
High Fidelity 3D Hand Shape Reconstruction
via Scalable Graph Frequency Decomposition

Tianyu Luan1 Yuanhao Zhai1 Jingjing Meng1 Zhong Li2

Zhang Chen2 Yi Xu2 Junsong Yuan1

1State University of New York at Buffalo 2OPPO US Research Center, InnoPeak Technology, Inc.
{tianyulu,yzhai6,jmeng2,jsyuan}@buffalo.edu

{zhong.li,zhang.chen,yi.xu}@oppo.com

Abstract

Despite the impressive performance obtained by recent
single-image hand modeling techniques, they lack the capa-
bility to capture sufficient details of the 3D hand mesh. This
deficiency greatly limits their applications when high-fidelity
hand modeling is required, e.g., personalized hand model-
ing. To address this problem, we design a frequency split
network to generate 3D hand mesh using different frequency
bands in a coarse-to-fine manner. To capture high-frequency
personalized details, we transform the 3D mesh into the
frequency domain, and propose a novel frequency decom-
position loss to supervise each frequency component. By
leveraging such a coarse-to-fine scheme, hand details that
correspond to the higher frequency domain can be preserved.
In addition, the proposed network is scalable, and can stop
the inference at any resolution level to accommodate dif-
ferent hardware with varying computational powers. To
quantitatively evaluate the performance of our method in
terms of recovering personalized shape details, we intro-
duce a new evaluation metric named Mean Signal-to-Noise
Ratio (MSNR) to measure the signal-to-noise ratio of each
mesh frequency component. Extensive experiments demon-
strate that our approach generates fine-grained details for
high-fidelity 3D hand reconstruction, and our evaluation
metric is more effective for measuring mesh details com-
pared with traditional metrics. The code is available at
https://github.com/tyluann/FreqHand.

1. Introduction

High-fidelity and personalized 3D hand modeling have
seen great demand in 3D games, virtual reality, and the
emerging Metaverse, as it brings better user experiences,
e.g., users can see their own realistic hands in the virtual
space instead of the standard avatar hands. Therefore, it is
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Figure 1. An exemplar hand mesh of sufficient details and its graph
frequency decomposition. The x-axis shows frequency compo-
nents from low to high. The y-axis shows the amplitude of each
component in the logarithm. At the frequency domain, the signal
amplitude generally decreases as the frequency increases.

of great importance to reconstruct high-fidelity hand meshes
that can adapt to different users and application scenarios.

Despite previous successes in 3D hand reconstruction and
modeling [3, 6, 7, 16, 22, 40, 44, 46], few existing solutions
focus on enriching the details of the reconstructed shape,
and most current methods fail to generate consumer-friendly
high-fidelity hands. When we treat the hand mesh as graph
signals, like most natural signals, the low-frequency compo-
nents have larger amplitudes than those of the high-frequency
parts, which we can observe in a hand mesh spectrum curve
(Fig. 1). Consequently, if we generate the mesh purely in
the spatial domain, the signals of different frequencies could
be biased, thus the high-frequency information can be eas-
ily overwhelmed by its low-frequency counterpart. More-
over, the wide usage of compact parametric models, such as
MANO [32], has limited the expressiveness of personalized
details. Even though MANO can robustly estimate the hand
pose and coarse shape, it sacrifices hand details for compact-
ness and robustness in the parameterization process, so the
detail expression ability of MANO is suppressed.

To better model detailed 3D shape information, we trans-
form the hand mesh into the graph frequency domain, and
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design a frequency-based loss function to generate high-
fidelity hand mesh in a scalable manner. Supervision in
the frequency domain explicitly constrains the signal of a
given frequency band from being influenced by other fre-
quency bands. Therefore, the high-frequency signals of
hand shape will not be suppressed by low-frequency sig-
nals despite the amplitude disadvantage. To improve the
expressiveness of hand models, we design a new hand model
of 12, 337 vertices that extends previous parametric models
such as MANO with nonparametric representation for resid-
ual adjustments. While the nonparametric residual expresses
personalized details, the parametric base ensures the over-
all structure of the hand mesh, e.g., reliable estimation of
hand pose and 3D shape. Instead of fixing the hand mesh
resolution, we design our network architecture in a coarse-to-
fine manner with three resolution levels U-net for scalability.
Different levels of image features contribute to different
levels of detail. Specifically, we use low-level features in
high-frequency detail generation and high-level features in
low-frequency detail generation. At each resolution level,
our network outputs a hand mesh with the corresponding
resolution. During inference, the network outputs an increas-
ingly higher resolution mesh with more personalized details
step-by-step, while the inference process can stop at any one
of the three resolution levels.

