, Ht−1(F) and Ht−1(B) are the color
histograms of foreground and background (relative to the pre-
dicted location) at frame t −1, respectively. Because the color
information of an object is generally more robust than that of
the background, we adopt heterogeneous update frequencies
	tF and 	tB for Hi

t(F) and Hi
t(B), respectively. Examples

are shown in Fig. 5. It can be observed that compared to the
foreground, the color information of the background is prone
to mutability within a short time. Thus, we redefine (10) as

Hi
t(F) =

{
(1 − β)Hi

t−1(F)+ βHi
t−1(F), if t|	tF

Hi
t−1(F), otherwise

Hi
t(B) =

{
(1 − β)Hi

t−1(B)+ βHi
t−1(B), if t|	tB

Hi
t−1(B), otherwise

(11)

where t|	tZ,Z ∈ {F,B} represents that t can be divisible by
	tZ , and 	tZ , Z ∈ {F,B} is the update interval parameter
for Hi

t(Z), Z ∈ {F,B}. 	tB will be smaller than 	tF . The
infrequent update of Hi

t(F) is useful for reducing overfitting
to the recent foreground [13], which can overcome short-term
occlusion to some extent. Moreover, the small value of 	tB is
used to handle the background mutability.

V. TRACKING ANCHOR SELECTION

In the multianchor visual tracking mechanism, each frame
has N + 1 tracking anchors except the first frame. The anchor
ensemble is denoted as A= {an, n ∈ (1, 2, . . .N + 1)} : N
anchor proposals and the anchor inherited from the previous
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Fig. 5. Examples of the mutability of background regions within a short
time. The foreground and background bounding boxes are marked in green
and pink, respectively. In the first row, the background region around the
tracked object (i.e., a black box) changes due to a fast object moving. The
second row is an example of a stationary object (i.e., a girl) with its changing
background caused by a moving black car.

prediction. A loss Ln is assigned to an and the best tracking
anchor a∗ is determined by

a∗ = arg min
an∈A

Ln. (12)

Centering at the best tracking anchor a∗, a search region is
built to predict the target location. Thus, a proper loss func-
tion is desired for the multianchor visual tracking mechanism
to select the best tracking anchor from the anchor ensemble.
In this work, a minimum loss criterion Ln based on entropy
regularization is introduced for our task.

Because the process of calculating Ln of each tracking
anchor an is the same, the subscript n will be omitted in the
rest of this section for conciseness, for example, an → a. We
assume that a base tracker T is given, and its own model keeps
being updated. The size of a search region is decided by the
parameter of T . Before introducing L, we define two sets for
the tracking anchor a: 1) an instance bag X and 2) a possible
label set Γ , including the ground-truth label of X.

In the search region centering at anchor a, we use the base
tracker T to obtain a response map, which consists of dense
tracking scores. Then, in the search region, an instance bag
X = {xm,m ∈ (1, 2, . . .M)} is built by M samples with the
top-M tracking scores, which are extracted using nonmaxi-
mal suppression [27] in the response map. xm is a candidate
image patch, which is labeled by φm = (ym, lm). ym ∈ (0, 1)
represents the background(0)/foreground(1) label, and lm is
the 2-D location of xm. The ground-truth label of X can be
represented as � = {φm,m ∈ (1, 2, . . .M)}. It is assumed
that only one image patch in X will be treated as the target
for visual tracking, and the true label � should be con-
tained in a possible label set [7], [28]. Therefore, we build
a small possible set Γ = {�m,m ∈ (1, 2, . . .M)}, where
the ground-truth label � of X must be included. For each
�m = {(yj

m, lm), j ∈ (1, 2, . . .M)}, yj
m is 1 when j = m and

others are 0.
Based on the instance bag X and the small possible set Γ ,

the loss function L in (12) is defined as

L(X, Γ ) = −L(a; X, Γ )+ γH(�|X, Γ ; a) (13)

where L(a; X, Γ ) is the log likelihood term that favors T ’s
response map with a large peak score in the search region
centering at a, H(�|X, Γ ; a) is the entropy term that prefers
the search region with low ambiguity (i.e., T ’s response
map without multiple large peak scores), and the scalar γ
is the tradeoff parameter. L(a; X, Γ ) and H(�|X, Γ ; a) are,
respectively, computed by

