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Abstract. Knowing the 3D motions in a dynamic scene is essential to
many vision applications. Recent progress is mainly focused on estimat-
ing the activity of some specific elements like humans. In this paper, we
leverage a neural motion field for estimating the motion of all points in
a multiview setting. Modeling the motion from a dynamic scene with
multiview data is challenging due to the ambiguities in points of similar
color and points with time-varying color. We propose to regularize the
estimated motion to be predictable. If the motion from previous frames is
known, then the motion in the near future should be predictable. There-
fore, we introduce a predictability regularization by first conditioning
the estimated motion on latent embeddings, then by adopting a predic-
tor network to enforce predictability on the embeddings. The proposed
framework PREF (Predictability REgularized Fields) achieves on par
or better results than state-of-the-art neural motion field-based dynamic
scene representation methods while requiring no prior knowledge of the
scene.
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1 Introduction

Estimating motion in dynamic scenes is a fundamental and long-standing prob-
lem in computer vision [16]. Most of the existing 3D motion estimation works are
concerned with specific objects like humans [42]. Still, knowing the 3D motion
of all objects in a dynamic scene can be of great benefit to a number of vision
applications like robot path planning [8]. Tracking all points in the space with
only multiview data is obviously challenging, however, neural fields is a hot topic
that has emerged recently [59], bringing hope to breakthroughs for this problem.

Neural fields, also known as coordinate-based neural networks, have demon-
strated great potential in dynamic 3D scene reconstruction from multiview data
[51,59]. Coordinate-based representations not only naturally support fine-grained
modeling of the motion for points in space, but also require no prior knowledge
about the geometry and track all points in space. In this paper, we address the
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Fig. 1. Our method can handle topologically varying scenes and estimate physical
motion for all points in the space. Topologically varying means that the topology of
the scene can change, such as a new person entering the scene in (a). All points in the
space are tracked, such as the ball in (b). Only the sequence of images to be analyzed
is used and no prior knowledge is required in our framework.

problem of estimating 3D motion from multiview image sequences, for general
scenes and for all points in the space (Fig. 1).

Despite recent progress on neural fields-based dynamic scene representation
(e.g ., [25,11,36,41,21,57,52,20,37,63,56,9,10]), estimating 3D motion from multi-
view data remains challenging for the following reasons. First, motion ambiguity
exists among points with the same color, so one cannot confidently track in-
terchangeable points on non-rigid surfaces from visual observations alone (c.f .
possibility of position swapping). Second, the color of any point may change over
time. For example, spatially or temporally varying lighting conditions can blur
the notion of a point’s identity over time.

In this paper, we propose to regularize the estimated motion to be predictable
to address the aforementioned ambiguity issues. The key insight behind motion
predictability is that underlying motion patterns exist in a dynamic real-world
scene. Chaotic motions (e.g ., position swapping for similarly-colored points) are
not predictable and should be penalized. In our work, the motion in a scene is
“implicitly” regularized by enforcing predictability, which is intrinsically different
from explicitly designed regularizing terms, such as elastic regularization [36] and
as-rigid-as-possible regularization [52].
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State-of-the-art solutions use combinations of space-time radiance neural
fields and neural motion fields to model dynamic scenes, optimizing these fields
jointly over a set of visual observations in a self-supervised manner by com-
paring predicted images to actual observations. But vision-based supervision
alone typically results in noisy and poorly disentangled motion fields, c.f . afore-
mentioned ambiguities. Therefore, some recent works use data-driven priors like
depth [57] and 2D optical flow [21] as a regularization. In contrast, we propose
to improve motion field optimization through predictability-based regulariza-
tion. Instead of learning a motion field M that maps each 3D position p and
timestep t to a deformation vector ∆t→t+δtp, we condition the motion field on
a predictable embedding of the motion for queried time (noted ωt→t+δt), i.e.,
∆t→t+δtp = M(p,ωt→t+δt). These motion embeddings are either directly opti-
mized jointly with the space-time field over observations, or are inferred by a
predictor function P that takes a set of past embeddings and infers the next mo-
tion embedding. During scene optimization, we enforce each motion embedding
regressed from the observations to be predictable by our model P . Therefore we
promote the encoding of underlying motion patterns and penalize chaotic and
unlikely-realistic deformations. In summary, our contributions are as follows:

– We propose to leverage predictability as a prior w.r.t. the motion in a dy-
namic scene. Predictability regularization implicitly penalizes chaotic motion
estimation and can help solve the ambiguity of motion.

– We condition point motions on embedding vectors and design a predictor on
the embedding space to enforce motion predictability.

– We demonstrate the benefits of the resulting additional supervision (pre-
dictability regularization) on motion learning through a variety of qualitative
and quantitative evaluations.

– We provide insights into how the proposed framework can be leveraged for
motion prediction as a by-product.

2 Related Work

Neural fields. A neural field is a field that is parameterized fully or in part by
a neural network [59,6]. Neural fields are widely used for implicitly encoding the
geometry of a scene, such as occupancy [29] and distance function [35,7]. Our
method is built on the milestone work NeRF [30], in which the radiance and
density are encoded in neural fields. NeRF led to a series of breakthroughs in
the fields of 3D scene understanding and rendering, such as relighting [2,46,3],
human face and body capture [14,34,40,39,49,24], and city-scale reconstruction
[50,58,53,43]. A recent method also named PREF [15] is developed for compact
neural signal modeling.

Motion estimation and 4D reconstruction. Large-scale learning-based mo-
tion estimation from multiview data achieved impressive performance [22,42],
but most methods are constrained to tracking some specific objects such as
humans [42]. In this paper, we are concerned with estimating the motion of
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all points without access to any annotations, which is related to the 4D re-
construction problem where motion is usually estimated. Some methods have
been developed with known geometry information such as depth or point cloud.
DynamicFusion [32], Schmidt et al . [44], Bozic et al . [5], and Yoon et al . [61]
estimate motion from videos with depth. OFlow [33] and ShapeFlow [17] infer a
deformation flow field with the knowledge of occupancy. More recently, motivated
by the success of NeRF, a number of methods have been designed to reconstruct
4D scenes as well as motion directly from multiview data, which can be acquired
from a multi-camera system or a single moving camera. D-NeRF [41], Nerfies [36]
and NR-NeRF [52] set a canonical frame and align dynamic points to it. DCT-
NeRF [56] proposes to track the trajectory of a point along all sequences. NSFF
[21], VideoNeRF [57], and NeRFlow [9] propose to represent the dynamic scene
with a 4D space-time field, thus able to handle topologically varying scenes.
The 4D fields are under-determined, and precomputed data-driven priors are
usually needed to achieve good performance. HyperNeRF [37] proposes to align
frames towards a hyperspace for topologically varying scenes and achieves state-
of-the-art performance without the need of data-driven priors. These methods
are able to render visually appealing images for novel views and time, yet their
performance on 3D motion estimation has room for improvements.

Scene flow estimation. 3D motion field is also known as dense scene flow
[28,31,62]. Vedula et al . [54] introduced the concept and demonstrated a frame-
work for acquiring dense, non-rigid scene flow from optical flow. Basha et al .
[1] proposed a 3D point cloud parameterization of the 3D structure and scene
flow with calibrated multi-view videos. Vogel et al . [55] suggested to represent
the dynamic 3D scene by a collection of planar, rigidly moving, local segments.
More recently, Yang et al . [60] proposed a framework adopting 3D rigid trans-
formations for analyzing background segmentation and rigidly moving objects.

