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Abstract

Human-Object Interaction (HOI) detection is essential
for understanding and modeling real-world events. Ex-
isting works on HOI detection mainly focus on static im-
ages and a closed setting, where all HOI classes are pro-
vided in the training set. In comparison, detecting HOIs
in videos in open set scenarios is more challenging. First,
under open set circumstances, HOI detectors are expected
to hold strong generalizability to recognize unseen HOIs
not included in the training data. Second, accurately cap-
turing temporal contextual information from videos is diffi-
cult, but it is crucial for detecting temporal-related actions
such as open, close, pull, push. To this end, we
propose ACoLP, a model of Action-centric Chain-of-Look
Prompting for open set video HOI detection. ACoLP re-
gards actions as the carrier of semantics in videos, which
captures the essential semantic information across frames.
To make the model generalizable on unseen classes, in-
spired by the chain-of-thought prompting in natural lan-
guage processing, we introduce the chain-of-look prompt-
ing scheme that decomposes prompt generation from large-
scale vision-language model into a series of intermediate
visual reasoning steps. Consequently, our model captures
complex visual reasoning processes underlying the HOI
events in videos, providing essential guidance for detecting
unseen classes. Extensive experiments on two video HOI
datasets, VidHOI and CAD120, demonstrate that ACoLP
achieves competitive performance compared with the state-
of-the-art methods in the conventional closed setting, and
outperforms existing methods by a large margin in the open
set setting. Our code is avaliable at https://github.
com/southnx/ACoLP.

1. Introduction
Human-object interaction (HOI) detection generates a

set of meaningful <person, interaction, object> triplets
for a given scene. It has attracted much attention in re-

Figure 1. Illustration on chain-of-thought prompting and
chain-of-look prompting. (a) Chain-of-thought prompting di-
vides a problem into a series of intermediate reasoning steps, en-
abling large language models on symbolic reasoning tasks. (b) We
propose chain-of-look prompting scheme to captures complex vi-
sual reasoning processes with two reasoning networks from large-
scale vision-language models. Each reasoning network consists
of two visual reasoning chains. The learned visual reasoning pro-
cesses can be expanded to unseen classes with strong generaliza-
tion ability.

cent years, due to its importance for scene understand-
ing, and applications in healthcare, autonomous driving,
etc. [47, 42, 15, 6, 12, 16, 24]. Most current works
investigate HOI detection in static images in a closed
setting[45, 15, 6, 29, 32], where all HOI classes are pre-
defined with examples provided in the training set. How-
ever, real-world scenarios are often open-set, where HOIs
with novel actions are not present in the training set. De-
tecting open set HOIs in videos is challenging due to the
following reasons. First, static images barely contain tem-
poral information of human and objects, thus directly trans-
ferring HOI detection methods for static images to videos
fails to model the temporal dynamics. Second, the possi-



ble HOIs occurred in videos can hardly be exhausted since
the compositional space resulting from the <person, inter-
action, object> triplets is tremendous. Moreover, semantic
ambiguity of HOIs widely exists in videos, especially for
temporal-related interactions. For example, <person, hold,
cup> and <person, lift, cup> contain similar and overlap-
ping semantic information, but it is challenging to distin-
guish these interdependent HOIs. To this end, we need to
build a robust HOI detector for videos with strong general-
izability that is capable of handling unseen and ambiguous
HOI classes in the open set setting.

Several existing works have investigated HOI detection
in videos. A number of methods are based on spatio-
temporal graph, including structured RNN [13], LIGHTEN
[41], STIGPN [46] and weakly-supervised video HOI de-
tection [21]. Another line of works model the inherent prop-
erties of video HOI to help HOI detection. For instance,
ASSIGN [28] models asynchronous and sparse properties
of HOIs in videos to detect the structure of interaction
events in a video scene. 2G-GCN [31] extends ASSIGN by
considering geometric features while modeling human and
object dependencies. Recently, Transformer-based methods
[43] have been proposed for video HOI detection by struc-
turizing a video into a few tubelet tokens. Although these
works have made significant progresses in detecting HOIs
in videos, they largely focus on the nouns, i.e., human and
objects, in the video, and infer interactions based on human
and objects features. This strategy may result in the loss of
valuable information on the verbs, i.e., actions, inherent in
videos. In addition, previous efforts assume that all testing
HOI classes are known in training, leading to unsatisfactory
results and poor generalizability when applied to open set
circumstances.