L(a; X, Γ ) = max
�∈Γ log P(�|X; a), (14)

H(�|X, Γ ; a) =
∑

�∈Γ
P(�|X, Γ ; a) log P(�|X, Γ ; a). (15)

Following the assumptions [7] that φm = (ym, lm) only
depends on xm and P(lm|ym, xm) = P(lm|ym), the graphical
model can be described as xm → ym → lm. It means that the
information about the location lm is provided by the appear-
ance of the image patch xm only through the appearance-based
posterior P(ym|xm; a) and the motion prior P(lm|ym). Thus,
P(�|X; a) is decomposed as

P(�|X; a) =
∏

m

P
(
φm|xm; a

) =
∏

m

P
(
ym, lm|xm; a

)

=
∏

m

P
(
lm|ym)

P
(
ym|xm; a

)
(16)

where P(ym = 1|xm; a) is decided by the tracking score of
T and P(ym = 0|xm; a) = 1 − P(ym = 1|xm; a); P(lm|ym =
1) is provided by the local Gaussian distribution of T and
P(lm|ym = 0) is a uniform distribution.

Then, P(�|X, Γ ; a) is calculated as

P(�|X, Γ ; a) = P(�|X; a)∑
�∗∈Γ P(�∗|X; a)

. (17)

VI. EXPERIMENTS

To validate the effectiveness of the multianchor visual track-
ing mechanism (MAT for short), we estimate MAT using
nine base trackers on four popular object tracking bench-
marks (OTB100 [31], Temple Color [32], UAV123 [33],
and VOT2018 [34]), which contain hundreds of challenge
sequences with various attributes.

The experimental results are organized as follows. In
Section VI-A, the details about the evaluation methodology,
the base trackers, and the parameter settings are introduced.
We give the comparison experiments on the OTB100, Temple
Color, and UAV123 datasets in Section VI-B. Section VI-C
is for the VOT2018 dataset. The qualitative evaluation is
presented in Section VI-D. Then, the parameter sensitivity
investigation is illustrated in Section VI-E and the ablation
analysis is shown in Section VI-F. Section VI-G provides the
potential analysis of MAT. In Section VI-H, we analyze the
time consumption. Section VI-I provides a discussion about
failure cases. The attribution-based evaluation is available in
Section VI-J.

A. Implementation Details

Evaluation Methodology: On the OTB100 dataset, the
Temple Color dataset and the UAV123 dataset, we evaluate all
trackers according to two measures, which are DP and overlap
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TABLE I
DP(%)/AUC(%) COMPARISON BETWEEN THE BASE TRACKERS AND THE CORRESPONDING COUNTERPARTS IMPROVED BY MAT MECHANISM

(MAT_TRACKER) ON THE OTB100, TEMPLE COLOR, AND UAV123 DATASETS. 	DP AND 	AUC REPRESENT THE CHANGE OF DP AND AUC,
RESPECTIVELY. ↑ REPRESENTS THE INCREASED VALUE

success. DP measures the center error between the center ct

of the tracking bounding box and the center cgt of the ground-
truth bounding box as dis = ||ct − cgt||2. A threshold of 20
pixels is commonly used to rank the trackers. In the precision
plot, the center error threshold in pixel distance is varied along
the x-axis and the percentage of correct prediction according
to the threshold is plotted on the y-axis. The overlap success
is calculated using the intersection over union (IoU) of the
tracker bounding box bt and the ground truth bounding box
bgt as IoU = [|bt ∪ bgt|/|bt ∩ bgt|], where | ∗ | represents the
area of ∗. In the success plot, the overlap threshold is var-
ied along the x-axis and the percentage of correct prediction
according to the threshold is plotted on the y-axis. As sug-
gested in [31] and [33], the area under the curve (AUC) is
used to evaluate the qualification of tracker bounding box bt.
On the VOT2018 dataset, we adopt the expected average over-
lap (EAO) to rank trackers, which combines the accuracy and
failure values in a principled manner. All trackers are imple-
mented using MATLAB/C++ on i7-6600K 4.0-GHz CPU and
GeForce GTX TITAN X GPU.