In summary, our contributions include the following.
1. We design a high-fidelity 3D hand model for reconstruct-

ing 3D hand shapes from single images. The hand repre-
sentation provides detailed expression, and our frequency
decomposition loss helps to capture the personalized
shape information.

2. To enable computational efficiency, we propose a fre-
quency split network architecture to generate high-fidelity
hand mesh in a scalable manner with multiple levels of de-
tail. During inference, our scalable framework supports
budget-aware mesh reconstruction when the computa-
tional resources are limited.

3. We propose a new metric to evaluate 3D mesh details. It
better captures the signal-to-noise ratio of all frequency
bands to evaluate high-fidelity hand meshes. The effec-
tiveness of this metric has been validated by extensive
experiments.
We evaluate our method on the InterHand2.6M

dataset [29]. In addition to the proposed evaluation met-
rics, we also evaluate mean per joint position error (MPJPE)
and mesh Chamfer distance (CD). Compared to MANO and
other baselines, our proposed method achieves better results
using all three metrics.

2. Related Work
Parametric hand shape reconstruction. Parametric

models are a popular approach in hand mesh reconstruc-
tion. Romero et al. [32] proposed MANO, which uses

a set of shape and pose parameters to control the move-
ment and deformation of human hands. Many recent works
[16, 31, 40, 41, 44, 48–50] combined deep learning with
MANO. They use features extracted from the RGB image
as input, CNN to get the shape and pose parameters, and
eventually these parameters to generate hand mesh. These
methods make use of the strong prior knowledge provided
by the hand parametric model, so that it is convenient to
train the networks and the results are robust. However, the
parametric method limits the mesh resolution and details of
hands.

Non-parametric hand shape reconstruction. Non-
parametric hand shape reconstruction typically estimates
the vertex positions of a template with fixed topology. For
example, Ge et al. [13] proposed a method using a graph
convolution network. It uses a predefined upsampling opera-
tion to build a multi-level spectrum GCN network. Kulon et
al. [21] used spatial GCN and spiral convolution operator for
mesh generation. Moon et al. [27] proposed a pixel-based
approach. However, none of these works paid close attention
to detailed shapes. Moon et al. [28] provided an approach
that outputs fine details, but since they need the 3D scanned
meshes of the test cases for training, their model cannot do
cross-identity reconstruction. In our paper, we design a new
hand model that combines the strength of both parametric
and non-parametric approaches. We use this hand model as
a basis to reconstruct high-fidelity hands.

Mesh frequency analysis. Previous works mainly fo-
cused on the spectrum analysis of the entire mesh graph.
Chung. [10] defines the graph Fourier transformation and
graph Laplacian operator, which builds the foundation of
graph spectrum analysis. [38] extends commonly used signal
processing operators to graph space. [5] proposes a spectrum
graph convolution network based on graph spectrum charac-
teristics. The spectral decomposition of the graph function
is used to define graph-based convolution. Recent works
such as [11, 18, 24, 35, 37, 43, 51] widely use spectrum GCN
in different fields. However, these works mainly focus on
the analysis of the overall graph spectrum. In this paper, we
use spectrum analysis as a tool to design our provided loss
function and metric.

3. Proposed Method
We propose a scalable network that reconstructs the de-

tailed hand shape, and use frequency decomposition loss
to acquire details. Fig. 2 shows our network architecture.
We design our network in the manner of a U-net. First,
we generate a MANO mesh from image features from Effi-
cientNet [39]. Based on the MANO mesh, we use a graph
convolution network (green, yellow, and red modules in
Fig. 2) to recover a high-fidelity hand mesh. In order to
obtain high-frequency information, we use image features
from different layers of the backbone network as a part of
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Figure 2. We design our scalable hand modeling network in a U-net manner. First, we generate a MANO mesh from image features
(purple block). Then, based on the MANO mesh, we use a multilevel GCN to recover 3 levels of personalized mesh (green, yellow, and
red blocks from low to high). In order to obtain high-frequency hand details, we use skip-connected image features from different layers
of the backbone network (blue and gray blocks) At inference, our network can stop at any resolution level, but still provides reasonable
high-fidelity results at that resolution. The architecture and implementation details can be found in supplementary material Section I and II.

the GCN inputs. Specifically, at the low-resolution level, we
take high-level image features as part of the input, and use a
low-resolution graph topology to generate a low-resolution
mesh. At medium and high-frequency levels, we use lower-
level image feature through the skip connection to produce a
high-resolution mesh. Note that at every resolution level, the
network will output the intermediate hand mesh, so it would
naturally have the ability for scalable inference. During the
training process, we supervise both intermediate meshes and
the final high-resolution mesh. We discuss the details in the
following.