To address the challenges mentioned above, we propose
ACoLP in this work, which is an open set HOI detection
model for videos. The key idea of ACoLP model is to ab-
stract each frame into action prompts and model the prompt
generating processes as a series of intermediate visual rea-
soning steps. The motivation underlying this idea is that
the verbs (actions) convey central information of the events
happening in a video. In light of this, videos can be regarded
as a sequence of actions. Modeling the temporal dynamics
of those action sequences captures the core semantic infor-
mation of events in videos. Meanwhile, to empower the
model with strong generalization ability for video HOI de-
tection, ACoLP adopts the chain-of-thought prompting [48]
strategy in natural language processing (NLP) to “prompt”
the model with input-output visual reasoning steps, which
we call the chain-of-look. Those visual reasoning steps,
equipped with the few/zero-shot learning ability from large-
scale visual-language (VL) models, confer the capability of
reasoning visual events on unseen classes. As shown in
Figure 1, we introduce visual-semantic reasoning network

(VSR) and spatio-temporal reasoning network (STR) for
HOI prompting and action prompting, respectively. Each
network contains two steps of chains of reasoning for
prompt generation, which are akin to the chain-of-thought
prompting in NLP. Specifically, VSR includes CaptionHOI
Prompting (CHP) and VisualHOI Prompting (VHP). CHP is
designed to incorporate global semantic information into in-
dividual HOI prompts, serving as the first reasoning chain.
VHP follows CHP as the other reasoning chain with vi-
sual information for HOI prompting. Similarly, STR also
contains two reasoning chains: Action Prompting (AP) and
Dynamic GNN (D-GNN). AP is introduced to abstract vi-
sual information of each frame into a fixed number of action
prompt representations. D-GNN is then employed to model
the temporal dynamics across frames, which also benefits
open set HOI detection by propagating semantic informa-
tion to neighboring frames, thus enabling action prompt
representations to be more semantic-aware and discrimi-
native in open set settings. Finally, HOI classification and
bounding box regression are conducted under the guidance
of action prompt representations, which is less noisy than
only utilizing HOI prompts. With this open set HOI detec-
tion model, we can better infer unseen HOIs in videos.

We validate the effectiveness of ACoLP model via com-
prehensive experiments on two video HOI detection bench-
mark datasets: VidHOI [4] and CAD-120 [18]. Comparing
with current state-of-the-art (SOTA) methods for both video
HOI detection and image HOI detection, our model out-
performs these SOTA methods in the open set setting and
achieves comparable results in the closed setting.

Our main contributions on the open set HOI detection in
videos are summarized as follows:

• We present an action-centric video HOI detection
model, which focuses on modeling the HOIs via the
verbs (actions) instead of nouns (humans and objects).
It helps more reliably capture the most central seman-
tic information in understanding video HOIs.

• We introduce the chain-of-look prompting scheme to
capture the underlying visual reasoning processes in
videos, and generate visual-semantic aware and spatio-
temporal aware prompts from VL models. Visual
reasoning processes are further expanded to unseen
classes for better generalization ability.

• Our model achieves substantial improvements in terms
of open set video HOI detection and is on par with or
better than SOTA methods in the closed setting.

2. Related Work
Human-Object Interactions in Videos. Early works on

video HOI detection took spatio-temporal context of videos
into consideration for HOI modeling [18, 9] by utilizing



Markov Random Filed (MRF). Follow-up studies extended
MRF to Conditional Random Field (CRF) by incorporating
features from frame-level nodes [19, 40]. Further attempts
incorporate spatio-temporal graphs into Recurrent Neural
Networks (RNN) to model high-level structures in videos
[13]. Graph Parsing Neural Network (GPNN) [30] was de-
signed to adaptively capture the spatial graph structure. Re-
cent progress on video HOI detection further advanced the
spatial temporal graph at multiple granularities [46, 41] and
with explicit temporal information [4]. ASSIGN [28] pro-
posed to model the asynchronous and sparse properties of
HOIs in videos, which was further extended into 2G-GCN
[31] by combing geometric feature and visual feature. TU-
TOR [43] is introduced recently to abstract a video into
several tubelet tokens and further progressively emerge and
represent high-level visual semantics with Transformer.

Open Set Recognition. Open set recognition (OSR)
tackles the incomplete knowledge of the world during train-
ing, aiming to correctly recognize both seen and unseen
classes during testing. Existing OSR methods can be clas-
sified as discriminative models (DM) and generative mod-
els (GM). For DM, traditional methods employ Support
Vector Machines (SVM) [38, 14], Sparse Representation
[49, 36] or Nearest Neighbor [37, 27]. Further studies ex-
tended SVM by adding another constraint on positive sam-
ples [3, 2]. Besides, probabilistic open set SVM (POS-
SVM) classifier [39] was proposed to determine unique re-
jection threshold. OpenMax [1] model was among one of
the pioneer solutions towards open set Deep Networks by
replacing the SoftMax layer with an OpenMax layer. Open-
Max effectively handled fooling open set images but failed
to recognize visully similar adversarial images. To solve
this problem, a neural network based representation learn-
ing scheme [10] was introduced for open set recognition.