Introduction About Base Trackers: The proposed method
is implemented in a base tracker, and select the tracking
anchor based on the motion model and the observation
model of the base tracker. The base trackers using dense
prediction maps, such as most correlation-filter-based trackers
and partial tracking-by-detection trackers, would be suitable
for the proposed multianchor visual tracking mechanism.
Facing other categories of trackers, the anchor selection
method should be redesigned according to the characteris-
tics of different trackers. In the experiments, because the
base trackers emerge in an endless stream, ECO_HC [13],
STAPLE [4], MEEM [7], KCF [2], STC [29], CA_DCF [24],

CA_MOSSE [24], HCF [12], and UDT [30] are carefully
chosen for testing. The main reasons are as follows.

1) ECO_HC is a high-performance tracker with handcrafted
features. It is used to evaluate the effectiveness of the
proposed mechanism with high-performance trackers.

2) STAPLE uses the HOG and color features to track tar-
gets. In the procedure of proposing tracking anchors, the
color information is also used. Thus, we use STAPLE
to check whether color-based anchors can enhance the
performance of color-based trackers.

3) KCF and STC are classical methods with high speed,
but their performance is not good enough currently.
We try to improve their performance by the proposed
mechanism.

4) CA_DCF and CA_MOSSE are utilized to verify that the
proposed method can further promote the performance
of trackers, whose ability has been improved by other
methods (i.e., context-aware).

5) MEEM is a tracking-by-detection tracker.
6) HCF and UDT are delegates of GPU-based trackers.
Because the source codes of some trackers implemented

in different computers will achieve different performance to
some extent [13], all base trackers and their MAT versions
will be rerun in our computer for a fair comparison. For clar-
ity, trackers using multiple tracking anchors are denoted as
MAT_ECO_HC, MAT_STAPLE, MAT_MEEM, MAT_KCF,
MAT_STC, MAT_CA_DCF, MAT_CA_MOSSE, MAT_HCF,
and MAT_UDT, respectively.

Parameter Settings: All base trackers are implemented with
their published original codes. In all experiments, N = 3
anchors are proposed. For anchor proposals, we set β = 0.04,
	tF = 3, and 	tB = 1 in (11). The number K of RGB-color
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TABLE II
EAO/A/R COMPARISON BETWEEN THE BASE TRACKERS AND THE CORRESPONDING COUNTERPARTS IMPROVED BY MAT MECHANISM

(MAT_TRACKER) ON THE VOT2018 DATASET. 	EAO, 	A AND 	R REPRESENT THE CHANGE OF EAO, A, AND R, RESPECTIVELY. ↑ AND ↓
REPRESENT THE INCREASED AND DECREASED VALUE. FOR 	EAO AND 	A, ↑ MEANS BETTER PERFORMANCE, AND ↓ REPRESENTS MORE

ROBUSTNESS FOR 	R

Fig. 6. Qualitative evaluation of STAPLE [4], KCF [2], and their corre-
sponding counterparts improved by MAT on six challenging sequences. From
top to bottom, the sequences are blurOwl, couple, diving, girl2, jogging, and
shaking, respectively.

histogram bins is 32 × 32 × 32. For anchor selection, we use
M = 10 samples for each search region and γ = 45 in (13).
Practically, in order to achieve better performance, these
parameters can be fine tuned according to the characteristics
of different base trackers.

B. Quantitative Evaluation on the OTB100, Temple Color,
and UAV123 Datasets

In this section, we analyze MAT on the OTB100, Temple
Color, and UAV123 datasets. Because the color information is
used to build the objectness map, selective tracking anchors
are only proposed in color sequences (i.e., 75 color sequences
on the OTB100 dataset and all sequences on the Temple Color
and UAV123 datasets). The results are listed in Table I. It can
be observed as follows.

1) Our tracking anchors effectively improve the
performance of base trackers. The reason is that
multianchor-based trackers will increase the probability
of tracking success through selectively enlarging the
search range by means of anchor proposals.