3.1. High Fidelity 3D Hand Model

We design our hand representation based on MANO [32].
MANO factorizes human hands into a 10-dimensional shape
representation β and a 35-dimensional pose representation θ.
MANO model can be represented as{

M(θ, β) = W (TP (θ, β), θ, w)

TP (θ, β) = T +BS(β) +BP (θ)
(1)

where W is the linear blend skinning function. Model pa-
rameter w is the blend weight. BS and BP are another two
parameters of MANO named shape blend shape and pose
blend shape, which are related to pose and shape parameters,
respectively. MANO can transfer complex hand surface es-
timation into a simple regression of a few pose and shape
parameters. However, MANO has limited capability in mod-
eling shape detail. It is not only limited by the number of
pose and shape dimensions (45), but also by the number of
vertices (778). In our work, we designed a new parametric-
based model with 12,338 vertices generated from MANO
via subdivision. The large vertex number greatly enhances
the model’s ability to represent details.

Subdivided MANO. To address this problem. We de-
sign an extended parametric model that can better represent
details. First, we add detail residuals to MANO as

M ′(θ, β, d) = W (T ′
P (θ, β, d), θ, w

′),

T ′
P (θ, β, d) = T

′
+B′

S(β) +B′
P (θ) + d,

(2)

where, w′, T
′
, B′

S(β), and B′
P (θ) are the parameters our

model, and d is the learnable per-vertex location perturbation.
The dimension of d is the same as the number of vertices.

Besides vertex residuals, we further increase the repre-
sentation capability of our hand model by increasing the
resolution of the mesh. Motivated by the traditional Loop
subdivision [23], we propose to design our parametric hand
model by subdividing the MANO template. Loop subdivi-
sion can be represented as

T
′
= LsT , (3)

where, T is original template mesh with n vertices and m

edges. T
′

is the subdivided template mesh with n+m ver-
tices. Ls ∈ R(n+m)×m is the linear transformation that
defines the subdivision process. The position of each vertex
on the new mesh is only determined by the neighbor vertices
on the original mesh, so Ls is sparse. We use similar strate-
gies to calculate BS and BP . The MANO parameters map
the input shape and pose into vertex position adjustments.
These mappings are linear matrices of dimension x × n.
Therefore, we can calculate the parameters as

w′ = (Lsw
⊤)⊤,

B′
S = (LsB

⊤
S )⊤,

B′
P = (LsB

⊤
P )⊤.

(4)



Figure 3. We design a new high-fidelity hand mesh with 12, 337
vertices. Our new model inherits the advantage of the parametric
hand model and provides reliable 3D shape estimation with fewer
flaws when hand poses change.

We repeat the procedure twice to get sufficient resolution.
Fig. 3 shows example meshes from the new model in dif-

ferent poses (d is set to 0). We can see that our representation
inherits the advantages of the parametric hand model. It has
a plausible structure with no visual artifacts when the hand
poses change.

3.2. Hierachical Graph Convolution Network

Our GCN network utilizes a multiresolution graph ar-
chitecture that follows the subdivision process in Section
Sec. 3.1. Different from the single graph GCNs in previous
works [20, 25], our GCN network uses different graphs in
different layers. At each level, each vertex of the graph cor-
responds to a vertex on the mesh and the graph topology is
defined by the mesh edges. Between two adjunct resolution
levels, the network uses the Ls in Eq. (3) for upsampling
operation.

This architecture is designed for scalable inference. When
the computing resources are limited, only the low-resolution
mesh needs to be calculated; when the computing resources
are sufficient, then we can calculate all the way to the high-
resolution mesh. Moreover, this architecture allows us to
explicitly supervise the intermediate results, so the details
would be added level-by-level.

