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A B S T R A C T

Domain adaptation is proposed to generalize learning machines and address performance degradation of models
that are trained from one specific source domain but applied to novel target domains. Existing domain adapta-
tion methods focus on transferring holistic features whose discriminability is generally tailored to be source-
specific and inferiorly generic to be transferable. As a result, standard domain adaptation on holistic features usu-
ally damages feature structures, especially local feature statistics, and deteriorates the learned discriminability.
To alleviate this issue, we propose to transfer primitive local feature patterns, whose discriminability are shown
to be inherently more sharable, and perform hierarchical feature adaptation. Concretely, we first learn a cluster
of domain-shared local feature patterns and partition the feature space into cells. Local features are adaptively
aggregated inside each cell to obtain cell features, which are further integrated into holistic features. To achieve
fine-grained adaptations, we simultaneously perform alignment on local features, cell features and holistic fea-
tures, within which process the local and cell features are aligned independently inside each cell to maintain the
learned local structures and prevent negative transfer. Experimenting on typical one-to-one unsupervised domain
adaptation for both image classification and action recognition tasks, partial domain adaptation, and domain-
agnostic adaptation, we show that the proposed method achieves more reliable feature transfer by consistently
outperforming state-of-the-art models and the learned domain-invariant features generalize well to novel do-
mains.

© 2021

1. Introduction

Domain shift is commonly encountered by machine learning practi-
tioners that models are trained in one particular source distribution
but applied to different but related target distributions. Generally do-
main shift causes performance degradations, e.g., an object recogni-
tion model trained using images of daylight can hardly generalize to
infrared images. Though state-of-the-art deep representations demon-
strate certain level of invariance to low-level variations, they are still
susceptible to domain shift [1], as we cannot manually label sufficient
training data that cover diverse application domains. To address such
performance drops, one typical solution is to further finetune the
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learned models on the current task. However, it may be prohibitively
difficult and expensive to obtain sufficient labeled data to properly
finetune the large-scale parameters employed by deep networks. In-
stead of recollecting labeled data and retraining learned models for
every possible new scenarios, unsupervised domain adaptation (UDA)
is proposed to improve model generalization ability by transferring
informative knowledge learned from one labeled domain, denoted as
source domain, to unlabeled novel domains, denoted as target do-
mains [1,2].

Among the UDA approaches to bridging different domains and alle-
viating domain shift, an important strategy is to learn domain-invariant
representations. For example, plenty of traditional methods with shal-
low features have been proposed to minimize domain discrepancy in
the shared subspace [3,4]. Recently, deep neural networks have been
exploited to map both domains into a domain-invariant feature space
and learn more transferable representations [2,5]. This is generally
achieved by optimizing the learned representations to minimize some

https://doi.org/10.1016/j.patcog.2021.108445
0031-3203/© 2021

https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445
https://www.sciencedirect.com/science/journal/00313203
https://www.elsevier.com/
mailto:zng@cs.zju.edu.cn
https://doi.org/10.1016/j.patcog.2021.108445
https://doi.org/10.1016/j.patcog.2021.108445


UN
CO

RR
EC

TE
D

PR
OO

F

2 J. Wen et al. / Pattern Recognition xxx (xxxx) 108445

measures of domain discrepancy, e.g., maximum mean discrepancy
(MMD) [6,7], reconstruction loss [8], correlation [9,10], moment [11],
or adversarial loss [1,2]. Among them, the adversarial learning based
domain adaptation methods have become increasingly prevalent be-
cause of their excellent performance.

To achieve a successful domain adaptation, two key properties of
the learned representations should be satisfied: discriminability and
transferability. The feature discriminability is generally induced by a
supervised training objective using available source labeled data while
the transferability is typically strengthened via domain-invariant fea-
ture learning. However, these two properties could be incompatible in
that standard feature transferability enhancement tends to be detrimen-
tal to the learned feature discriminability as shown in [13,14]. We pos-
tulate an important reason for that is that existing domain adaptation
methods generally adapt holistic features which are inherently of infe-
rior transferability. The holistic features, which are defined to capture
global semantics of samples, e.g., deep features from the final fully-
connected layers of deep networks, are usually tailored to capture task-
specific semantics and biased toward the source, thus hardly domain-

Fig. 1. Comparisons of (a) existing holistic feature adaptation and (b) the pro-
posed adaptation approach based on local feature patterns. The circles denote
source or target data samples and their holistic features (source: blue; target:
red). The trapezoids, diamonds, triangles, parallelograms and hexagons denote
different local feature patterns, upon which discriminative holistic features are
built. In (b), the local semantic “Table”, represented by triangles, is shared not
only between the “Real-world” and “Clipart” domains [12] but also among the
four different categories, namely “Desk lamp”, “Couch”, “Table” and “Com-
puter” (the solid lines indicate the most important local patterns for classifying
the samples). In contrast, none of holistic features are sharable among different
categories as shown in (a) (best viewed in color).. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
of this article.)

sharable or transferable to novel domains as shown in [15]. Standard
domain-invariant feature learning on biased holistic features is risky
and generally deteriorates the learned discriminative structures with
arbitrary transformations between the source and target, especially
when their supports are disjoint [16]. In challenging domain adapta-
tion tasks, e.g., partial domain adaptation [17] or domain agnostic
adaptation [18], negative transfer is shown to occur frequently. Instead
of focusing on such holistic features, we observe that primitive local
feature patterns, which are defined to capture local statistics, e.g., re-
gional “objects” of images or “sub-actions” of action sequences, are in-
herently more domain-sharable. We illustrate their comparisons in the
Fig. 1. As shown in Fig. 1 (a), samples of different labels from the
source domain “Real-world” and target domain “Clipart” [12] could
share none of the holistic features. However, as we can see from Fig. 1
(b), the local feature pattern “Table” is sharable not only across do-
mains but also among the four different categories, namely “Desk
lamp”, “Couch”, “Table” and “Computer”. But to be noted, the seman-
tics of local feature patterns are generic and do not necessarily corre-
spond to specific category labels. Upon the sharable local patterns, we
further build holistic features for final prediction, which are tailored to
be more task-specific and thus discriminative. These generic local fea-
ture patterns inherently bridge source and target domains with joint
source-target supports and could make more reliable feature transfer.