Large Scale Visual-Language (VL) Models. Recent
pretrained large-scale VL models with a representative
work of CLIP [33] bridge visual and language informa-
tion by jointly learning two encoders. Follow-up stud-
ies employing the pretrained VL models on downstream
tasks have achieved remarkable progress, including CLIP-
Adapter [7] and PointCLIP [53]. However, how to apply
VL models efficiently on downstream video tasks is an open
problem, due to the expensive computation cost of replacing
image-text pretraining to video-text pretraining proposed
in VideoCLIP [51]. We tackle this challenge by directly
employing pretrained VL models for video HOI detection,
without expensive video-text pretraining.

Prompt Learning. Prompt learning was first introduced
in NLP area [25, 8], aiming to produce a task-specific
template for language models. Common prompt learning
scheme involves hard prompt learning [7] and soft prompt
learning [22]. Hard prompt learning searches for a specific
word for the predesigned template, such as “I [MASK]

running.” in sentiment analysis, where the mask place-
holder will be replaced with either “love” or “hate”. Dif-
ferent from hard prompt learning, soft prompt learning is
designed to tune masked tokens into learnable vectors. We
employ the idea of soft prompting, proposing chain-of-look
prompting modules for actions and HOIs in video HOI de-
tection.

3. Open Set HOI Detection in Videos
3.1. Problem Formulation

Given a video V ∈ V containing T frames {I1, · · · , IT },
HOI detection model aims to recognize the interactions
among the Ne entities (Nh humans and (Ne − Nh) ob-
jects, Nh < Ne) in the video. Namely, by taking inputs
the frames {It}t=1,··· ,T and labels {gt}t=1,··· ,T of entities
in the frames, the model outputs the triplet <person, inter-
action, object> in each frame. The output of an HOI is
represented by four components: [b(h), b(o), c(o), a], which
indicate person bounding box, object bounding box, ob-
ject class and interaction class, respectively. For person
m ∈ {1, · · · , Nh} and object l ∈ {1, · · · , Ne − Nh}, the
HOI detection model detects pair-wise human-object inter-
actions {rt,c}Tt=1, c ∈ {0, 1}C , indicating the existence or
not of the interaction class c, where C is the number of all
possible HOI classes {hi}Ci=1. In open set settings, only a
portion of HOIs containing Ma actions are utilized for train-
ing, while the remaining HOIs containing M −Ma actions
are not seen during training (where M indicates the number
of all possible actions and M > Ma). Note that the open set
settings in our work requires all possible actions and HOIs
are predefined. It is different from the open world scenarios
where we do not know the maximum possible number of
classes we may encounter during inference.

3.2. Visual-Semantic Reasoning (VSR) Network

In this section, we delve into VSR network, which is
designed as a two-step reasoning process for HOI prompt
representation generation from pretrained large-scale VL
model (CLIP [33]) to video HOI detection task. Concretely,
the first chain-of-look reasoning process CHP employs
global semantic information of each frame for HOI prompt
representation generation, while the follow-up reasoning
process VHP employs visual information from frames.
These two complementary reasoning steps enable the final
HOI prompt representations to be visual-semantic aware of
the events happening in videos.

For a given dataset, there are N possible HOIs in the
form of <person, interaction, object> . The template
ti=“A person is [interaction]ing the [object].” is
pre-defined, where “[interaction]” and “[object]”
are replaced with their corresponding class names in the
triplets. Then each template is applied with a pretrained



Figure 2. Overview of the ACoLP model. The model is constructed with the spatio-temporal reasoning (STR) network and the visual-
temporal reasoning (VSR) network. Each of the two networks consists of two chain-of-look reasoning steps (STR: Action Prompting +
Dynamic GNN; VSR: CaptionHOI Prompting + VideoHOI Prompting). Only the networks highlighted in blue are optimized during train-
ing. BLIP model produces image captions of each frame. CLIP model produces caption features and initial action prompt representations
or HOI prompt representations. Details on the model are in Section 3.2 and Section 3.3.