3.3. Graph Frequency Decomposition

In order to supervise the output mesh in the frequency
domain and design the frequency-based metric, we need
to do frequency decomposition on mesh shapes. Here, we
regard the mesh as an undirected graph, and 3D locations of
mesh vertices as signals on the graph. Then, the frequency
decomposition of the mesh is the spectrum analysis of this
graph signal. Following [10], given an undirected graph
G = {V, E} with a vertices set of V = {1, 2, ..., N} and
a set of edges E = {(i, j)}i,j∈V , the Laplacian matrix is
defined as L := D−A, where A is the N ×N adjacency
matrix with entries defined as edge weights aij and D is the
diagonal degree matrix. The ith diagonal entry di =

∑
j aij .

In this paper, the edge weights are defined as

aij :=

{
1, (i, j) ∈ E
0, otherwise

(5)

which means all edges have the same weights. We decom-
pose L using spectrum decomposition:

L = U⊤ΛU. (6)

Here, Λ is a diagonal matrix, in which the diagonal entries
are the eigenvalues of L. U is the eigenvector set of L. Since
the Laplacian matrix L describes the fluctuation of the graph
signal, its eigenvalues show how ”frequent” the fluctuations
are in each eigenvector direction. Thus, the eigenvectors of
larger eigenvalues are defined as higher frequency bases, and
the eigenvectors of smaller eigenvalues are defined as lower
frequency bases. Since the column vectors of U is a set of
orthonormal basis of the graph space, following [34], we
define transform F (x) = U⊤x to be the Fourier transform
of graph signal, and F ′(x) = Ux to be reverse Fourier
transform. This means, given any graph function x ∈ RN×d,
we can decompose x in N different frequency components:

x =

N∑
i=1

Ui(Ui
⊤x), (7)

where Ui ∈ RN×1 is the ith column vector of U. d is the
dimension of the graph signal on each vertex. Ui

⊤x is the
frequency component of x on the ith frequency base.

Having Eq. (7), we can decompose a hand mesh into
frequency components. Fig. 1 shows an example of a
groundtruth mesh and its frequency decomposition result.
The x-axis is the frequencies from low to high. The y-axis
is the amplitude of each component in the logarithm. It is
easy to observe that the signal amplitude generally decreases
as the frequency increases. Fig. 4 shows the cumulative fre-
quency components starting from frequency 0. We can see
how the mesh shape changes when we gradually add higher
frequency signals to the hand mesh. In general, the hand
details increase as higher frequency signals are gradually
included.

3.4. Frequency Decomposition Loss

Frequency decomposition loss. Conventional joint and
vertex loss, such as the widely used pre-joint error loss
[2, 4, 8, 14, 15, 33, 44, 47, 52] and mesh pre-vertex error
loss [19, 30, 36, 45] commonly used in human body recon-
struction, and Chamfer Distance Loss [1, 17, 26, 42] com-
monly used in object reconstruction and 3D point cloud
estimation, all measure the error in the spatial domain. In
that case, the signals of different frequency components are
aliased together. As shown in Fig. 1, the amplitudes of
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Figure 4. Frequency decomposition of 3D hand mesh. Cumulative
frequency components start from frequency 0. The range shows
the frequency band. For example, [0,20] means the signal of the
first 21 frequencies (lowest 21) added together. We can see how
the mesh shape changes when we gradually add higher frequency
signals to the hand mesh. In general, the hand details increase as
higher frequency signals are included.

low-frequency signals of hand shape are much larger than
high-frequency signals, so when alias happens, the high-
frequency signals will get overwhelmed, which means direct
supervision on the spatial domain would mainly focus on
low-frequency signals. Thus, spatial loss mostly does not
drive the network to generate high-frequency details. Our
experiments in Sec. 4.4 also demonstrate this.

To generate detailed information without being over-
whelmed by low-frequency signals, we designed a loss func-
tion in the frequency domain. Specifically, we use graph
frequency decomposition (Sec. 3.3) to define our frequency
decomposition loss as

LF =
1

F

F∑
f=1

log(

∥∥∥U⊤
f V̂ −U⊤

f Vgt

∥∥∥2∥∥∥U⊤
f V̂

∥∥∥∥∥∥U⊤
f Vgt

∥∥∥+ ϵ
+ 1), (8)

where F = N is the number of total frequency components,
Uf is the f th frequency base, ∥ ·∥ is L2 norm, ϵ = 1×10−8

is a small number to avoid division-by-zero, V̂ ∈ RN×3

and Vgt ∈ RN×3 are the predicted and groundtruth vertex
locations, respectively. During training, for every frequency
component, our loss reduces the influence of the amplitude of
each frequency component, so that information on different
frequency components would have equivalent attention. In
Sec. 4.3, we demonstrate the effectiveness of the frequency
decomposition loss.