Predictability. The study of the predictability of time series data dates back to
[4,38], in which predictability is interpreted as the ability to be decomposed into
lower-dimensional components. The idea of extracting principal components as
predictability is adopted for blind source separation in [48]. Differential entropy
is used for measuring predictability in [12]. Our method shares a similar moti-
vation as the above methods in terms of discovering low-rank structures, while
predictability in our method is not explicitly defined but implicitly introduced
through a predictor network.

3 Preliminaries

Our method is built upon the NeRF framework [30] and is inspired by recent
progresses w.r.t. dynamic scenes [57,21]. For each 3D point p = (x, y, z) in the
considered space, we represent its volume density by σ(p), and its color from a
viewing direction d by c(p,d). In NeRF, these two attributes are defined as the
output of a continuous function F modeled by a neural network, i.e., (c,σ) =
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F (p,d). This neural field can be queried to render images of the represented
scene through volume rendering. For each camera ray r defined by its optical
origin o and direction d intersecting a pixel, we compute the color C(r) of said
pixel by sampling points along the ray, i.e., sampling pi = o+ id; then querying
and accumulating their attributes according to F . Overall, the expected color
C(r) of the ray r is:

C(r) =

∫ if

in

e−
∫ i
in

σ(pj)djσ
(
pi

)
c
(
pi,d

)
di, (1)

where in, if are near and far bounds. The integration in Eq. (1) is numerically
approximated by summing up a set of points on the ray.

For dynamic scenes, existing solutions can be roughly categorized into two
groups. Either methods model the motion and radiance with two distinct fields
[41,36], or they are regularizing the motion from a space-time field [21,57,9].
In the former solutions, the color of a point p at time t is represented by
Fk(M(p, t),d), where Fk represents the kth canonical time-invariant space and
M is a learned neural motion field defining the motion ∆p of any point p at time
t w.r.t. to their position in the canonical space. Our method falls into the latter
category, in which each point in the dynamic scene is represented by a space-time
field F (p,d, t). Unlike canonical space-based methods, for the space-time field
we need to specify the frame of F when joint training with a motion field M . We
opt for space-time field rather than canonical-space one for two reasons. First,
we presume that underlying patterns exist for the motion of a certain time range.
So canonical-frame-based motion estimation frameworks are not suitable, since
their motions are from the predefined canonical frame to another, whereas we
need the motion between a certain range of frames. Second, space-time fields are
more generic as they can handle non-existent geometry in the canonical frame
(e.g ., objects entering the scene mid-sequence). Note that for both categories, the
scene fields are optimized jointly leveraging observation-based self-supervision,
i.e., computing the image reconstruction loss for each time step t as:

Lrec =
∑
r

∥Ct
gt(r)−Ct(r)∥22, (2)

with Ct
gt is the observed pixel color and Ct is the color rendered from F and M .

4 Method

4.1 Overview

Our framework consists of three components: a neural space-time field F , a
motion field M and a motion predictor P . An overview of their interactions is
presented in Fig. 2. In our framework and implementations, we do not model
the viewing dependency effects with the space-time field, so the space-time field
outputs the color and occupancy for each point (x, y, z, t), whereas the motion
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Fig. 2. Overview of the proposed framework. Three networks are trained jointly: the
space-time field, the motion field and the predictor. The space-time field returns color
and occupancy for each point at a specific time. The motion field predicts the motion
of a point based on a motion embedding vector. The predictor generates the future
motion embedding based on previously observed embeddings.

field provides the motion of any point between two time steps, according to the
space-time field. Let the motion of point p = (x, y, z) from time t to t + δt be
∆t→t+δtp, then for p at time t we have:

(ct,σt) = F (p+∆t→t+δtp, t+ δt). (3)

The idea is that for a scene observed at time t+ δt, we can obtain the attributes
of p at time t by querying the space-time field with the point location at t+ δt.