large-scale VL model (noted as CLIP shown in Fig. 2) to
generate original HOI prompts ci = CLIP(ti) ∈ Rd, i ∈
{1, · · · , N}, where Ti is the i-th HOI triplet and d de-
notes the feature dimension. For each frame in the video
clip, in order to incorporate global semantic information,
the caption of that frame is produced from image caption
model BLIP [20]. The generated image caption is further
applied with CLIP [33] text encoder to produce caption fea-
ture fc = CLIP(BLIP(Ii)) ∈ Rd, which will be utilized in
the following sections.
CaptionHOI Prompting. The first Chain-of-Look
promptig in VSR network is CHP. CHP module takes orig-
inal HOI prompt representations ci and frame caption fea-
ture fc as inputs, thus incorporating global semantic infor-
mation of the entire image into HOI features. The generated
HOI prompt representation c′i ∈ Rd is thus semantic-aware
to the video frame, making it applicable for video HOI de-
tection. Concretely, CHP consists of a multi-head attention
(MHA), taking input both HOI prompt representation ci and
caption feature fc at time t. In the MHA module, the query
is HOI prompt representation ci, while the key and value
are both caption feature fc. The output is further applied
with a feed-forward network (FFN) to learn video-specific
prompts c′i,

c̄i = MHA(ci, fc) + ci, (1)

c′i = FFN(c̄i) + c̄i. (2)

VideoHOI Prompting. The above CHP module generates

semantic-aware HOI prompt representations by employing
global semantic information from image caption. VHP,
which is the second Chain-of-Look prompting in VSR
network, on the other hand, extends the chain-of-look rea-
soning process by incorporating visual information to fur-
ther enhance HOI prompt representations for video HOI de-
tection task. The structure of VHP is the same as CHP, with
only the inputs changed to be the updated HOI features c′i
and visual feature fv ∈ Rd.

As shown in Fig. 2, for a given frame It at time t, pre-
trained object detection model FasterRCNN [34] is utilized
as the backbone to detect human and object instances in
each frame. We select top Q instances based on the predic-
tion scores generated from FasterRCNN. Each human in-
stance is generated with its normalized bounding box b̂

(h)
i ∈

[0, 1]4, i ∈ {1, · · · , Qh}, where Qh is the number of human
instances. Each object instance is represented with its nor-
malized bounding box b̂

(o)
i ∈ [0, 1]4, i ∈ {1, · · · , Qo} and

object category ei, where Qo is the number of object in-
stances. If the number of detected instances are less than
Q, we take all the predicted instances. The instance fea-
ture map f

(t)
h ∈ Rd, f (t)

o ∈ Rd (h represents human, o
represents object) are then generated with ROIAlign [11].
The maximum number of potential combinations of human-
object and human-human is Nc = QhQo +

(
Qh

2

)
. The fea-

ture of each combination f
(n)
comb ∈ R2d(n ∈ {1, ..., Nc})

is generated by concatenating f
(t)
h and f

(t)
o . The visual fea-

ture fv of frame It is taken by averaging all the combination



Figure 3. Action Prompting. The structure of action prompting
module.

features, followed by a linear layer (Proj) to project feature
dimension from 2d to d: fv = Proj( 1

Nc

∑Nc

n=1 f
(n)
comb).

Similar to Eq. 1 and Eq. 2, the visual-semantic aware (VSA)
HOI prompt representation outputted from VHP is formu-
lated as

c̄′i = MHA(c′i, fv) + c′i, (3)

ĉi = FFN(c̄′i) + c̄′i. (4)

3.3. Spatio-temporal Reasoning (STR) Network

The essential semantic information in a video is deter-
mined by the actions happened in that video, while hu-
man and objects serve as participants to accomplish ac-
tions. Therefore, modeling temporal dynamics of actions in
videos provides fundamental semantic information. To this
end, we structurize the visual feature combinations gener-
ated from Sec. 3.2 into a fixed number of action features,
where each action feature represents a specific action.

