
Uncertainty-aware State Space Transformer for Egocentric
3D Hand Trajectory Forecasting

Wentao Bao 1∗, Lele Chen3, Libing Zeng4, Zhong Li2, Yi Xu2, Junsong Yuan5, Yu Kong1

1Michigan State University, 2OPPO US Research Center, 3Sony AI,
4Texas A&M University, 5University at Buffalo

{baowenta,yukong}@msu.edu, lele.chen@sony.com, libingzeng@tamu.edu,

{zhong.li,yi.xu}@oppo.com, jsyuan@buffalo.edu

3D space

2D space

3D space

2D space

3D space

2D space

future

⋯ ⋯

past

Figure 1: Egocentric 3D Hand Trajectory Forecasting. Our goal is to predict the future 3D hand trajectory (in red) given the past
observations of egocentric video and trajectory (in blue). Compared to the 2D image space, predicting trajectory in a global 3D space is
practically more valuable to understand human intention and behavior in AR/VR applications.

Abstract

Hand trajectory forecasting from egocentric views is cru-
cial for enabling a prompt understanding of human inten-
tions when interacting with AR/VR systems. However, ex-
isting methods handle this problem in a 2D image space
which is inadequate for 3D real-world applications. In this
paper, we set up an egocentric 3D hand trajectory fore-
casting task that aims to predict hand trajectories in a 3D
space from early observed RGB videos in a first-person
view. To fulfill this goal, we propose an uncertainty-aware
state space Transformer (USST) that takes the merits of
the attention mechanism and aleatoric uncertainty within
the framework of the classical state-space model. The
model can be further enhanced by the velocity constraint
and visual prompt tuning (VPT) on large vision transform-
ers. Moreover, we develop an annotation workflow to col-
lect 3D hand trajectories with high quality. Experimen-
tal results on H2O and EgoPAT3D datasets demonstrate
the superiority of USST for both 2D and 3D trajectory
forecasting. The code and datasets are publicly released:
https://github.com/Cogito2012/USST.

*This work was done when Wentao Bao and Libing Zeng were interns
mentored by Lele Chen at OPPO US Research Center.

1. Introduction

Egocentric video understanding aims to understand the
camera wearers’ behavior from the first-person view. It is
receiving increasing attention in recent years [18, 27, 16, 31,
29, 36, 46, 32, 8, 7, 28] due to its analogousness to the way
human visually perceives the world. An important egocen-
tric vision task is to forecast the egocentric hand trajectory
of the camera wearer [34], which has great value in Aug-
mented/Virtual Reality (AR/VR) applications. For exam-
ple, the predicted 3D trajectories can help plan and stabilize
a patient’s 3D hand motion who has upper-limb neuromus-
cular disease [27]. Besides, the early predicted 3D hand
trajectory is key to reducing rendering latency in VR games
for achieving an immersive gaming experience [15].

In the existing literature, egocentric 3D hand trajectory
forecasting is far from being explored. The method in [34]
could only predict 2D trajectory on an image and cannot
forecast precise 3D hand movements. Recent works [5,
45, 49] predict the trajectory or 3D human motions from
egocentric views, but they do not predict the 3D trajec-
tory of the camera wearer. Besides, though forecasting the
3D hand pose provides fine-grained information about 3D
hands [10], it is out of our scope as we focus on the camera
wearers’ planning behavior revealed by 3D hand trajectory.



The challenges of egocentric video-based 3D trajectory
forecasting are significant. First, accurate large-scale 3D
trajectory annotations are labor-intensive and expensive.
They rely on wearable markers or multi-camera systems for
hand motion capture in a controlled environment. Second,
learning the depth of 3D trajectory from egocentric videos
is challenging. On one hand, using 2D video frames to esti-
mate 3D trajectory depth is an ill-conditioned problem sim-
ilar to other monocular 3D tasks [42, 38, 2]. Even if the
historical 3D hand trajectory is utilized as the input, how to
exploit the visual and trajectory information for forecasting
is still nontrivial. On the other hand, due to the inevitable
camera motion in an egocentric view, the background of
the scene is visually dynamic which poses a significant bar-
rier to inferring the foreground depth [30, 52]. Third, as a
Seq2Seq forecasting problem, it is critical to formulate the
latent transition dynamics [17, 3] that allows the variances
of data due to anytime forecasting and limited observations.

In this paper, we address these challenges by develop-
ing an uncertainty-aware state space transformer (USST). It
follows the state-space model [40] by taking the observed
egocentric RGB videos with the historical 3D trajectory as
input to predict future 3D trajectory. Our model deals with
the depth noise of trajectory annotation by introducing the
depth robust aleatoric uncertainty in training. To fuse the
information from the dense RGB pixels and sparse histori-
cal trajectory, we leverage visual and temporal transformer
encoders as backbones and utilize the recent visual prompt
tuning (VPT) to enhance the visual features. Following the
state space model, we develop a novel attention-based state
transition module and an emission module with a predictive
link to predict the 3D global trajectory coordinates. More-
over, to take the hand motion inertia into consideration, we
propose a velocity constraint to regularize the model train-
ing, which helps generalize to unseen scenarios.

To enable egocentric 3D hand trajectory prediction, we
follow [27] to develop a scalable annotation workflow to au-
tomate the annotation on RGB-D data from head-mounted
Kinect devices. In particular, camera motion is estimated to
transform the 3D trajectory annotations from local to global
camera coordinate system. Experimental results on H2O
and EgoPAT3D datasets show that our method is effective
and superior to existing Transformer-based approaches [34]
and other general Seq2Seq models. In summary, our contri-
butions are as follows:

• We propose an uncertainty-aware state space trans-
former (USST) that consists of a novel state transition
and emission, aleatoric uncertainty, and visual prompt
tuning, which are empirically found effective.