Motivated by the above observations, we propose a novel domain
adaptation approach that bridges source and target domains by learn-
ing transferable local feature patterns and with hierarchical feature
alignment, as shown in Fig. 2. Concretely, we first partition feature
space into cells by learning several typical local feature patterns using
samples from both domains, which are shared both across domains and
among different categories. Regarding to the residuals and similarity to
the typical local feature patterns, the local features are then adaptively
aggregated within each cell to obtain cell features, which are concate-
nated and normalized to build the final sample-level holistic feature. To
prevent the damage to the learned feature structures or discriminabil-
ity, hierarchical feature alignment is performed for fine-grained feature
adaptation. First, we adapt local features inside each local feature pat-
tern cell independently, which maintains the diversified local statistics
of each cell and reduces the influences of irrelevant features. We further
perform adaptation of cell features inside each cell, which can be re-
garded as re-weighted composites of local features with weights deter-
mined by the similarity of each local feature to the local patterns. Since
the above feature adaptation is performed over the domain-shared local
feature patterns with joint source-target support, the feature alignment
is easier in optimization and more reliable. Finally, we perform stan-
dard adaptation of holistic features which are aggregated from the local
and cell features. Built on the primitive local feature patterns, we ex-

Fig. 2. Architecture of the proposed method. typical local feature patterns are learned using data from both the source and target domains. Multi-level feature
alignments are performed to achieve fine-grained feature adaptation while maintaining learned discriminative local statistics (best viewed in color).
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pect such hierarchical feature adaptation to achieve more reliable fea-
ture transfer in varied domain adaptation tasks.

We summarize the main contributions as follows:

• We propose to learn primitive local feature patterns for
unsupervised domain adaptation, whose discriminability is
inherently more transferable than the typically-adopted holistic
features.

• We propose a hierarchical feature adaptation strategy to
achieve fine-grained feature alignment, through which
discriminative local feature structures are maintained and
negative transfer of irrelevant features is attenuated.

• Experimenting on the typical one-to-one domain adaptation for
image classification and action recognition tasks, challenging
partial domain adaptation [17] and domain-agnostic learning
[18], the consistently distinct improvements demonstrate the
superiority of the proposed method over state-of-the-art
approaches. Further, our learned domain-invariant features are
shown to generalize well to novel domains.

This paper makes a substantial extension to its conference version
[19] in all the three aspects of contributions above. 1) We show that be-
sides the local and holistic alignments, additional cell feature alignment
is necessary, and thus propose a novel hierarchical feature adaptation
strategy to achieve fine-grained feature alignment while maintaining
the learned discriminative structures in Section 3.2. 2) We further theo-
retically justify the proposed method in Section 3.4, and experimen-
tally show that it is able to reduce the upper bound of the expected tar-
get error in Section 4.4.2. 3) We show that the local feature patterns are
not limited to be spatial in images, but can also apply to temporal or
spatiotemporal patterns in action recognition tasks in Section 4.1.2 and
Section 4.1.3, respectively. 4) Beside the typical unsupervised domain
adaptation, we demonstrate that the learned local feature patterns also
enjoy more superior transferability thanholistic features on other do-
main adaptation tasks, i.e., partial domain adaptation, domain-agnostic
learning, and domain generalization in Section 4.2, Section 4.3 and
Section 4.4.1, respectively.

2. Related works

In practical applications, machine learning models usually have to
work on data of varied distributions, namely from different domains.
When the domain shift is large enough, a model trained on one domain
typically performs poorly on another. Supervised fine-tuning on novel
domains could be infeasible when labeled data in novel domains are
prohibitively difficult or expensive to obtain, and meanwhile minimal
amount of novel data usually causes model over-fitting. Unsupervised
domain adaptation is proposed to adapt source-learned model and gen-
eralize it to target domains only with additional unlabeled target data.

Domain shift is prevalently reduced by domain adaptation methods
through domain-invariant feature learning [20]. Previous methods
usually seek to align source and target feature through subspace
learning [3,4,21]. Recently deep domain adaptation approaches be-
come prevalent as deep networks can learn more transferable repre-
sentations [2,6,22]. Different measures of domain discrepancy have
been minimized to bring close source and target domains. Maximum
Mean Discrepancy (MMD) over (multi-layer) deep features between
source and target is previously used to reduce domain distribution di-
vergency [6,7,22]. Sun et al. propose to align the second-order statis-
tics of deep features across domains [9]. Moments matching is used
to transfer features learned from multiple source domains to one tar-
get domain [11]. The most prevalent approach is based on adversar-
ial learning by training an additional discriminator network to distin-
guish source features from the target ones and reducing domain shift
by encouraging feature extractors to produce features that are able to

confuse the discriminator [1,2,5]. There are also methods that com-
bine different measures, e.g., Rahman et al. propose to incorporate
correlation alignment along with adversarial training [10].

Besides feature transferability, increasing attentions are attached to
feature discriminability in order to enhance the two simultaneously.
Shu et al. show that feature distribution matching is a weak constraint
for successful domain adaptation and propose to enforce a cluster as-
sumption in feature space to prevent the classifier’s decision boundary
from crossing high-density feature regions [16]. Saito et al. propose to
pay attention to classifier decision boundary and maximize the classi-
fiers’ prediction discrepancy to align source and target features [23].
To prevent the influence of domain-invariant feature learning on fea-
ture discriminability, a two-stream architecture is proposed with each
stream operating in one domain [13]. Chen et al. [14] show that adver-
sarial feature adaptation could damage the original feature structures
and deteriorate feature discriminability, and propose to maintain the
source-learned feature discriminability during domain-invariant fea-
ture learning.

All these deep domain adaptation methods are built on holistic fea-
tures which are inherently of inferior transferability than local feature
patterns, which is the motivation of our work. In this paper, we propose
to build domain adaptation on local feature patterns, which are more
primitive and sharable. A closely related work is [24], which adapts im-
age patch features with MMD measuring domain divergency. Another
close work is [25], which proposes to focus on the most transferable lo-
cal regions via a attention module. The main difference between [25]
and our work is that we adaptively perform adaptation over all local re-
gions hierarchically, instead of just the regions selected by the attention
part. By paying attention to local or low-level features, DCAN [26] at-
tempts to learn domain-specific discriminative features by exciting dif-
ferent feature channels also via an attention-based strategy. We per-
form local and cell feature adaptation locally within each separated cell
for fine-grained feature alignment, which also shares the same spirit of
[5] in the sense of local statistic adaptation. However, it aligns the
holistic features locally within each category to respect the statistics of
each category. For the hierarchical feature adaptation strategy, DAN
[6], RTN [22], and [27] propose to simultaneously adapt deep holistic
features of multiple layers. However, they focus on matching the over-
all distributions of holistic features in each deep layer, without consid-
ering their diversified local statistics. This is the first paper to investi-
gate fine-grained adaptation of hierarchical features over primitive lo-
cal feature patterns.