For all the K action labels {uk}Kk=1 in the dataset, the
template t(uk)=“A person is [action]ing ...” is pre-
defined for each action, where [action] represents each
action name. Then we generate action prompt representa-
tions {ak}Kk=1 of each action with CLIP [33] text encoder:
ak = CLIP(t(uk)). To endow the action prompt represen-
tations with spatial-aware reasoning capabilities, we design
a novel Action Prompting (AP) module as the first Chain-
of-Look prompting shown in Fig. 3. AP takes visual com-
binations cbl and action prompt representation ak as inputs
and outputs semantic-aware action prompt representation

a′k. The AP module is divided into two stages: (I) In the first
stage, to align the action prompt representations and visual
combinations to the same embedding space, each combina-
tion cbl is applied with an AP module against all the K ac-
tion prompt representations {ak}Kk=1. The AP module first
takes the positional embedding of cbl as input, where the po-
sition of cbl is determined by the average center coordinates
of human and object (or human and human). Then a Multi-
Head Attention (MHA) is applied, where action prompt rep-
resentation ak serves as query, while visual combination
cbl serves as key and value. MHA is followed by a Layer
Norm (LN) module, Feed-Forward Network (FFN) and an-
other LN. In this way, the generated learned visual prompt
cb′l = AP(ak, cbl) is aligned to the same embedding space
with respect to each action prompt representation ak. (II)
The second stage of AP module employs a lightweight at-
tention module (Atten) to compute the relative importance
of all the learned visual prompt representations {cb′l}Ll=1 to
a specific action prompt representation ak. This attention
module takes the learned visual prompt representation cb′l as
query, while ak as key and value, outputting the weighted
visual prompt representation ĉbl = Atten(cb′l, ak). By
averaging all the L weighted visual prompt representations
{ĉbl}Ll=1, we generate the semantic-aware action prompt
representation a′k = 1

L

∑L
l=1 ĉbl, which is essentially the

weighted sum of all information from visual combinations.
Thus the combined formulation of a′k can be expressed as:

a′k =
1

L

L∑
l=1

Atten(AP(ak, cbl), ak). (5)

Our next goal is to enhance spatial-aware action prompt
representations into spatio-temporal aware action prompt
representations by virtue of the second Chain-of-Look
prompting module. Now that we have semantic-aware
action prompt representations {a′k}Kk=1 for each frame,
we construct a fully-connected graph G whose nodes
are {a′k}Kk=1. Motivated by the ROLAND model [52]
of dynamic GNN, we capture the temporal dynamics of
semantic-aware action prompt representations by recur-
rently updating node features over time. To this end, we
design the second Chain-of-Look prompting module with
dynamic GNN as shown in Fig. 4. At time t, dynamic GNN
takes into a′(t), followed by GNN Layer 1 to generate up-

dated level 1 node state H
(1)
t :

H
(l)
t = Update(l)(H

(l)
t−1, H̃

(l)
t ), (6)

H̃
(l)
t = GNN(l)(H

(l−1)
t ), (7)

where l = {1, 2} indicates the number of GNN layer. Then
node embedding update is employed by taking H̃

(l)
t and his-

torical node state H(l)
t−1. Following ROLAND [52], we take



Figure 4. Dynamic GNN architecture. The structure of dynamic
GNN for temporal modeling of action features across frames.

GRU (Gated Recurrent Unit) cell [5] for node embedding
updating:

H
(l)
t = GRU(H(l)

t−1, H̃
(l)
t ). (8)

With generated H
(l)
t , the other stacked GNN Layer and Em-

bedding Update layer is applied to generate final node em-
bedding HL

t , where L = 2 in our architecture. With the sec-
ond Chain-of-Look prompting module of dynamic GNN,
we produce spatio-temporal aware (STA) action prompt
representations {âi}Ki=1.

3.4. HOI Prediction & Bounding Box Regression

HOI prediction is performed by employing the above
computed STR action prompt representations {âk}Kk=1 and
VSA HOI prompt representations {ĉn}Nn=1. For each âk ∈
Rd of frame It, we concatenate it with ĉn ∈ Rd that con-
tains the same action class with it. Then we apply a multi-
layer perceptron (MLP) followed by a sigmoid function to
generate predicted logits phoin ∈ [0, 1] of the HOI relating
to ĉn: phoin = Sigmoid(MLP([âk, ĉn])), where [·, ·] in-
dicates concatenating operation. Thus the HOI prediction
loss Lhoi for each frame can be generated by computing the
binary cross-entropy (BCE) between total HOI prediction
logits {phoin }Ni=1 and HOI ground truth {yhoin }Ni=1, where
yn = {0, 1}:

Lhoi =
1

N

N∑
n=1

BCE(phoin , yhoin ). (9)