2) In [24], a context-aware technique is utilized to
optimize the tracker model, which can promote
the tracking performance. When CA_DCF [24] and
CA_MOSSE [24] are adopted in the multianchor visual
tracking mechanism, their results are further improved.
It demonstrates that, though tracking models have
been optimized, the unsatisfactory predictions cannot
be avoided. Multiple tracking anchors can help them to
decrease the risk of tracking drift.

C. Quantitative Evaluation on the VOT2018 Dataset

The VOT2018 includes 60 sequences and the performance
is estimated according to EAO, Accuracy and Robustness.
Because all base trackers are run with their published origi-
nal codes rather than their updated codes on the OTB dataset,
the Temple Color dataset and the UAV123 dataset, the results
on the VOT2018 are also obtained from their published orig-
inal codes. The details are provided in Table II. For 	EAO
and 	A, ↑ means better performance and ↓ represents more
robustness for 	R. It can be observed that the proposed mul-
tianchor mechanism generally improves the performance of
base tackers on the VOT2018 dataset.

D. Qualitative Evaluation

Fig. 6 shows some tracking results of STAPLE [4], KCF [2],
and their corresponding counterparts upgraded by MAT on six
challenging sequences. From top to bottom, the sequences are
blurOwl, couple, diving, girl2, jogging, and shaking, which
are respectively, under the attributes of out-of-plane rotation
(girl2 and shaking), in-plane rotation (diving and shaking),
motion blur (blurOwl), deformation (diving and couple), and
occlusion (jogging and girl2). It can be seen that:

1) MAT-based trackers have good performance in these
challenging sequences. For example, the dash boxes in
blurOwl sequence drift away from the real target loca-
tions because of fast motion and motion blur shown as
frame 151 and frame 307. However, MAT_STAPLE and
MAT_KCF can locate the target accurately relying on
the anchor proposals;

2) The performance of STAPLE [4] is better than that
of KCF [2] under motion blur (blurOwl) and defor-
mation (couple), because STAPLE [4] combines the
color and structure information together. However,
once STAPLE [4] loses the target in frame 307 of
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TABLE III
DP(%)/AUC(%) COMPARISON WITHIN MAT_STAPLE USING

DIFFERENT PARAMETERS. THE BEST VALUES ARE HIGHLIGHTED BY

BOLD

blurOwl, it would be hard to relocate the target again.
Comparatively, MAT_SATPLE and MAT_KCF have a
high probability of relocating the target. As the red solid
box (MAT_STAPLE) in frame 210 of diving and the blue
box (MAT_KCF) in frame 288 of girl2, the predicted
locations are wrong. MAT-based trackers successfully
relocate the target in the successive frames. The reason
is that the proposed anchors can weaken the dependence
on the previous prediction;

3) In the jogging sequence, a running person is heav-
ily occluded. STPALE [4] and KCF [2] fall into
the background region. Oppositely, MAT_STAPLE and
MAT_KCF can catch the real target after the target reap-
pears due to the multiple anchor mechanism and the
infrequent update of foreground histograms;

4) Rotation (out-of-plane rotation and in-plane rotation)
in a cluttered background often leads to tracking drift
shown as the shaking sequence. The main reason is that
more appropriate anchors mean more opportunities. The
anchors, which are proposed by a color-based objectness
method, are valuable supplements to the anchor inherited
from the previous prediction. The base trackers gener-
ally adopt the gradient feature and CNN feature. Thus,
these two kinds of tracking anchors can complement
each other effectively;

5) MAT-based trackers can handle the challenge under the
attribute of scale variation while the base tracker takes
a multiscale approach to obtain the prediction. In the
couple and jogging sequences, MAT_STAPLE can deal
with scale variation as STAPLE has the multiscale mech-
anism. Furthermore, the best tracking anchor selected
by MAT can help MAT_STAPLE achieve correct scale
estimations in the cluttered background shown as the
shaking sequence.