Total loss function. We define the total loss function as:

L = λJLJ +

3∑
l=1

[
λ(l)
v L(l)

v + λ
(l)
F L

(l)
F

]
, (9)

where l is the resolution level. l = 1 is the lowest-resolution
level and l = 3 is the highest resolution level. L

(l)
J is 3D

joint location error, L(l)
v is per vertex error, and L

(l)
F is the

frequency decomposition loss. λ(l)
J , λ(l)

v , and λ
(l)
F are hyper-

parameters. For simplicity, we refer L(l)
J , L(l)

v , and L
(l)
F as

LJ , Lv , and LF for the rest of the paper.
Following previous work [9, 45], we define 3D joint loca-

tion error and per vertex loss as:

LJ =
1

NJ

NJ∑
j=1

∥Ĵj−Jgt,j∥, Lv =
1

N

N∑
i=1

∥v̂i−vgt,i∥, (10)

where Ĵj and Jgt,j are the output joint location and
groundtruth joint location. NJ is the number of joints. v̂i
and vgt,i are the estimated and groundtruth location of the
ith vertex, and N is the number of vertices.

4. Experiments
4.1. Datasets

Our task requires detailed hand meshes for supervision.
Because of the difficulty of acquiring 3D scan data, this
supervision is expensive and hard to obtain in a large scale.
One alternative plan is to generate meshes from multiview
RGB images using multiview stereo methods. Considering
the easy access, we stick to this plan and use the generated
mesh as groundtruth in our experiments. We do all our
experiments on the InterHand2.6M dataset [29], which is
a dataset consisting of multiview images, rich poses, and
human hand pose annotations. The dataset typically provides
40-100 views for every frame of a hand video. Such a large
amount of multiview information would help with more
accurate mesh annotation. Finally, we remesh the result
hand mesh into the same topology with our 3-level hand
mesh template, respectively, so that we can provide mesh
supervision for all 3 levels of our network. We use the
resulting mesh as groundtruth for training and testing. In this
paper, we use the mesh results provided in [28], which are
generated using multiview methods of [12], and only use a
subset of InterHand2.6m, due to the large number of data in
the original dataset. The remeshing method and more dataset
details can be found in supplementary material Section IV. In
Fig. 8 (last column, “groundtruth”), we show a few examples
of the generated groundtruth meshes. Although these meshes
are not the exact same as real hands, it is vivid and provides
rich and high-fidelity details of human hands. This 3D mesh
annotation method is not only enough to support our solution
and verify our methods, but is also budget-friendly.

4.2. Implementation Details.

We follow the network architecture in [9] to generate in-
termediate MANO results. We use EfficientNet [39] as a
backbone. The low-level, mid-level, and high-level features
are extracted after the 1st, 3rd, and 7th blocks of EfficientNet,



Figure 5. Evaluations using Euclidean distance and MSNR under different noise amplitudes in every frequency band. Each line of different
color indicates a frequency band. The maximum and minimum frequencies are shown in the legend. On each line, every dot means adding a
random amplitude noise to the mesh. The noise amplitude of each dot is evenly distributed in the ranges shown on the x-axis. The result
validates that Euclidean distance is more sensitive to error in low-frequency bands, and MSNR is more sensitive to noise in high-frequency
bands. Thus, compared to Euclidean distance, MSNR can better measure the error in high-frequency details.

Original mesh

[60,119] [120,239] [240,479] [480,959]

[960,1919] [1920,3839] [3840,7679] [7680,12336]

Figure 6. We show examples of Noisy Meshes. The meshes from
left to right are meshes with a noise maximum amplitude of 0.6 and
the frequency band changed from [60,119] to [7680,12336]. For
easier visualization, we visualize the vertices location changes 5
times larger.

respectively. For each image feature, we use 1× 1 convolu-
tions to deduce dimensions. The channel numbers of 1× 1
convolution are 32, 32, and 64 from low-level to high-level,
respectively. After that, we project the initial human hand
vertices to the feature maps, and sample a feature vector for
every vertex using bilinear interpolation. The GCN graph
has 778, 3093, and 12337 vertices at each resolution level.