To compute the loss of bounding box regression for
frame It, the STR action prompt representations {âg}Gg=1

whose action classes occur in the ground-truth of that frame
are first selected, where G indicates the number of actions
in the ground truth of that frame. For each âg ∈ Rd, an
MLP followed by a sigmoid function is applied on âg and
every single visual combination cbl ∈ Rd to compute the
possibility pbboxg ∈ [0, 1] of the action accompanied by that
visual combination: pbboxg = Sigmoid(MLP([âg, cbl])).
At the same time, we learn a threshold thk ∈ [0, 1] for

each action, selecting those visual combinations cbl whose
pbboxg are no less than thk as the predicted human-object or
human-human pairs with respect to the action. In open set
settings, for actions {ai}Ktest

i=1 only in testing set (Ktest is
the number of actions only in testing set), these actions will
not be selected and their thresholds will not be optimized
during training. To solve this problem, the thresholds of
{ai}Ktest

i=1 are computed from weighted sum of the thresh-
olds of all the actions in training set. The weights are the
similarities between the STR of every two actions. For the
G actions in ground truth, we compute BCE loss of pre-
dicted bounding boxes for each action:

Lbbox_cls =
1

G

G∑
g=1

BCE(pbboxg , ybboxg ), (10)

where pbboxg ∈ {0, 1}Nbbox and ybboxg ∈ {0, 1}Nbbox are bi-
nary representations of predicted and ground-truth bound-
ing box pairs, Nbbox = max{Npred, Ngt}, Npred indicates
the number of predicted combinations of taht action, Ngt

indicates the number of ground-truth combinations of that
action. If Npred ̸= Ngt, we choose the larger value as the
binary vector dimension and pad the shorter binary vector
with zeros.

In terms of bounding box locations, each visual combi-
nation cbgts (s ∈ [1, Ngt]) in ground-truth needs to find a
corresponding visual combination cbpredv (v ∈ [1, Nbbox])
in prediction to compute loss. Therefore, we calculate the
intersection size of human bounding boxes between each
cbgts against all {cbpredv }Nbbox

v=1 and assign the cbpredv with
largest intersection size to cbgts as a prediction to ground-
truth match. Thus, bounding box localization loss between
a ground-truth visual combination cbgti (i ∈ [1, Ngt]) and its
corresponding predicted visual combination cbpredω(i)

is

Lbbox_loc =
1

NGT

NGT∑
i=1

{µ1[||b̂(h)i − b̂(h)ω(i)
||+ ||b̂(o)i − b̂(o)ω(i)

||]

− µ2[GIoU(b̂
(h)
i , b̂(h)ω(i)

) + GIoU(b̂
(o)
i , b̂(o)ω(i)

)]},
(11)

where NGT is the total number of ground-truth visual
combinations in that frame; GIoU is the generalized IoU
[35]; µ1 and µ2 are the hyper-parameters for adjusting the
weights.

The overall loss for a frame to be minimized in the train-
ing phase is

L = α1Lhoi + α2Lbbox_cls + α3Lbbox_loc (12)

where α1, α2 and α3 are weights for adjusting different loss
components.

3.5. Inference

During inference, for each frame in a given video seg-
ment, we generate HOIs consisting of four components:



<person bounding box, object bounding box, object class,
interaction class >. The object class and interaction class
are predicted from HOI logits phoin in Eq. 9, with threshold
0.5 to determine whether the HOI exists or not. Bounding
boxes of human and object pairs are selected from visual
combinations cbL with the learned thresholds {thk}Kk=1 for
each action to determine the existence or not of a visual
combination.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our ACoLP model on two video Human-
Object Interaction datasets: VidHOI [4] and CAD120 [18].
VidHOI is a large-scale dataset for detecting video HOIs.
Following ST-HOI[4], we take 6,366 videos for training
and 756 videos for validation. In VidHOI, there are 50 an-
notated relation categories and half of them are temporal-
related actions. CAD-120 is a relatively smaller dataset,
consisiting of 120 RGB-D videos of 4 subjects ad 10 dif-
ferent activities. In this work, only the RGB images and
bounding box annotations are utilized.

For VidHOI dataset, we follow ST-HOI [4] to use mean
average precision (mAP) as the metric for VidHOI dataset,
which is also the same as the widely used image HOI de-
tection dataset HICO-DET [50]. An HOI prediction is con-
sidered to be true positive if it satisfies the following two
criteria: (1) both the object class and the interaction class is
the same with ground truth; (2) both the bounding boxes of
human and object overlap with the ground truth boxes with
interest-over-union (IoU) more than 0.5. We follow stan-
dard scheme of sub-activity F1 score for CAD-120 dataset
evaluation.