In our framework, the motion network is conditioned on an embedding vector
ω (instead of queried timestep) and the motion can be written as ∆t→t+δtp =
M(p,ωt→t+δt), where ωt→t+δt depends on time t and interval δt. Replacing
the temporal variable t with a vector ω as input to M enables predictability
via embedding, as further detailed in Sec. 4.2. All networks and the embedding
vector w.r.t. time t are optimized using the reconstruction loss Lrec (c.f . Eq. (2)),
with color Ct predicted from F,M,ωt→t+δt according to Eqs. (1) and (3).

We define the predictor P as a function taking as input several motion em-
bedding vectors of previous frames and inferring the motion embedding vectors
for the future frames accordingly. Mathematically, we have ωt→t+δt = P (ωprev)
with ωprev = {ωt−(i+1)δt→t−iδt}τi=1 set of τ previous frames’ embeddings. For ex-
ample, in Fig. 2, the embedding vector ω3→4 for motion from t3 to t4 is predicted
from previous three embedding vectors, that is, P ({ω0→1,ω1→2,ω2→3}).

4.2 Neural Motion Fields with Motion Embedding

The motion field is conditioned on an embedding vector, sampled from a latent
space depicting motion patterns. Such embedding can be implemented in various
ways. The simplest one is to associate each motion of interest with a trainable
embedding vector. This technique has been widely used for conditioning neural
fields w.r.t. appearance [26] and deformation [36]. However, empirical studies
show that associating each motion with motion embedding frequently and sig-
nificantly slows down the convergence speed of the predictor, as demonstrated
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dot product

Predict Predict

Fig. 3. We use a set of basis vectors for the motion embedding (middle), rather than
associating each frame with a motion vector (left). The input and out space of the
predictor switches to the linear combination weights by using these shared basis vectors.
The comparison of training losses (right) indicates that the predictor converges faster
on the space of linear combination weights.

in Fig. 3. We presume that the phenomenon is caused by the large and un-
structured solution space brought by frame-wise motion embedding. To validate
the assumption and improve the convergence speed, we propose to reduce the
dimension of the input and output space of the predictor.

Inspired by mixture-of-experts-based prediction networks [47,23,13], we de-
sign a set B ∈ Rn×m of n embedding basis vectors, i.e., B = [b1, · · · ,bn]

T

with bi ∈ Rm basis vector. B is shared across all frames. Then the motion
embedding becomes ωt→t+δt = wt→t+δt · B, with w ∈ Rn optimizable linear
combination weights. Accordingly, we redefine the model P to receive and pre-
dict these weight vectors instead of the embedding ones, thus reducing its input
space and output space to Rn, i.e., with the dimensionality of basis vectors not
affecting the predictor anymore. In our experiments, we set n = 5 and m = 32,
so the dimension of the predictor’s output space is reduced from 32 to 5. An
illustration and comparison of the training losses between the two schemes are
presented in Fig. 3.

4.3 Regularizing with Motion Prediction

Our proposed solution makes it possible to complement the usual self-supervision
of space-time neural fields (through visual reconstruction only) by a regulariza-
tion term over motion. However, while predicting motion embeddings is straight-
forward, i.e., by simply forwarding the embedding vectors of previous frames into
P , leveraging P for the regularization of M is not trivial.

In our framework, motion embeddings can be acquired either from recon-
struction, i.e., optimizing each embedding along with other components (e.g .,
both the motion embedding ω3→4 = w3→4·B and the motion networkM(p,ω3→4)
can be optimized on observed images at t = 3, 4); or through the predictor (e.g .,

ω3→4 = P ({wt−1→t}3t=1) · B). We leverage this redundancy for regularization,
i.e., proposing a loss to minimize the difference between the self-supervised em-
beddings and their corresponding predicted versions:

Lpred = ∥P (wprev)−argmin
wt→t+δt

Lrec∥22, where wprev = {wt−(i+1)δt→t−iδt}τi=1. (4)
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Fig. 4. System optimization, demonstrated on a batch of 4 frames. Predictor P infers a
vector ω based on the preceding 3 frames; Lpred minimizes the difference between these
predicted embeddings and their sampled equivalents; whereas reconstruction loss Lrec

is applied to the predicted four frames, with and without motion reparameterization.