Local Feature Aggregation There are various methods to aggre-
gate local features into holistic ones, such as vectors of locally aggre-
gated descriptors (VLAD) [28], bag of visual words (BoW) [29], etc.
Previously, these methods have usually been applied to aggregate
hand-crafted keypoint descriptors, such as SIFT, as a post-processing
step. Only recently have them been extended to encode deep convolu-
tional features in a end-to-end training manner [30,31]. In this paper,
we employ the end-to-end trainable NetVLAD [30] for local feature
aggregation, over which hierarchical feature adaptation is performed.
To be noted, the focus of this paper is not on the local feature aggre-
gation strategy but to explore approach to achieving reliable feature
transfer over the local features.

3. The proposed method

In this section, we present the proposed domain adaptation method.
Given labeled source domain data and unlabeled target
domain data ), the goal of unsupervised domain adaptation is to
learn adapted models that minimize the expected target prediction er-
rors. The source and target domain are sampled from joint distribution

and , respectively, with . Existing domain
adaptation methods typically bridge source and target domains by
learning domain-invariant holistic feature , namely achieving
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. However, holistic discriminability is usually tailored
to be biased towards the source domain and thus with inferior transfer-
ability, especially when the labeled source data are limited. Adapting
biased holistic feature tends to mixup up local feature patterns arbitrar-
ily and damages feature structures with deteriorated feature discrim-
inability.

To alleviate this issue, we build domain adaptation on more
sharable local feature patterns with hierarchical alignment for reliable
transfer. Concretely, we decompose holistic features with more prim-
itive and transferable local feature patterns , which parti-
tion feature space into cells. By adaptively aggregating local features,
we obtain cell features, which are further integrated into holistic fea-
tures. To achieve fine-grained feature alignment, we simultaneously
adapt local features, cell features and holistic features whilewith the lo-
cal and cell feature alignments performed inside each cell to maintain
the learned feature structures. Architecture of the proposed method is
illustrated in Fig. 2. In the following, we first describe the learning of
local feature patterns, and then present the proposed hierarchical fea-
ture adaptation strategy. The main notations used in this paper are
summarized in Table 1.

3.1. Learning local feature patterns

In this section, we learn transferable local feature patterns for reli-
able domain adaptation. We assume there are several typical and primi-
tive local feature patterns that are sharable both across domains and
among different categories, e.g., the common “objects” in different im-
ages or “sub-actions” in action sequences. We employ the end-to-end
trainable NetVLAD [30] to learn discriminative local feature patterns
and aggregate local features to obtain holistic features. We first learn an
initial cluster of typical local feature patterns and then adapt them for
cross-domain feature transfer. Given a collection of local features, we
perform k-means clustering to obtain clustering centers to initialize
the typical local feature patterns, . Each local feature
is then assigned a -dimensional similarity vector according to its dis-
tances to the local feature patterns, defined as:

(1)

which soft-assigns each local feature to the local pattern with
the similarity being proportional to its distances to the in the feature
space. ranges between 0 and 1, with the highest similarity value as-
signed to the closest local feature pattern. is a tunable hyper-
parameter (positive constant) and controls the decay of the similarity
responses to the magnitude of the distances. Note that for , is
hard-assigned to the nearest local feature pattern.

The NetVLAD encoding converts the multiple local features into a
single dimensional vector , describing the distribution of local
features regarding to the typical local feature patterns, which is for-
mulated as:

Table 1
Summary of used notations.
Notation Description Notation Description

X Input feature Y Input label
Subscript S Denote source Subscript T Denote Target
F Local feature N Number of local features

Holistic feature U Cell feature
C Local feature pattern S Similarity vector

Training loss Similarity decay weight
G Feature extractor D Feature discriminator

Weight of holistic adaptation Weight of cell adaptation
Weight of local adaptation Weight of sparse loss

(2)

where is -dimensional cell feature which is aggregated from lo-
cal features and defined as:

(3)

where and are the -th dimension of feature and local
feature pattern , respectively. is the residual of feature

to local feature pattern . denotes the number of input local fea-
tures. The intuition is that residuals record the differences between lo-
cal features and the typical local feature patterns. The residuals are ag-
gregated inside each of the local feature pattern cell, and the similarity
vector defined above determines the contribution of the residual of
each feature to the total cell residuals. The representation of each cell is
stacked and normalized into a dimensional holistic descriptor
[32]. As we can see, the aggregation of holistic feature is guided by
the similarity vector and thus independent of, either temporally or spa-
tially, the positional variations of the local features.

To encourage the local feature patterns to be more discriminative,
we enforce a clustering assumption over them with a sparse loss
which is defined as:

(4)

where is the information entropy threshold. is the similarity vec-
tor described in Eq. 1, but here we use a much smaller decay weight .
By minimizing the sparse loss, we expect sparse soft-assignments of lo-
cal features to the learned local feature patterns and thus less boundary
local features lying between different local feature pattern cells.

3.2. Feature adaptation

In this section, we perform hierarchical feature adaptation to
achieve fine-grained feature alignment and reliable domain adaptation.
We perform feature adaptation based on adversarial training. But to be
noted, our method could also apply to various domain discrepancy
measures [6,9,11]. We first describe the typical adversarial domain
adaptation and then present the proposed local feature adaptation, cell
feature adaptation and holistic feature adaptation.

3.2.1. Adversarial domain adapation
We employ adversarial training to match the source and target fea-

ture distributions and learn domain-invariant features [2,33]. The ad-
versarial domain adaptation procedure can be regarded as a two-player
game, where the first player is the domain discriminator that is
trained to distinguish the source features from the target features, while
the second player, the feature extractor , is trained to confuse the do-
main discriminator. By optimizing the discriminator to best discrimi-
nate target from source features, the feature extractor is guided to learn
features that are domain-invariant. Formally, the and are trained
with the following minmax procedure:

(5)

3.2.2. Local feature adaptation
Existing adversarial domain adaptation methods focus on aligning

holistic features, without considering the statistics of the more transfer-
able local feature patterns. As a result, local features tend to be poorly
mixed up by the typical brute-force holistic feature alignment. We pro-
pose to maintain the multi-mode local statistics of local features learned
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from the source by matching their distributions locally and indepen-
dently within each separated cells, which enables fine-grained local fea-
ture alignments and reduces the influences of irrelevant local features
to combat negative transfer. Besides, since the local features are soft-
assigned to the cells according to the semantic similarity, defined in
Eq. 1, the local feature alignment is invariant to the positional variation
of the local features.