E. Parameter Sensitivity Investigation

The number K of RGB-color histogram bins, the num-
ber M of samples in each search region, the update rate β
of histograms, and the update interval parameters 	tF/	tB

TABLE IV
DP(%)/AUC(%) COMPARISON WITHIN MAT_STAPLE USING

DIFFERENT ABLATION ITEMS. w/o REPRESENTS “WITHOUT.” THE BEST

VALUES ARE HIGHLIGHTED BY BOLD

for the foreground F and background B histograms are tun-
able parameters within MAT. Here, the performance sensitivity
of MAT to K, M, β, and 	tF/	tB will be investigated.
We set K ∈ {8, 16, 32, 64, 128}, M ∈ {5, 10, 15, 20}, β ∈
{0.02, 0.04, 0.06, 0.08}, and 	tZ ∈ {1, 3},Z ∈ {F,B}, respec-
tively. The experimental results are shown in Table III.
According to the results, K, M and β are set to 32, 10 and 0.04,
respectively. Because there are many combinations between
	tF and 	tB, we empirically choose 	tF = 3 and 	tB = 1.
It can be observed as follows.

1) Both the small and the large value of K will weaken the
representation ability of histograms.

2) The small value of M would impact the reliability of
the entropy term. The large value of M would weak the
discrimination ability of the entropy term.

3) MAT with the small value of β will ignore the appear-
ance changes of the target. It is easy for MAT with the
large value of β to fall into the current background in
challenge scenes, such as occlusion.

4) MAT_STAPLE (	tF = 3, 	tB = 1) achieves the best
performance. The main reason is that compared to the
foreground, the color information of the background is
prone to mutability within a short time.

F. Ablation Analysis

1) Ablation Analysis of Masks: The pixel-level object
adobe mask M(u) and the Gaussian mask G(u) are designed
to improve the quality of proposed anchors. In this section, a
comparison experiment of MAT using different masks is con-
ducted. The results are shown in Table IV. MAT_STAPLE
without the pixel-level object adobe mask M(u) and the
Gaussian mask G(u) are denoted as MAT_STAPLE w/o M(u)
and MAT_STAPLE w/o G(u), respectively. It can be observed
as follows.

1) The performances of MAT_STAPLE w/o M(u) and
MAT_STAPLE w/o G(u) are better than that of
STAPLE. It means that both M(u) and G(u) are useful
for proposing tracking anchors.

2) MAT_STAPLE achieves the best performance profiting
from these two masks simultaneously.

3) Due to the dataset bias that the current position of the
tracking target generally appears near the previous posi-
tion in most cases of existing datasets, the influence of
G(u) is greater than that of M(u).

4) When the anchors are proposed equally over the entire
image [i.e., MAT_STAPLE w/o G(u)], the proposed
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anchors and the anchor selection mechanism improve
the performance.

2) Ablation Analysis of Loss Terms: There are two terms
in the loss function [i.e., (13)]. Here, a comparison exper-
iment within MAT_STAPLE with different combinations
of the loss terms is designed. The results are shown in
Table IV. MAT_STAPLE without the likelihood term and
MAT_STAPLE without the entropy term are denoted as
MAT_STAPLE w/o L and MAT_STAPLE w/o E, respec-
tively. We can observe that both MAT_STAPLE w/o L and
MAT_STAPLE w/o E achieve the performances better than
the base tracker STAPLE but worse than MAT_STAPLE. It
means that under the support of proposed anchors, the like-
lihood term and the entropy term both benefit enhancing the
tracking performance.

G. Potential Analysis

In this section, we design an experiment to illustrate the
potential of MAT. Because it is hard to do the quantitative
simulation of final prediction results as different base trackers
are implemented in our method, we focus on the stage of
proposing tracking anchors.

Here, we set several hypotheses as follows.
1) The tracking capability of a base tracker is defined as

a constant value � ∈ {0.50, 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, 0.95, 1.00}, which means that the
overlap between the tracking anchor inherited from the
previous prediction and the ground truth of the current
frame is equal to �.

2) There are no tracking drifts because it is too difficult to
simulate this phenomenon. It infers that the base tracker
can track targets according to the overlap score � in all
frames.

3) In each frame, the scale rate is randomly selected from
a set {1.0824, 1.0612, 1.0404, 1.0200, 1.000, 0.9804,
0.9612, 0.9423, 0.9238}. It is used to simulate the scale
errors.