In the above equation, the first term P (·) represents the motion embedding pre-
dicted according to previous τ frames, and the second term argminwt→t+δt

Lrec

is the vector acquired from minimizing the reconstruction loss.
It is, however, impractical to compute this second term during training, since

the reconstruction problem can take hours to solve via optimization. We propose
instead to obtain wt→t+δt in an online manner, and to jointly optimize frame
weights w over both Lrec and Lpred at each optimization step. That is, at each
step, all current frame weights w are first used to compute Lpred and optimize
downstream models accordingly, and are then themselves optimized w.r.t. Lrec.
The details of implementing the two losses with batches of frames are introduced
in the next section.

4.4 Optimization

During optimization, we sample a short sequence of frames from the training set.
For simplifying the notations, we assume that the predictor takes τ = 3 frames
as input and predicts the motion of the next frame. An illustration is presented
in Fig. 4. Four consecutive frames (ti, ti+1, ti+2, ti+3) are first sampled from the
observed sequence and the corresponding embedding vectors ω are acquired as in
Sec. 4.2. Note that training images can be sampled from different synchronized
cameras if available.

We disentangle appearance- and motion-related information during optimiza-
tion by applying Lrec to images reconstructed both with and without motion
reparameterization. That is, we sample F for radiance/density values (ct,σt)
both as F (p+M(p,ωt→t+δt), t+ δt) and as F (p, t) (c.f ., Fig. 4).

5 Experiments

We qualitatively and quantitatively evaluate our method in this section. We
urge the reader to check our video to better appraise the quality of motion. The
following three datasets are used for evaluation:
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– ZJU-MoCap [40] is a multi-camera dataset, with videos of one person per-
forming different actions. Since each video sequence records a single human,
the scene is less topologically varying and we compare our method with
canonical frame-based representations of dynamic scenes. We use videos from
11 cameras for evaluation.

– Panoptic [18] includes videos from multiple synchronized cameras under
many different settings including multi-person activities and human-object
interactions. We select 4 challenging and representative video clips from the
31 HD cameras and denote them as Sports, Tools, Ian, and Cello. Each
clip has 400 frames and all the clips involve human-object interaction.

– Hypernerf [37] is a single-camera dataset, i.e., with one view available at
each timestamp. Unlike the previous two datasets that use static cameras,
in Hypernerf the multiview information is generated by moving the cam-
era around. Hypernerf is challenging not only because of the single-camera
setting, but also the topologically varying scenes.

Details about the clips (e.g ., starting and ending frame number) are included in
the supplementary. All the sequences are split into short intervals consisting of 25
frames. On each interval, the networks are trained using an Adam optimizer [19]
with a learning rate that decays from 5× 10−4 to 5× 10−6 every 50k iterations.
During training, the two losses are added with a balancing parameter, i.e., L =
Lrec + γLpred with γ set to 0.01 in all experiments. A batch of 1,024 rays is
randomly sampled from the selected frames for training the motion field and
the space-time field. We observe that using viewing direction d in F leads to
worse performance if the scene of interest mostly contains Lambertian surfaces.
In our experiments, the viewing direction is not taken as the input for the space-
time field, i.e., a space-time irradiance field [57]. The network structures of the
motion field and the space-time field are the same as in NeRF [30]. The predictor
consists of 5 fully connected layers with a width of 128 and ReLU activations.

5.1 Qualitative Evaluation

We visually compare the estimated motion in this section. Since neural mo-
tion fields tracks all points in the space, we randomly sample points and then
demonstrate their trajectory. Different sampling strategies are used for different
datasets. For ZJU-MoCap, we first sample a dense grid of points and then re-
move the empty points with σ < 20, then we randomly sample points from the
non-empty ones. For Panoptic, since background (walls and floors) is kept in the
scenes, we sample meaningful points near the persons in the scene, leveraging
provided people positions. For Hypernerf, since the scenes are all front-facing, we
sample points on the surfaces according to the depth generated by the space-time
field F from one view.