We achieve local feature adaptation with a conditional adversarial
training [34]. We assign each local feature to its nearest local feature
pattern , where is a similarity vector, defined
in Eq. 1. Instead of focusing on the original local features, we propose
to match the distribution of their residuals to the assigned local feature
patterns, which could enable easier optimization with improved feature
alignments for the following two reasons. Firstly, both the holistic and
cell features are built on the residuals of the local features, thus align-
ments of the residuals directly promote the alignments of holistic and
cell features. Further, we observe that though the local features vary
greatly in value during training, their residuals to the cell centers,
which are also trained end-to-end, are relatively stable, namely with
more stable statistic gap across domains, which enable easier domain-
invariance learning.

In addition, we progressively align the local features within each
cell by re-weighting the adversarial adaptation loss, according to their
similarity to the typical local feature patterns. This is because there
could be many boundary local features lying between the cell patterns,
and strong adaptation loss would mislead the local features to be ini-
tially assigned to the incorrect cells, thus producing false feature align-
ment. The training objective is formulated as:

(6)

where and denote the local features of source sample and
target , respectively, and and are the assigned local feature pat-
terns, with index of and , respectively. is the discriminator
trained to distinguish source and target local features.

3.2.3. Cell adaptation
Well-aligned local feature cannot necessarily guarantee alignment

of the cell features, which are re-weighted composite of local features.
As shown in Fig. 2(b), there could be multiple local features of a sample
assigned to one cell. Though the local features are well aligned within
the across domains as a whole, the cell feature distribution and
could still be distinct. To achieve fine-grained feature alignment, we
further perform cell feature adaptations. In the same spirit to respect
the local statistics of each cell, we employ the conditional adversarial
training to adapt the cell features, which is formulated as:

(7)

where and denote the aggregated cell feature from cell of
source sample and target sample , respectively. is the discrimi-
nator trained to distinguish the source from the target cell features.

3.2.4. Holistic adaptation
While the above domain-invariance learning over local and cell fea-

tures brings closer the source and target, domain shift could still linger
in the holistic features. In this section, we perform adaptation on holis-
tic features. We share the source-learned classifier and learn domain-
invariant holistic feature in a typical adversarial training procedure:

(8)

where and denote the holistic feature of source sample and
target sample , respectively. is the discriminator trained to distin-
guish the source from the target holistic features.

To be noted, the main goal to this paper is to explore domain adap-
tation over local feature patterns. Therefore, we do not additionally
consider conditional shift in the classifier, as in [16,35], or perform
structural regularizations over the holistic feature statistics, e.g., clus-
tering assumptions [16,36]. Our method is reasonably expected to
make a good complement to these methods in practice for stronger
models by performing the proposed local feature structure preserved
domain adaptation.

3.3. Network training

To learn discriminative features that are transferable across do-
mains, we train the network with the following objective:

(9)

where , a typical cross-entropy loss for the
classification task, is the source-domain supervised training objective
for feature discriminability and optimized using the available source la-
beled data. , and are the domain-invariant feature learning ob-
jective to reduce domain shift. is the sparse loss to encourage local
feature patterns to be more discriminative. , , and are hyper-
parameters that trade-off the objectives in the unified optimization
problem.

We optimize the network in three steps. Firstly, we perform stan-
dard adversarial training to adapt the holistic features as done in DANN
[1]. By firstly bringing closer the source and target in holistic feature
space, the domain shift of local features can also be alleviated, as shown
in Fig. 5(d), based on which we expect to learn more domain-sharable
typical local feature patterns. Then, we perform K-means clustering
over the local features that are from both the source and target do-
mains, initialize the typical local feature patterns with the clustering
centers, and train the classifier to minimize source supervised loss while
keeping the layers of the backbone before the local feature aggregation
layer frozen. Finally, we jointly train the classifier, feature extractor,
and the typical local feature patterns with the final objective in Eq. 9.

Fig. 5. The t-SNE visualizations of holistic and local features learned by the fine-tuned AlexNet in (a) and (c) and by DANN in (b) and (d), respectively, on the
task (blue: A, red: W, best viewed in color). In (a) and (b), the category labels are indicated using different markers. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Theoretical justification

In this section, we justify that our method reduces the upper bound
of the expected error on the target samples based on the theoretical
analysis of domain adaptation [20]. Given the source domain and the
target domain , let be the domain-invariant feature and the hy-
pothesis class, the probabilistic error of hypothesis on the target do-
main is upper-bounded by the following three terms:

(10)

where 1) denotes the expected source-domain error which can
be easily minimized using available source labels; 2)
measures domain discrepancy between the two domains w.r.t. a hy-
pothesis set ; 3) , the error of the ideal hypothesis on both domains.
The is defined as ,
where and are labeling functions for the source and target do-
mains, respectively. Most existing domain adaption methods treat the
third term to be negligibly small. However, as shown in [14] and Fig. 4,
while standard domain adaptation methods are able to reduce the sec-
ond term (domain discrepancy), the third term, especially the target-
domain error, tends to be unboundedly enlarged. This is because the
learned feature discriminability would inevitably be damaged during
the adaptation.

We postulate that an important reason of why standard feature
transferability enhancement is generally harmful to the learned dis-
criminability is that the holistic feature discriminability is tailored by
the source labeled data to be biased, thus with inferior transferability.
Standard domain adaptation of biased holistic features tends to mix up
local feature structures arbitrarily as shown in Fig. 5(d), which weakens
feature discriminability, especially when the source-target supports are
disjoint [16].

To maintain the source-learned feature discriminability, we perform
hierarchical feature adaptations upon local feature patterns. Each holis-
tic feature is decomposed with local feature patterns ,
which are more primitive and transferable. We preserve the learned lo-

cal statistics by additionally performing local adaptations indepen-
dently inside each cell , which also promotes the transfer of relevant
local feature patterns and prevents the negative transfer of irrelevant fea-
tures. As shown in Fig. 6 and Fig. 4, our method achieves fine-grained
feature alignment and significantly reduces the second term in Eq. 10
(domain discrepancy), respectively, while keeping the third term (fea-
ture discriminability) negligibly deteriorated, thus reducing the upper
bound of the target error.

4. Experiments

To evaluate the reliability of the proposed domain adaptation
method, we experiment with three settings: 1) typical one-to-one unsu-
pervised domain adaptation where domain adaptation is performed
from one source domain to one target domain, 2) partial domain adap-
tation where the target label space is a subset of the source domain, and
3) domain-agnostic adaptation which is a more difficult but practical
problem of learning from one labeled source domain and adapting to
severalunlabeled target domains.