In the training process, we first train [9] network, and
then use the pretrained result to train our scalable network.
For training [9], we use their default hyper-parameters, set
the learning rate to 1× 10−4, and set batch size to 48. When
training GCN network, we set λJ to be 1, set λ(1)

v and λ
(1)
F

to be 1 and 60, set λ(2)
v and λ

(2)
F to be also 1 and 60, and

set λ(3)
v and λ

(3)
F to be 1 and 100. The learning rate is set to

5× 10−4 for GCN and 1e-4 for the rest of the network. The
batch size is set to 28. The training process takes about 25

Method MPJPE/mm ↓ CD/mm ↓ MSNR ↑

MANO 13.41 6.20 -2.64
Ours-level 1 13.25 5.53 -2.70
Ours-level 2 13.25 5.49 -2.62
Ours-level 3 13.25 5.49 -0.68

Table 1. Results on InterHand2.6M dataset. For MPJPE and CD,
lower is better. For MSNR, higher is better. As shown in the table,
the proposed method improves the accuracy of hand surface details.
While our method generates better shape details in a scalable man-
ner, the joint locations and the overall shape also become slightly
more accurate.

Level #parameter GFLOPS #vertices #faces

baseline 14.5M 1.8 778 1538
1 14.5M 1.9 778 1538
2 14.5M 2.5 3093 6152
3 14.7M 4.8 12337 24608

Table 2. The mesh size and the resources needed for generating
different resolution levels of meshes.

hours on 1 NVIDIA GTX3090Ti GPU for 150 epochs. In
reference, we use a smooth kernel to post-process the mesh
to reduce sharp changes. More details of post-processing
will be found in Supplementary materials Section III.

4.3. Quantitative Evaluation

We use mean per joint position error (MPJPE) and Cham-
fer distance (CD) to evaluate the hand pose and coarse shape.
Besides, to better evaluate personalized details, we also eval-
uate our mesh results using the proposed mean signal-to-
noise ratio (MSNR) metric.



Mean Signal-to-Noise Ratio (MSNR). Previous metrics
for 3D hand mesh mostly calculate the Euclidean distance
between the results and the groundtruth. Although in most
cases, Euclidean distance can roughly indicate the accuracy
of the reconstruction results, it is not consistent with human
cognitive standards: it is more sensitive to low-frequency
errors, but does not perform well in personalized detail dis-
tinction or detailed shape similarity description.

Thus, we propose a metric that calculates the signal-to-
noise ratio in every frequency base of the graph. We define
our Mean Signal-to-Noise Ratio (MSNR) metric as

MSNR =
1

F

F∑
f=1

log(

∥∥∥U⊤
f V̂

∥∥∥∥∥∥U⊤
f V̂ −U⊤

f Vgt

∥∥∥+ ϵ
), (11)

where F = N is the total number of frequency components
and Sf is the signal-to-noise ratio of the f th frequency com-
ponent. Uf , V̂ , and Vgt have the same meaning as in Eq. (8).
ϵ = 1× 10−8 is a small number to avoid division-by-zero.
Thus, the maximum of Sf is 8. By this design, the SNR of
different frequency components would not influence each
other, so we can better evaluate the high-frequency informa-
tion compared to the conventional Euclidean Distance.

We designed an experiment on InterHand2.6m to validate
the effectiveness of our metric in evaluating high-frequency
details. We add errors of 8 different frequency bands to
the hand mesh. For each frequency band, the error am-
plitude is set under 10 different uniform distributions. As
shown in Fig. 5, we measure the MPVE and MSNR for every
noise distribution on every frequency band, to see how the
measured results of the two metrics change with the noise
amplitude in each frequency band. The result shows that in
the low-frequency part, MPVE increases fast when the noise
amplitude increases (the upper lines), but in high-frequency
bands, the measured result changes very slowly when the
noise amplitude increases. MSNR behaves completely dif-
ferently from MPVE. It is more sensitive to noise in the
high-frequency band than in the low-frequency band. Thus,
compared to Euclidean distance, MSNR better measures the
error in high-frequency details. Fig. 6 shows a few examples
of noisy meshes.