The actual situation of visual tracking is much more com-
plicated than the experimental hypotheses. Thus, we mainly
provide trend analyses. According to these hypotheses, we
estimate the potential using the overlap between the best track-
ing anchor and the ground truth. The large overlap represents
the small distance, which will benefit predicting the target
location in the search region. The best overlap of the tracking
anchor in the anchor ensemble, which includes N +1 tracking
anchors, is adopted as the final score in the current frame. N
is set as 3 and the experimental results on the OTB100 dataset
are shown in Fig. 7. In Fig. 7(a), the proposed method with the
�-valued base tracker is denoted as MAT_potential(�), and
the legend contains the AUC score. As shown in Fig. 7(b),
the curves represent the relationship between the value of �
and the score of AUC. The base_potential and MAT_potential
denote the plots of the base tracker and its MAT version,
respectively. It can be observed as follows.

1) The proposed anchors can significantly improve the
potential of the base tracker (i.e., the AUC score is larger
than the value of �) while the base performance is not

(a) (b)

Fig. 7. Illustration of the potential of the proposed tracking anchors on the
OTB100 dataset. (a) Success plots of OPE of MAT_potential. (b) Relationship
between the tracking capability and AUC.

good. The reason is that compared with the base tracker,
the color-based objectness method can provide higher
quality anchors in most cases.

2) The effect of proposed anchors becomes weak while the
base tracker is very strong (e.g., � > 0.8), because the
tracking anchor inherited from the previous prediction
achieve the best quality.

3) To a certain extent, the crossover point in Fig. 7(b) rep-
resents the upper bound of the potential of the proposed
anchors. Currently, on the OTB100 dataset, the tracking
capability of existing visual trackers generally lie in the
green region.

4) Theoretically, in Fig. 7(b), the curves at the right of
the crossover point should overlap (i.e., the AUC score
is equal to the value of �). Nevertheless, they do not
coincide with each other because of the scale errors that
are set in the third hypothesis.

H. Time Consumption Analysis

In this section, we will estimate the time consumption of
MAT on the OTB100 dataset. STAPLE is chosen as the base
tracker because of its real-time speed and high performance.
Besides the time consumption of STAPLE, two main facts
will impact the speed of MAT_STAPLE: 1) the number N
of proposed tracking anchors and 2) the size of the region
used to propose the tracking anchors. In order to analyze the
first factor, we run MAT_STAPLE with different values of
N in the whole image, and the corresponding trackers are
called MAT_STAPLE(N). For the second factor, we fix N
as 3 and narrow the region of proposing tracking anchors to
a square with (4 × max(wb, hb))

2 area, where (wb, hb) rep-
resents the width and height of the target. This is denoted
as MAT_STAPLE(3)S. The detailed results are provided in
Tables V and VI. The time consumption is estimated on
i7-6600K 4.0-GHz CPU. It can be seen as follows.

1) In Table V, MAT can improve the performance of
STAPLE [4] with acceptable time consumption. In
a 400×300 image, proposing tracking anchors and
anchor selection cost about 10 ms. Moreover, the time
comsuption is proportional to the number of anchors
and decided by the base tracker (e.g., roughly 3 ms
per anchor for STAPLE [4]). As shown in Table V,
MAT_STAPLE(1) can be implemented at real-time
speed. The DP and the overlap success (AUC) have a
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TABLE V
DP(%)/AUC(%) COMPARISON BETWEEN STAPLE [4] AND THE

CORRESPONDING COUNTERPARTS WITH DIFFERENT NUMBER N OF

ANCHORS ON THE OTB100 DATASET, WHICH IS DENOTED AS

MAT_STAPLE(N). FRAME-PER-SECOND (FPS)/TIME IS THE RUN-TIME

PERFORMANCE. THE FIRST AND SECOND BEST VALUES ARE

HIGHLIGHTED BY BOLD AND UNDERLINE, RESPECTIVELY

TABLE VI
DP(%)/AUC(%) COMPARISON BETWEEN MAT_STAPLE(3) AND

MAT_STAPLE(3)S WITH DIFFERENT SIZE OF THE REGION USED TO

PROPOSE TRACKING ANCHORS. FPS IS THE RUNTIME PERFORMANCE.
THE BEST VALUE IS LABELED BY BOLD

Fig. 8. Failure cases of proposing tracking anchors: gray sequences on the
OTB100 dataset and targets with an approximate monochromatic color on
the UAV123 dataset. The targets are marked with the red boxes. In the left
image, the distractors are marked with the yellow boxes. In the right image,
the enlarged area is shown in the green box.

slight decline while a large number of tracking anchors
are used. The reason may be that the employment of
more tracking anchors will lead to several search regions
away from the real target, which would introduce a few
distractors [24].