4.2. Implementation Details

Human and object bounding boxes in video frames are
extracted from parameter frozen backbone model with a
FasterRCNN [34] pretrained on MS-COCO [23]. We set
Q in Sec. 3.2 as 20 to select top score entities. Instance fea-
tures are then extracted by ROIAlign [11], followed by a lin-
ear layer to project instance features to 1024-dim. Node fea-
ture dimension d in Dynamic GNN module is 1024. GNN
layers in Dynamic GNN is implemented as Graph Convo-
lutional Networks (GCN) [17]. MLPs in the model consists
of 3 layers, with ReLU activation function and LayerNorm
at the end of each layer except the last one. We employ
the pretrained CLIP [33] model as text encoder for extract-
ing text features of 768-dim, which are further projected to
1024-dim. The parameters of CLIP are frozen during train-
ing. The number of heads in MHA module in Sec. 3.3 is set
to be 8. α1, α2 and α3 in Eq. 12 are set to be 2, 1.5 and
1, respectively. AdamW [26] optimizer is used for training
100 epochs on 4 GPUs with a batch size of 128. The initial

Method VidHOI CAD120
THID, CVPR 2022 [47] 19.05 87.6
STIGPN, MM 2021 [46] - 91.9
ST-HOI, ICDAR 2021 [4] 17.60 -
ASSIGN CVPR 2021 [28] 21.43 89.9
2G-GCN, ECCV 2022 [31] - 89.5
TUTOR, NurIPS 2022 [43] 26.92 94.7
ACoLP (∆ VHP) 19.45 86.1
ACoLP (∆ CHP) 22.06 88.6
ACoLP (∆ AP) 21.94 87.7
ACoLP (∆ D-GNN) 20.67 85.4
ACoLP, Ours 28.27 94.9

Table 1. HOI detection results compared with SOTA methods
on VideoHOI and CAD120 datasets. ∆ VHP, ∆ CHP, ∆ AP
and ∆ D-GNN indicate removing VideoHOI Prompting module,
CaptionHOI Prompting module, Action Prompting and Dynamic
GNN, respetively. ‘-’ indicates no results are reported in the orig-
inal paper. THID method and ASSIGN method performance on
VidHOI dataset are evaluated by the authors of this submission.

Method 20% unseen 50% unseen
THID, CVPR 2022 [47] 15.86 10.49
ST-HOI, ICDAR 2021 [4] 12.36 8.65
ASSIGN CVPR 2021 [28] 14.63 10.98
2G-GCN, ECCV 2022 [31] 14.23 10.16
ACoLP (∆ VHP) 14.38 9.67
ACoLP (∆ CHP) 17.94 11.57
ACoLP (∆ AP) 16.53 10.32
ACoLP (∆ D-GNN) 15.73 10.46
ACoLP, Ours 19.23 12.78

Table 2. Open set HOI detection performance comparisons on dif-
ferent ratios of unseen HOIs on VidHOI dataset. Notations are the
same as those in Table. 1.

learning rate is 0.0001 and decays by 0.9 every 20 epochs.

4.3. Ablation Studies

In this section, we conduct ablation studies to validate
the function of each module.

We first remove CHP module and utilize HOI prompt
representation ci in Fig. 2 directly for HOI prediction. Re-
sults in Table 1 show that removing CHP module leads
to more than 5% mAP drop on VidHOI dataset and more
than 6 F1 points drop on CAD-120 dataset. If removing
VHP module and only employ the global semantic-aware
HOI prompt representation c′i, the results drops even further
on both VidHOI dataset and CAD-120 dataset. In Fig. 5,
we visualize the HOI prompt representation ci and visual-
semantic aware HOI prompt representation ĉi with t-SNE
[44]. We select HOIs that contain interaction classes of ei-
ther grab or next_to. There are 13 grab-related HOIs
and 40 next_to-related HOIs. Fig. 5 indicates that the
visual-semantic aware HOI prompt representations (prompt



Figure 5. Visualization of original HOI prompt representations
(text feature) and visual-semantic aware HOI prompt representa-
tions (prompt feature). Each dot represents an HOI that contains
the action listed in the sub figure. Each dot is also assigned a dif-
ferent color for better visualization.

feature) exhibit cluster patterns, while original HOI prompt
representations (text feature) tend to scatter without a clus-
ter center. This indicates that HOI classes containing the
same interaction class share more similar semantic infor-
mation, especially for the temporal-related interaction class
such as grab. Futhermore, we evaluate the function of AP
module and D-GNN in spatio-temporal reasoning network
shown in Fig. 2. Results in Table 1 indicate that remov-
ing AP and D-GNN will both harm HOI detection results
by a large margin, demonstrate the effectiveness of AP and
D-GNN.