Evaluation on InterHand2.6M dataset. We report mean
per joint position error (MPJPE), Chamfer distance (CD),
and mean signal-to-noise ratio (MSNR) to evaluate the over-
all accuracy of reconstructed hand meshes. Tab. 1 shows
the comparison among 3 levels of our proposed method and
MANO. As shown in the table, the proposed method im-
proves the accuracy of hand surface details by a large margin
(as indicated by MSNR). We also observe that, while our
method generates better shape details in a scalable manner,
the joint locations and the overall shape of the output meshes
also become slightly more accurate (as indicated by MPJPE
and CD). Here, the MSNR of MANO, Ours-level 1, and

Groundtruth meshw/o per vertex error loss
w/o frequency 

decomposition loss Proposed result

Figure 7. Visualization results of “w/o frequency decomposition
loss” and ”w/o per vertex error loss” in Sec. 4.4. As shown, if we
do not use frequency decomposition loss, the mesh result we get
tends to be smoother with less personalized details. If we do not
use per-vertex error loss, the mesh’s low-frequency information is
not well-learned. The mesh we generate will have an overall shape
deformation.

Method MPJPE/mm ↓ CD/mm ↓ MSNR ↑

proposed 13.25 5.49 -0.68
w/o skip connected feature 14.20 5.85 -0.70
w/ average pooling feature 13.95 5.59 -1.10
w/o frequency decomposition loss 14.50 5.86 -1.80
w/o per vertex error loss 14.24 67.8 –0.87

Table 3. Ablation study on the feature skip connection design and
the effect of loss functions. From the result, we can see that the
frequency decomposition loss helps learn mesh details and the per-
vertex error loss helps constrain the overall shape.

Ours-level 2 are calculated after subdividing their meshes
into the same resolution as Ours-level 3.

4.4. Ablation Study

We conduct several experiments to demonstrate the effec-
tiveness of the feature skip connection design (in Fig. 2). and
different loss functions. The results are shown in Sec. 4.3.
From the result, we observe that our projection-to-feature-
map skip connection design leads to performance improve-
ment in all three metrics. For the loss functions, we observe
MSNR degrades when the frequency decomposition loss is
removed, indicating inferior mesh details. Removing the per-
vertex error loss dramatically increases the Chamfer distance,
indicating that the overall shape is not well constrained. The
visualization results of the latter 2 experiments are shown
in Fig. 7, if we do not use frequency decomposition loss,
the mesh result we get tends to be smoother with less per-
sonalized details. If we do not use per-vertex error loss, the
mesh’s low-frequency information is not well-learned. The
mesh we generate will have an overall shape deformation.

Scalable design. We also demonstrate the scalable design
of the proposed network by analyzing the resource needed at
each resolution level (Tab. 2). In general, higher resolution
levels require more computational resources in the network,



Input images Ours-level 1 Ours-level 2 Ours-level 3 MANO MANO-200k Groundtruth

Figure 8. Qualitative reconstruction results. (Best viewed in magnification.) The columns from left to right are input images, our level 1-3
output mesh, MANO mesh, MANO mesh subdivided to 12.3k vertices (same vertex number as our mesh), and groundtruth, respectively. We
can see that even if we upsample MANO into the same number of vertices as our mesh, it still does not provide comparable personalized
details as our results.

and more resources to store and render the mesh. Still,
our approach supports scalable reconstruction and can be
applied to scenarios with limited computational resources.
Here, “baseline” means only generating the MANO mesh in
our network.

Visualization Results. The qualitative reconstruction re-
sults are shown in Fig. 8. We observe that even when MANO
is upsampled to 200k vertices, it still does not capture person-
alized details while our results provide better shape details.
More qualitative results can be found in the Supplementary
Material Section V.

5. Conclusion
We provided a solution to reconstruct high-fidelity hand

mesh from monocular RGB inputs in a scalable manner. We

represent the hand mesh as a graph and design a scalable
frequency split network to generate hand mesh from differ-
ent frequency bands. To train the network, we propose a
frequency decomposition loss to supervise each frequency
component. Finally, we introduce a new evaluation metric
named Mean Signal-to-Noise Ratio (MSNR) to measure the
signal-to-noise ratio of each mesh frequency component,
which can better measure the details of 3D shapes. The eval-
uations on benchmark datasets validate the effectiveness of
our proposed method and the evaluation metric in terms of
recovering 3D hand shape details.
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