On Multi-camera Dataset. We first present our results on ZJU-MoCap in
Fig. 5. Since there is only one person in this dataset, the topology of the scene
roughly remains unchanged and canonical space-based methods can be applied.
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Starting frame Nerfies D-NeRF Ours

Fig. 5. Comparison of the estimated motion on the ZJU-MoCap dataset. Only one
person is captured for each sequence and we compare our method with canonical frame-
based methods Nerfies [36] and D-NeRF [41]. Motion for 20 frames is demonstrated.

Nerfies [36] and D-NeRF [41] are selected for comparison. As can be observed
from the images, our method can generate a smooth motion as opposed to the
rugged and noisy motions from the other two methods.

Fig. 6 demonstrate the performance of our method and competitors on the
Panoptic dataset. The scenes contain complex geometries and objects may oc-
cur or disappear in the middle of a sequence. Two space-time field-based meth-
ods, VideoNeRF [57] and NSFF [21], are selected for comparison. Our method
estimate the motion of both people and objects accurately, while VideoNeRF
presents chaotic results and the motion from NSFF are occasionally inaccurate.
The results on Figs. 5 and 6 validate our claim that our method can well track
all points in the space without prior knowledge of the scene.

On Single-camera Dataset. To further validate our method, we demonstrate
motion estimation in single-camera settings, which are more commonly encoun-
tered by dynamic-scene novel-view rendering methods. We consider the challeng-
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Starting frame VideoNeRF NSFF Ours

Fig. 6. Motion estimation comparison on the Panoptic dataset [18]. Motions estimated
by VideoNeRF are more chaotic than NSFF, possibly due to the 2D optical flow super-
vision adopted in NSFF. Our method faithfully estimates the motions of people and
objects, whereas NSFF fails to track some points, e.g ., the ball in Sports and Ian.



12 L. Song et al.

Starting frame VideoNeRF NSFF Ours

Fig. 7. Comparison of the estimated motion on the Hypernerf dataset [37]. We ran-
domly sample points on the surfaces and then demonstrate their the motions.

ing scenes captured by Hypernerf [37]. As shown in Fig. 7, we compare again to
VideoNeRF [57] and NSFF [21]. We note that our results are more temporally
consistent and accurate than competitors. These results highlight the practical
value of our method, able to accurately handle single-camera image sequences
captured in the wild.

5.2 Quantitative Evaluation

Quantitative evaluation is difficult for our task since manually labeling a dense
set of points in the space is expensive, if not unfeasible. We thus use the sparser
human body joints provided by the Panoptic dataset to quantify the accuracy
of the estimated motion. MPJPE [45] and 3D-PCK [27] are two widely used
metrics for evaluating 3D human pose tracking performance, but both of them
do not suit our task since our tracking requires as input the position of points at
the starting frame. We propose to calculate the tracking error across K frames
and use the averaged value as a metric. We denote the metric as mMPJPEK

(mean MPJPE), computed as:

mMPJPEK =
1

Nf

1

K

Nf∑
u=1

u+K∑
v=u+1

MPJPE(Pu→v, P
gt
v ), (5)

where K is the number of frames for evaluating the motion and Nf is the total
number of frames in the sequence. Pi→j represents the estimated positions for
the jth frame given positions for the ith one as inputs, and P gt

j the ground-truth
joint positions for the jth frame.