To investigate the effectiveness of the proposed hierarchical feature
adaptation, we evaluate our method with different variants, they are, 1)
Ours(H), which only aligns holistic features, 2) Ours(L+H), which
aligns both local and holistic features, 3) Ours(C+H), which aligns both
cell and holistic features, 4) Ours(L+C+H), which simultaneously
aligns local, cell and holistic features as proposed. To show the impor-
tance of the re-weighting of local adaptation loss, we also evaluate Ours
(L+H, w/o rw), which performs adaptation without re-weighting the
local adversarial loss. Besides, we evaluate Ours(L+H, ori), which
aligns the original local features, to verify that alignment of local resid-
uals promotes stable training and alignments of cell and holistic fea-
tures.

4.1. One-to-one unsupervised domain adaptation

In this section, we evaluate the proposed method on the typical one-
to-one unsupervised domain adaptation . We experiment on both image
classification and action recognition tasks. The local feature pattern
learning and local feature aggregation are performed on features with

Fig. 4. Analysis of the upper bound of the target error. Local and cell feature adaptation enable Ours(L+C+H) to reduce domain discrepancy -distance signifi-
cantly while keeping the feature discriminability less attenuated, thus reducing the upper bound of target error.

Fig. 6. The t-SNE visualizations of (a) adapted holistic features of Ours (H), (b) adapted holistic features of the proposed full model Ours (L+C+H), (c) adapted cell
features of the full model Ours (L+C+H), (d) adapted local features of the full model Ours (L+C+H) on the task. Source A: blue, and target W: red, best
viewed in color. In (a) and (b), the category labels are indicated using different markers. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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varied semantics, namely on “spatially” local 2D convolutional features
of the image recognition task, on “spatiotemporally” local 3D convolu-
tional features of the action recognition task with RGB videos, and on
“temporally” local sequential features of the skeleton-based action
recognition.

4.1.1. Image classification
Setup We compare to varied domain adaptation methods to com-

prehensively verify the effectiveness of the proposed methods, in-
cluding both traditional domain adaptation methods using subspace
alignment [3,4] or component analysis [21], and end-to-end deep
domain adaptation methods. For deep domain adaptation, we report
methods with a variety of domain discrepancy measures, including
DAN with maximum mean discrepancies (MMD) on multiple feature
layers [6], D-CORAL with second-order statistics [9], and RTN with
MMD on hierarchically fused features [22]), and the adversarial
learning based DANN [1], ADDA [2], JAN [7], CDAN-M [34], GCAN
[37], DCAN [26], CAADA [10]. For deep domain adaptation, both
one-layer (D-CORAL, DANN, ADDA, and CDAN-M) and multi-layer
(DAN, RTN, DCAN) holistic feature adaptation methods are com-
pared. To further study the transferability of holistic features, we
also report the performance of the typical adversarial domain adap-
tation method DANN with the fully-connected layers randomly ini-
tialized, denoted as DANN(random). We experiment on the most
popular Office-31 dataset [38] and the challenging Office-home
dataset [12].

Office-31 [38]. This dataset is the most popular for visual domain
adaptation. It consists of 4652 images from 31 categories with three
different domains: Amazon (A), with 2817 images from amazon.com,
Webcam (W) and DSLR (D), with 795 images and 498 images taken by
web camera and digital SLR camera in different environmental set-
tings, respectively.

Office-home [12]. This is a challenging domain adaptation dataset,
which comprises 15,588 images with 65 categories of objects in office
and home settings. There are 4 significantly different domains: Art (Ar)
with 2427 painting, sketches or artistic depiction images, Clipart (Cl)
with 4365 images, Product (Pr) containing 4439 images and Real-
world (Rw) with 4357 regularly captured images. Some example im-
ages are shown in Fig. 3.

Office-Caltech10 [3]. This dataset contains the 10 common cate-
gories shared by Office-31 and Caltech-256 datasets, as shown in Fig. 3.
Besides the Amazon, DSLR, and Webcam, it includes a novel domain:
Caltech (C), which are sampled from the Caltech-256 dataset.

Implementation Details
We use the AlexNet network, pre-trained from the ImageNet, as the

feature extractor. The local feature pattern learning and local feature
aggregation are performed on the last convolutional layer where spa-
tially local semantics are learned. It is because this feature layer
achieves the best performance, which is consistent with the conference
version [19]. We share the parameters of the source and target feature
extractors. We keep the number of local feature patterns fixed, that is

. Model performance is non-sensitive to the cluster number , as
shown in the conference version [19]. But larger calls for stronger lo-
cal/cell feature discriminators accordingly to distinguish the diversified
local statistics. For local feature aggregation, we use a large
to encourage independent residual accumulation within each local fea-
ture pattern cell. We use a small similarity decay and a small
sparsity threshold . For adversarial feature adaptation, all fea-
ture discriminators , , and consist of 3 fully connected layers:
two hidden layers with 2048 and 2048 units, respectively, followed by
a final discriminator output layer. The model is implemented in Tensor-
flow framework and optimized using Adam with initial learning rate of
0.001 for the classifier layers and 0.0001 for the pre-trained layers. If
not explicitly pointed out, the hyper-parameters settings also apply to
the following parts. The reported results are averaged from 5 random
runs.

Experimental Results We report the results on the Office-31 and Of-
fice-home datasets in Table 2 and Table 3, respectively. The proposed
model Ours(L+C+H) achieves consistent improvements over the
compared methods. End-to-end deep domain adaptation methods
learn more transferable features and show significant advantages over
the traditional approaches, i.e., TCA, SA and GFK. Adversarial domain
adaptation methods outperform D-CORAL, DAN, RTN, which are with
traditional domain discrepancy measures. Comparing to the adapta-
tion of multi-layer holistic deep features in DAN, RTN and JAN, the
proposed Ours(L+C+H) shows significant advantages, which verify
the transferability of local feature patterns.

When the holistic fully-connected feature layers are randomly ini-
tialized, DANN suffers averaged performance drops of on the Of-
fice-31 and on the Office-home. The performance drops are more
distinct when plain or less diversified domains, e.g., DSLR or Webcam in
the Office-31, act as the source. The results show that when the holistic
fully-connected layers are tailored to be source-specific or biased by the
limited source labeled data, e.g., no available large-scale pre-training
data, it is generally difficult for the learned holistic discriminability to
be reliably adapted. The distinct performance gaps between DANN
(random) between Ours (H), in which there are hidden no fully-
connected layers, also show the superiority and wide applicability of
employing local feature patterns for domain adaptation.

The introduced local and cell feature adaptation together bring Ours
(L+C+H) averaged performance improvements of on the Office-
31 and on the Office-home over the holistic-only Ours(H). The ad-
vantages of the proposed method are more obvious when more diversi-
fied domains are included in the adaptation, e.g., the Amazon in the Of-
fice-31 and Realworld in the Office-home, in which case more diversified
local feature patterns can be learned and transferred.