4.4. Comparison with State-Of-The-Art (SOTA)

Open Set Video HOI detection Open set video HOI
detection indicates we only have access to part of action
classes in training set, while there are some actions in test
set that we have never seen before. We select training data
that contain 80% or 50% of the total action classes and the
rest 20% or 50% action classes only exist in test set. Results
in Table 3 indicate that our method leads a large margin on
unseen HOI detection compared with current SOTA meth-
ods with both 20% unseen and 50% unseen. For the video-
based methods of ST-HOI [4], ASSIGN [28] and 2G-GCN
[31], the performance is worse than image-based method
THID [47]. This is caused by the fact that THID [47] incor-
porates language semantic information into image HOI de-
tection, thus increase the model generalizability on unseen

Method 20% unseen 50% unseen
THID, CVPR 2022 [47] 82.41 73.95
ST-HOI, ICDAR 2021 [4] 80.20 73.62
ASSIGN CVPR 2021 [28] 82.13 72.28
2G-GCN, ECCV 2022 [31] 81.47 73.82
ACoLP (∆ VHP) 82.35 74.56
ACoLP (∆ CHP) 82.95 74.10
ACoLP (∆ AP) 80.65 72.76
ACoLP (∆ D-GNN) 81.32 72.97
ACoLP, Ours 87.53 76.39

Table 3. Open set HOI detection performance comparison on dif-
ferent ratios of unseen HOIs on CAD-120 dataset. Notations are
the same as those in Table. 1.

Method T S
ST-HOI, ICDAR 2021 [4] 14.4 25.0
ASSIGN CVPR 2021 [28] 18.37 29.94
TUTOR, NurIPS 2022 [43] 21.28 32.21
ACoLP, Ours 24.77 32.96

Table 4. HOI detection performance comparison on temporal-
related (T) and static spatial-related (S) HOIs on VidHOI dataset.

VidHOI
Method Full None-rare Rare
ST-HOI, ICDAR 2021 [4] 17.6 27.2 17.3
ASSIGN CVPR 2021 [28] 20.43 28.5 18.9
TUTOR, NurIPS 2022 [43] 26.92 37.12 23.49
ACoLP, Ours 28.27 39.66 26.63

Table 5. HOI detection performance comparison on three different
sets of HOI categories in VidHOI dataset: Full, Non-rare and Rare.

classes. If we delete the VHP module in our model, the abil-
ity for open set HOI detection is greatly reduced more than
5% mAP as shown in Table 3. This result suggests that en-
hancing text information with visual content is essential for
generating feasible prompt representations that generalize
well on unseen classes.

Closed Set Video HOI detection In closed setting, all
the HOI classes are predefined and exist in training set. By
using full training set, our model achieves about 1.5% mAP
lead on VidHOI dataset as shown in Table 1. For CAD-
120 dataset, our method is on par with most of the SOTA
methods for HOI detection.

We further compare the detection performance of
temporal-related and spatial-related interactions on VidHOI
dataset. If the predicates need to be inferred from neigh-
boring frames, they’re temporal HOIs. Otherwise, they’re
spatial HOIs. Resutls in Table 4 show that our model out-
performs SOTA method more than 2% mAP on temporal-
related interactions. On spatial-related interaction detec-
tion, our method leads by about 0.5% mAP. Our model per-
forms better on temporal-related interactions probably be-
cause Dynamic GNN module explicitly captures temporal



dynamics in video frames, while ASSIGN [28], ST-HOI [4]
and TUTOR [43] do not contain such scheme.

Following ST-HOI [4], we test our model performance
on three HOI sets of VidHOI dataset: (1) Full: all the 557
HOI classes are evaluated; (2) Non-rare: 242 HOI cate-
gories with more than 25 instances; (3) Rare: 315 HOI in-
stances with less than 25 instances. Table 5 shows that our
model performs better than ASSIGN [28], ST-HOI [4] and
TUTOR [43] in all three settings. Among all the three set-
tings, our method obtain the largest advantages on the Rare
setting. This is in accordance with the open set setting in
the last section. The strong generalizability for unseen cat-
egories also helps in detecting rare categories.

5. Conclusion
In this work, we propose ACoLP model to tackle the

challenging open set video HOI detection problem. We
model video HOIs in a novel action-centric manner, which
aims to capture the essential verbs in videos. Furthermore,
we propose the chain-of-look prompting scheme to gen-
erate spatio-temporal-aware action prompt representations
and visual-semantic-aware HOI prompt representations, in
order to model the underlying visual reasoning process in
videos. Extensive experimental analysis validates the effec-
tiveness of our model, which outperforms state-of-the-art
HOI detection methods in the open set setting, and is on par
with or better than existing methods in the closed setting.
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