We report the mMPJPEK metric with K = 5, 10, 15 on the Panoptic dataset
in Tab. 1. Our method achieves more accurate tracking performance than the
other two methods except on Ian while tracking with 5 and 10 frames. NSFF
requires both 2D optical flow and depth, while VideoNeRF requires depth in-
formation. As a comparison, we do not use any data-driven prior to guide the
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Table 1. Quantitatively evaluating the estimated motion on the Panoptic dataset.
Locations of the body joints in the starting frame are used as the inputs and we
calculate the averaged tracking error for the body joints.

mMPJPE5 (cm) mMPJPE10 (cm) mMPJPE15 (cm)
VideoNeRF NSFF Ours VideoNeRF NSFF Ours VideoNeRF NSFF Ours

Sports 5.942 5.171 4.533 8.346 7.933 7.457 11.569 11.254 10.718
Tools 3.378 2.341 1.684 4.105 2.879 2.650 4.931 3.984 3.393
Ian 3.448 2.349 2.402 5.059 3.534 3.792 6.767 5.282 4.980

Cello 2.796 1.759 1.612 4.281 3.296 2.572 4.853 3.776 3.457

Starting frame

Tracked poses

GT poses
mMPJPE5=3.53 mMPJPE10=5.60 mMPJPE15=7.04

Fig. 8. Visualization of motion tracking results on the Panoptic dataset.

motion estimation module. Moreover, in Fig. 8 we visualize the tracked pose and
the ground truth pose on one sequence and compute the corresponding mMPJPE
metrics (Nf = 1 for one sequence).

5.3 Analysis of the Motion Predictor

We analyze the motion predictor P in two aspects: prediction accuracy and
transferability. For the accuracy evaluation, we compare the predicted future
locations of the body joints and the ground-truth future locations. The results
are demonstrated in Fig. 9. The training sequences are separated into 20 intervals
and we test the prediction results on each interval. The MPJPE of predicted body

The Last Observed Frame Ground-truth Future Frame

Future Frames

Fig. 9. Accuracy evaluation of the motion predictor. Left: Plotting of the MPJPE of
predicted future body joint locations. Horizontal lines are the mMPJPE15 results on
the corresponding scenes. Right: Visualization of predicted future motion of densely
sampled points on the last observed frames and the 10th ground-truth future frames.
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Sequence for training the predictor Evaluating the predictor on a new sequence

Fig. 10. Transferability of the motion predictor. We train the whole framework on the
left-side sequence, then we freeze the predictor and fine tune other models on the right-
side sequence. The next 10 frame motions are predicted from the last observed frame
(the right-side first image) and visualized. The other two images are real movements
in the future 5th frame and 10th frame.

joint locations are averaged over all the intervals and plotted. We can observe in
Tab. 1 that the model can predict the unseen motion of the next 5 time steps,
with a low error close to the the tracking error over actual observations.

We further demonstrate the transferability of the predictor in Fig. 10. Since
the predictor generates motion codes in a latent space, the same model should
work for motion sequences with similar patterns. We test the intuition on the
ZJU-MoCap dataset, on two sequences in which the person does similar actions.
We can observe from the right side of the figure that the predicted motions align
with the real movements. The results demonstrate that the predictor is indeed
transferable if the motions are similar.

6 Discussion

Limitations. Our method sometimes fail on non-rigid/monochromatic ele-
ments and the problem of motion estimation then gets underconstrained: Some
points may converge into the same point for the non-rigid case and it may be
hard to tell which part in the monochromatic area moved. We presume that a
more advanced (possibly pre-trained) motion prediction model could be lever-
aged. Moreover, while our method shows higher precision in estimating natural
motion (e.g ., dense human motion tracking), it is among our future work to
address some other challenging scenes (e.g ., scenes with chaotic particles).

Conclusion. We introduced a novel solution for the regularization and pre-
diction of 3D dense motion in dynamic scenes. Leveraging advances in neural
fields, we propose a combination of space-time and motion fields conditioned
on motion embeddings. Through predictability-based regularization over these
embeddings, we promote the encoding of scene-relevant motions and penalize
ambiguous and noisy deformations. We acknowledge that this scheme may not
benefit all types of scenes (c.f . above limitations), but it shows higher precision
in natural settings.
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