Adaptive re-weighting of local adaptation loss according to the se-
mantic similarity brings Ours(L+H) performance improvements over
Ours(L+H, w/o rw) of on the Office-31 and on the Office-
home. Further, the average variance of Ours(L+H, w/o rw) on the Of-
fice-31 is 0.43, which is much larger than the 0.23 of Ours(L+H) on the

Fig. 3. Example images (“bikes”) of Office-Caltech [3] and Office-home [12] datasets.
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Table 2
Accuracy ( ) on the Office31 dataset for the one-to-one unsupervised domain adaptation task.
Method A W W D D W A D W A D A Avg

TCA [21] 56.9
SA [4] 59.7
GFK [3] 63.4
AlexNet 70.1
D-CORAL [9] 72.1
DAN [6] 72.9
RTN [22] 73.7
DANN [1] 74.3
ADDA [2] 74.7
JAN [7] 76.0
CDAN-M [34] 77.7
DCAN [26] 78.2
CAADA [10] 78.3
DANN(random) [1] 68.6
Ours(H) 75.4
Ours(L+H, w/o rw) 76.4
Ours(L+H, ori) 77.1
Ours(L+H) 77.5
Ours(C+H) 78.0
Ours(L+C+H)

Table 3
Accuracy ( ) on the Office-home dataset for the one-to-one unsupervised domain adaptation task.
Method Ar:Cl Ar:Pr Ar:Rw Cl:Ar Cl:Pr Cl:Rw Pr:Ar Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg

AlexNet 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3
DAN [6] 31.7 43.2 55.1 33.8 48.6 50.8 30.1 35.1 57.7 44.6 39.3 63.7 44.5
DANN [1] 36.4 45.2 54.7 35.2 51.8 55.1 31.6 39.7 59.3 45.7 46.4 65.9 47.3
JAN [7] 35.5 46.1 57.7 36.4 53.4 54.5 33.4 40.3 60.1 45.9 47.4 67.9 48.2
CAADA [10] 35.3 46.2 56.6 34.9 51.8 34.9 40.0 60.2 47.8 44.5 67.9 48.2
MSTN [36] 34.9 46.2 36.6 55.0 55.4 33.3 41.7 60.7 47.0 45.9 68.3 48.5
CDAN-M [34] 38.1 50.3 60.3 39.7 56.4 57.8 35.5 43.1 63.2 48.4 48.5 71.1 51.0
GCAN [37] 36.4 47.3 61.1 37.9 57.0 35.8 42.7 64.5 49.1 72.5 51.1
DCAN [26] 39.1 51.6 62.2 57.6 58.4 35.7 43.2 63.7 49.3 48.8 52.0
DANN (random) [1] 32.2 38.7 50.5 31.4 46.7 50.3 27.3 35.8 54.8 42.6 43.2 62.8 43.0
Ours(H) 37.5 45.7 56.1 36.6 52.7 55.5 32.8 39.8 60.9 47.4 46.9 68.8 48.4
Ours(L+H, w/o rw) 37.9 46.5 57.4 37.3 53.0 55.2 33.2 39.2 60.3 48.0 47.2 69.4 48.7
Ours(L+H, ori) 38.0 47.1 57.8 38.1 53.3 55.4 35.2 40.1 62.5 49.2 48.1 70.2 49.6
Ours(L+H) 38.6 47.9 58.5 38.6 53.7 55.9 35.3 40.2 63.1 49.3 48.2 70.7 50.0
Ours(C+H) 39.1 51.7 62.6 39.5 55.4 56.7 35.5 41.8 63.9 49.8 49.5 71.8 51.4
Ours(L+C+H) 40.1 56.9 57.9 72.3

Office-31. Adaptive re-weighting enables progressive adaptation, which
promotes stable optimization and prevents false feature alignment.

Instead of aligning local features in the original feature space, as
done in Ours(L+H, ori), Ours(L+H) achieves improvements over it of

on both the Office-31and Office-home. The improvements of Ours
(L+H) over Ours(L+H, ori) are more distinct on tasks where cell align-
ment plays an important role, e.g., on the Ar Pr task of Office-
home. This is because residual alignment is able to promote cell and
holistic feature alignments.

4.1.2. Action recognition on RGB videos
Setup We evaluate the proposed method on action recognition task

using RGB video and learn transferable spatiotemporal local feature
patterns for domain adaptation. We experiment on the UCF-Olympic
and UCF-HMDB [39] datasets.

UCF-Olympic [39]. This dataset consists of the shared 6 categories
of Olympic dataset and UCF50 dataset, namely “Basketball”, “Pole
vault”, “Tennis serve”, “Diving”, “Clean jerk”, and “Throw discus”. The
videos in Olympic mainly come from the Olympic Games with the ac-
tions performed by professional athletes under specific platforms. How-
ever, the UCF50 are performed in unconstrained scenarios, by unpro-
fessional individuals.

UCF-HMDB [39]. This dataset comprises the 12 categories of the
overlapping categories between the UCF101 and HMDB51 dataset. The

actions of HMDB are performed in more diversified settings and with
more varied camera angles than the UCF101, thus more challenging.
We follow the official protocol to split the training and validation sets
to evaluate the domain adaptation performance.

Implementation Details An inflated 3D (I3D) ConvNet pre-trained
from the Kinetics dataset [40] is used to extract spatiotemporal fea-
tures from RGB videos. We perform local feature patterns learning and
local feature aggregation on the last convolutional layer, where spa-
tiotemporally local semantics are learned. For the I3D net, we follow
the same implementations as in [40]. The same feature discriminators
and training hyper-parameters as the above Image Classification task
are used.

Experimental Results The results of action recognition on RGB videos
are reported in Table 4. We compare to the typical unsupervised do-
main adaptation methods DANN [1], JAN [7], and MCD [23], all of
which adapt the holistic features before the classifier. The TA N [39]
performs multi-level feature adaptations to reduce domain shift in
frame-level features, temporal dynamics, and video-level holistic fea-
tures. As shown in Table 4, transferring from UCF to Olympic (or
HMDB to UCF) is easier than transferring from Olympic to UCF(or UCF
to HMDB) because UCF(or HMDB) is more diversified, and the learned
features are less biased and thus more transferable. Local and cell fea-
ture adaptations with local spatiotemporal feature patterns enable Ours
(L+C+H) to achieve an improvement of 2.8% over the holistic only
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Table 4
Results of one-to-one unsupervised domain adaptation on action recognition
with RGB videos.
Method UCF

Olympic
Olympic
UCF

UCF
HMDB

HMDB
UCF

Avg

DANN [1] 84.1
JAN [7] 84.4
MCD [23] 86.5
TA N [39] 78.3 81.8 87.8
Ours(H) 86.1
Ours(L+H) 87.9
Ours(C+H) 88.2
Ours

(L+C+H)

model Ours(H) and outperform DANN, JAN, and MCD. Comparing to
the multi-level feature adaptation of TA N that adapts spatial (image)
features and temporal dynamic features separately, our method directly
adapts the local spatiotemporal patterns (“sub-actions”) and achieves
an improvement of 1.1%.