2) Table VI shows that MAT_STAPLE(3)S achieves
higher speed than MAT_STAPLE(3) but with puny
performance sacrifice. It means that a small range for
anchor proposals will restrain the ability of selectively
discovering tracking anchors. Hence, we can set dif-
ferent region sizes for proposing anchors to balance
robustness and speed.

I. Discussion About Failure Cases

We will discuss two scenarios in which the performance
of proposed tracking anchors will be weakened: 1) gray
sequences and 2) targets with an approximate monochromatic
color in color sequences. In the left image of Fig. 8, the track-
ing anchors are easily disturbed by the distractors because the
target only contains gray information. In the right image of
Fig. 8, the color histogram of the target is useless because
of its monochromatic color. In the procedure of proposing
anchors, the color information is used to build the object-
ness map. Therefore, the proposed method is recommended

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Fig. 9. DP plots over different attributes using one-pass evaluation (OPE)
on the OTB100 dataset. (a) Illumination variation. (b) Background clutter.
(c) Scale variation. (d) Out-of-plane rotation. (e) Occlusion. (f) Out of view.
(g) In-plane rotation. (h) Motion blur. (i) Fast motion. (j) Deformation. (k) Low
resolution.

for color images, and the anchor inherited from the previous
prediction is reserved to alleviate the problem caused by the
approximate monochromatic color.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 26,2022 at 18:13:34 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: MAT: MULTIANCHOR VISUAL TRACKING WITH SELECTIVE SEARCH REGION 7147

(k)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10. DP plots over different attributes using OPE on the Temple Color
dataset. (a) Illumination variation. (b) Background clutters. (c) Scale variation.
(d) Out-of-plane rotation. (e) Occlusion. (f) Out of view. (g) In-plane rotation.
(h) Motion blur. (i) Fast motion. (j) Deformation. (k) Low resolution.

J. Attribute-Based Evaluation

The plots of different attributes on the OTB100, Temple
Color, and UAV123 datasets are presented in Figs. 9–11. Under
different attributes, MAT generally improves the performance
of base trackers. We can have the following observations.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 11. DP plots over different attributes using OPE on the UAV123 dataset.
(a) Viewpoint change. (b) Scale variation. (c) Similar object. (d) Partial occlu-
sion. (e) Full occlusion. (f) Background clutter. (g) Out-of-view. (h) Low
resolution. (i) Illumination variation. (j) Fast motion. (k) Camera motion. (l)
Aspect ratio change.

1) Under the attributes of out-of-plane rotation and defor-
mation, unstable shape information may lead to tracking
drift. The proposed mechanism exploits the per-pixel
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color histogram score to estimate region objectness
score, and then proposes tracking anchors. Therefore,
the proposed anchors are insensitive to shape variations.

2) Under the attribute of occlusion, MAT also leverages
the tracker performance, because the multianchor visual
tracking mechanism allows the tracker to adjust its
tracking anchor so as to relocate the target after it
reappears.

3) Under the attribute of fast motion, the previous
prediction is often far from the real target in the cur-
rent frame. Because of the objectness analysis in a large
search range, the selectively proposed anchors can easily
catch fast moving objects.

VII. CONCLUSION

In this article, we proposed a real-time multianchor visual
tracking mechanism, which can effectively improve the track-
ing performance based on selective search region discovery.
Moreover, the anchor selection procedure, which provides a
chance to select the best tracking anchor in each frame, breaks
the limitation of solo depending on the previous prediction.
The experimental results showed that our multianchor visual
tracking mechanism can facilitate numerous kinds of track-
ing paradigms. Furthermore, it can discover the selective
search regions at real-time speed. Thus, using fast base track-
ers, the multianchor visual tracking mechanism can meet the
requirements of both real-time speed and high performance.
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