4.1.3. Skeleton-based action recognition
Setup We experiment on the CMU-HDM05 dataset for the skeleton-

based action recognition task. We select the shared 9 action categories
of CMU dataset and HDM05 [42], namely “cartwheelǥ, “grabǥ,
“jumpǥ, “pick”, “punch”, “run”, “sit”, “throw” and “walk” (“walk
back”). 3D coordinates of 31 joints are recorded in both the CMU and
HDM05 while with some differences in the joint position between
them. The sequences of HDM05 are performed by 5 actors while the
CMU by 144 non-professional actors with larger intra-class diversities
and viewpoint variations. We follow the standard split of training and
test sets for HDM05 and CMU dataset as in [42].

Implementation Details A two-layer bidirectional GRUs network with
each layer of 800 hidden unites pre-trained from the CMU dataset is
used to model the temporal dependency of the skeleton sequences. We
perform local feature patterns learning and aggregation on the outputs
of each time step of the last GRUs layer, where temporally local seman-
tics are learned. We follow the data pre-processing strategy and net-
work implementations as in [42]. The same feature discriminators and
training hyper-parameters as the above Image Classification task are
used.

Experimental Results The results of skeleton-based action recognition
are reported in Table 5. The proposed Ours(L+C+H) consistently out-
performs the compared state-of-the-art domain adaptation methods
DANN [1], DSN [41], ADDA [2] and MCD [23]. The same as the action
recognition on RGB videos above, transferring from challenging source
domain (CMU dataset) to plain domain (HMDB05) is more reliable be-
cause the learned features would be less biased and more transferable.
Local and cell feature adaptation promote positive transfer of discrimi-
native local spatiotemporal patterns across domains, bringing Ours
(L+C+H) an averaged improvement of over the holistic-only
model Ours(H).

Table 5
Results of one-to-one unsupervised domain adaptation on skeleton-based ac-
tion recognition.
Method CMU HMD05 HMD05 CMU Avg

Two-layer GRUs 78.0
ADDA [2] 83.2
DANN [1] 85.3
DSN [41] 86.8
MCD [23] 87.8
Ours(H) 85.7
Ours(L+H) 88.3
Ours(C+H) 87.9
Ours(L+C+H)

4.2. Partial domain adaptation

In this section, we evaluate the effectiveness of the proposed method
on the more practical and challenging partial domain adaption task
where the source domain is assumed to be diverse enough and the tar-
get label space is a subspace of the source label space [17]. In this case,
many source points in the feature space (semantic features) are irrele-
vant to the target domain, which tends to cause negative transfer of
holistic features with standard domain adaptation approaches.

4.2.1. Setup
We experiment on the Office-31 dataset [38], with the source do-

main containing the whole 31 categories while the target domain only
includes the 10 categories shared by the Office-31 and Caltech-256, as
done in [17]. We evaluate with the following six transfer tasks:
A31 W10, D31 W10, W31 D10, A31 D10, D31 A10 and
W31 A10.

4.2.2. Experimental results
The results of partial domain adaptation are shown in Table 6. Nega-

tive transfer occurs on the typical adversarial domain adaptation
method DANN which is outperformed by the finetuned AlexNet. The
SAN is specially designed for partial domain adaptation and attempts to
get rid of the negative transfer of irrelevant features by selecting out the
outlier source features. The proposed method adapts local features and
cell features within each separated local cell to respect the local statistic
of each cell, which promotes the positive transfer of domain-sharable
local feature patterns and reduces the influences of irrelevant features.
As shown in Table 6, with the introduced local feature and cell adapta-
tion, Ours(L+H) and Ours(C+H), reduce the negative transfer signifi-
cantly over Ours(H), with improvements of and , respectively.
The combination of the two brings Ours(L+C+H) a considerable aver-
aged improvement of over the holistic-only model Ours(H). When
combined with the SAN, we are able to achieve the state-of-the-art per-
formance.

4.3. Domain-agnostic adaptation

In this section, we evaluate the transferability of the learned local
feature patterns on the domain-agnostic learning task [18], a more dif-
ficult and practical problem of adaptation from one labeled source do-
main to multiple target domains in which both the category and do-
main labels are unavailable. For examples, the source domain might be
Amazon while the target be a combination of Dlsr, Webcam, and Cal-
tech. We argue that safely transferable features should be safely applic-
able across multiple target domains. We experiment on the Office-
Caltech10 dataset [3]. The results of domain-agnostic adaptation are
shown in Table 7. Our method achieves performance comparable to the
state-of-the-art method DADA which is specifically designed for this

Table 6
Accuracy ( ) of the partial domain adaptation task on the Office31 dataset.
Method A31

W10
D31
W10

W31
D10

A31
D10

D31
A10

W31
A10

Avg

AlexNet 58.5 95.1 98.1 71.2 70.6 67.7 76.9
DAN [6] 56.5 71.9 86.8 51.9 50.4 52.3 61.6
DANN [1] 49.5 93.6 90.4 49.7 46.7 48.8 63.1
RTN [22] 66.8 86.8 99.4 70.1 73.5 76.4 78.8
Ours(H) 65.9 94.9 93.6 66.3 65.8 64.3 75.1
Ours(L+H) 68.5 95.2 96.7 73.2 74.6 74.8 80.5
Ours(C+H) 67.7 94.7 96.2 73.3 73.8 72.3 79.7
Ours(L+C+H) 72.3 95.9 98.3 74.6 75.4 75.3 82.0
SAN [17] 80.0 98.6 100.0 81.3 80.6 83.1 87.3
Ours

(L+C+H)+SAN
[17]
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Table 7
Accuracy ( ) of domain-agnostic adaptation task on the Office31 dataset. The
model is trained using data from one labeled source domain and multiple un-
labeled target domains.
Method A C,D,W C A,D,W D A,C,W W A,C,D Avg

AlexNet 85.2
RTN [22] 85.1
JAN [7] 84.5
DANN [1] 87.9
Ours(H) 88.5
Ours(L+H) 88.8
Ours(C+H) 89.0
Ours(L+C+H) 89.5
DADA [18]

task through explicit feature disentanglement. Negative transfer occurs
in the standard domain adaptation methods RTN and JAN, both of
which adapt multi-layer holistic deep features. With the transferable lo-
cal feature patterns, Ours(H) outperforms DANN, and the introduced lo-
cal and cell feature adaptation bring Ours(L+C+H) an averaged im-
provement of over the holistic-only Ours(H).

4.4. Discussions

4.4.1. Feature generalization
We study the cross-domain generalization ability to evaluate the

transferability of the learned domain-invariant features on the Office-
Caltech10 dataset. We postulate that a safely transferable feature is able
to generalize to multiple novel domains. We perform adaptation from
one source domain to one target domain, and evaluate the performance
of the learned features in novel unseen domains. For example, we may
use the Dslr as the source domain and Amazon as the target domain, and
after the one-to-one adaptation, the feature transferability is evaluated
in the Webcam and Caltech combined. We experiment with four repre-
sentative scenarios which are built based on the complexity of source
and target domains. The results are reported in Table 8. To be noted,
Dslr and Webcam are small and plain while Amazon and Caltech are
more complex and diversified. As we can see, DANN improves the per-
formance over the AlexNet in the target domain while deteriorates the
feature generalization ability to novel domains. The proposed method
enhances feature transferability both in the target domains and unseen
domains. Specifically, both Ours(L+H) and Ours(C+H) show distinct
advantages over Ours(H), which verifies the importance of local and
cell feature adaptation in strengthening feature transferability. Ours
(L+C+H) achieves a significant improvement of over the DANN.

4.4.2. Target error bound
In this section, we study the target domain error bound on two rep-

resentative tasks: A W on the Office-31 and W A,D,C on the Office-
Caltech10. As formulated in Eq. 10, the expected target error is upper-
bounded by the following three terms: the expected source error, do-
main discrepancy, error of ideal joint hypothesis on both domains. Con-
sidering that source error is usually optimized to be ignorably small

with the available source labels, only the latter two terms are consid-
ered.

Domain Discrepancy. The -distance is suggested as a measure of
domain discrepancy in [20], defined as , where is the
generalization error of a domain classifier trained to distinguish the
source domain and target domain features. As shown in Fig. 4, the pro-
posed method Ours(L+C+H) reduces domain discrepancy over the
fine-tuned AlexNet more significantly than DANN and Ours(H) on both
tasks. The results show that local and cell feature adaptation make for
fine-grained domain shift reduction.

Error of Ideal Joint Hypothesis. We study the third term, joint er-
ror of an ideal hypothesis, by training a two-layer MLP classifier on the
adapted features from both source and target, using their category la-
bels, as done in [14]. Better classification accuracy indicates the
learned features are more discriminative in classifying different cate-
gories. As we can see in Fig. 4, comparing to the Ours(H) or DANN, the
feature discriminability of Ours(L+C+H) are less deteriorated
while reducing the second term to strenghen transferability and thus
with smaller joint errors, which verify that local feature patterns are
more transferable than holistic features.

Combining the -distance and joint error of the ideal hypothesis,
we show that the proposed Ours(L+C+H) reduces domain discrepancy
(the second term in Eq. 4) more significantly while keeping feature dis-
criminability (the third term) less deteriorated, thus successfully reduc-
ing the upper bound of target error.

4.4.3. Alignment visualization
We visualize the learned holistic, cell, and local features of fine-

tuned AlexNet, DANN, and the proposed Ours(L+C+H) in Fig. 5 and
Fig. 6 using the t-SNE embedding on the transfer task. For the
fine-tuned AlexNet, there exists obvious domain shift in both the holis-
tic features, shown in Fig. 5 (a), and local features, shown in Fig. 5 (c).
DANN successfully brings closer the source and target in both holistic
and local feature space, as shown in Fig. 5 (b) and (d). However, there
are still many boundary confusing holistic features lying between dif-
ferent category clusters which tend to be misclassified.Meanwhile, the
local features are mixed up arbitrarily. As shown in Fig. 6, while still
with a few mismatched samples, Ours (H) achieves better alignments
over the DANN by only aligning the holistic features, which verify the
effectiveness of sharing local feature patterns on bridging source and
target domains. Through hierarchical adaptation, the holistic features,
cell features, and local features are all well aligned by the proposed
model Ours (L+C+H).

5. Conclusions

In this paper, we proposed a novel hierarchical domain adaptation
approach which is built on local feature patterns. We showed that the
typically-adopted holistic features are more biased and less transfer-
ablethan local feature patterns, which are more primitive and sharable
not only across domains but also among different categories. Domain
adaptation on holistic features is likely to cause unreliable feature
transfer, especially when the holistic features are not well pre-trained.

Table 8
Accuracy ( ) of domain generalization on the Office-Caltech10 dataset. The model is trained using data from one labeled source domain and one unlabeled target
domain while the performance is evaluated both on the target domain and on other unseen domains.
Method A W W D D A C A Avg

W C,D D A,C A C,W A D,W Target Unseen

AlexNet 81.8
DANN 92.3 80.0
Ours(H) 92.5 81.6
Ours(L+H) 92.9 83.2
Ours(C+H) 92.3 83.7
Ours(L+C+H)
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To preserve the learned discriminative feature structures and pre-
vent false feature alignments, we proposed to partition local feature
space into cells by learning a cluster of local feature patterns and then
perform feature adaptation in multiple levels. We experimentally
showed that the proposed method boosts performance by minimizing
the domain discrepancy without severely deteriorating the feature dis-
criminability or structures. We showed that the local feature patterns
are not limited to be spatial in images, but also applicable to temporal
patterns in sequential data, or spatiotemporal patterns in videos. We
showed that the proposed method is not only beneficial to the typical
one-to-one unsupervised domain adaptation but also to the other do-
main adaptation tasks, e.g., partial domain adaptation, domain-agnostic
learning, domain generalization, which are commonly encountered in
machine learning practice.

Despite the promise of the proposed method, the performance im-
provements on the benchmarks are still not very significant. This is
mainly because we only perform the typical adversarial adaptation on
local, cell and holistic features, without any further structural regular-
ization on their statistics, e.g., clustering assumptions. When combined
with these techniques in practice, further boosted performances are
highly expected. Another limitation of the proposed method is that we
borrowed the local feature aggregation strategy from the NetVLAD,
while which is not specifically designed for feature transfer. In the fu-
ture, we intend to explore more effective feature aggregation strategies
tfor domain adaptation. Further, besides the single modality data, we
aim to explore feature aggregation strategies for domain adaptation on
multi-modality data.
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