• We collected and will release our annotations on
H2O [25] and EgoPAT3D [27] datasets that will benefit
the egocentric 3D hand trajectory forecasting research.

• We benchmarked recent methods on the proposed
task and experimental results show that our method
achieves the best performance and could be general-
izable to unseen egocentric scenes.

2. Related Work
Trajectory Prediction Predicting the physical trajectory
of moving objects is a long-standing research topic. It has
been widely studied in applications for pedestrians [1, 51],
vehicle [9, 35]. Many of them are developed for the third-
person view and predict trajectory in 2D pixel space. Given
that the first-person view is more realistic in AR/VR appli-
cations, recent few works [34, 33] are trying to predict the
hand-object interaction from egocentric videos. Though the
method in [5] predicts the pedestrian trajectory in 3D space,
their method primarily addresses the social interaction of
multiple pedestrians. The recent work [39] also targets the
egocentric 3D trajectory for pedestrian scenarios, but their
method leverages depth modality and nearby person’s tra-
jectory as context information which are practically uneasy
to collect. Besides, due to the annotation noise and uncer-
tain nature of trajectory prediction, probabilistic modeling
is widely adopted in existing literature [47, 43, 35]. In this
paper, following the probabilistic setting, we step toward
the egocentric 3D hand trajectory prediction using practi-
cally accessible RGB videos for AR/VR scenarios.

Egocentric Video Representation Egocentric videos are
recorded in a first-person view. Different from the videos
in a third-person view, learning an egocentric video rep-
resentation is more challenging due to the dynamic back-
ground caused by camera motion and implicit intention of
activities from camera wearers [29, 12, 37]. For 3D trajec-
tory prediction, existing commonly used egocentric video
datasets such as EPIC-Kitchens [7, 8] do not provide the
depth information and camera parameters, which are essen-
tial for annotating the 3D hand trajectory. Though the recent
Ego4D [18] benchmark provides a hand forecasting subset,
the annotations are defined as 2D locations in image space.
Therefore, we resort to a cost-effective workflow to collect
3D hand trajectory annotations from existing 3D hand pose
datasets such as the EgoPAT3D [27] and H2O [25] datasets.
Our annotation workflow can be deployed to any egocentric
dataset collected by head-mounted RGB-D sensors.

State Space Model State-space Model (SSM) originates
from the control engineering field. It is conceptually general
and inspires many classical SSMs such as the Kalman Fil-
tering for prediction tasks. Recent deep SSMs [4, 6, 13] are
increasingly popular by combining Recurrent Neural Net-
works (RNNs) with the Variational AutoEcoders (VAE).
However, these approaches are limited in practice due to
the complex long-term dependency on highly-structured se-
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Figure 2: Proposed USST Model. Given the RGB frames and 3D hand locations of C observed time steps, we extract and concatenate
their features as x1:C by the prompted backbone fV and MLP model fT , which are further fed into transformer encoders to produce
temporal observations o1:C . Together with positional encodings PE1:T of the full horizon, our state transition layer could recursively
extrapolate the latent states zC+1:T for 3D trajectory forecasting along with uncertainty and velocity (α and v) in T − C future steps.

quential data. In [40], a deep SSM is proposed by com-
bining Kalman Filtering with deep neural networks. How-
ever, the linear Gaussian assumption is uneasy to hold for
high-dimensional data in the real world. To address these
challenges, ProTran [41] introduces a probabilistic Trans-
former [44] under a variational SSM for time-series pre-
diction. However, maximizing the variational low bound
of ProTran suffers from notorious KL vanishing issue [14].
AgentFormer [50] can also be regarded as a Transformer-
based SSM, but its autoregressive decoding limits its effi-
ciency to low-dimensional motion data. In this paper, we
propose a Transformer-based SSM that allows for long-term
dependency and latent dynamics efficiently in practice.

3. Proposed Method
Problem Setup As shown in Fig. 1, the Egocentric 3D
hand trajectory forecasting model takes as inputC observed
RGB frames V1:C = {I1, . . . , IC} and 3D hand trajectory
T1:C = {p1, . . . ,pC} to predict the future 3D hand tra-
jectory TC+1:T = {pC+1, . . . ,pT } in a finite horizon T .
Here, It ∈ RH×W×3 and pt = [xt, yt, zt]

⊤ are egocentric
RGB frame and 3D hand trajectory point at time step t, re-
spectively. In practice, the 3D point pt is defined in a global
3D world coordinate system. The ultimate goal is to learn
a model Φ by maximizing the expectation of the likelihood
over the training dataset D:

max
Φ

EV,T ∼D [pΦ(TC+1:T |T1:C ,V1:C)] . (1)

In this paper, we formulate the problem as a state-space
model. In the following sections, we will introduce the pro-
posed model in detail.

3.1. Uncertainty-aware State Space Transformer

Existing SSMs could formulate the probabilistic nature
of trajectory prediction. However, they do not explicitly

handle the data noise issue which is commonly encoun-
tered when using RGB-D sensors to get 3D trajectory an-
notations. To mitigate the uncertainty from data labeling,
we follow the line of research [22, 20] and propose an
uncertainty-aware state space transformer (USST) to handle
the dynamics of 3D hand trajectory in egocentric scenes.

Formally, following the latent variable modeling, the
probability in Eq. (1) over a full sequence T1:T can be fac-
torized by introducing T latent variables Z1:T :

p(T1:T |T1:C ,V1:C) =
∫
p(T1:T |Z1:T )p(Z1:T |T1:C ,V1:C)dZ , (2)

where the state transition p(Z1:T |T1:C ,V1:C) and the emis-
sion p(T1:T |Z1:T ) are learned from data D. Following the
SSM formulation, we propose to factorize the two terms by
the independency assumptions:

pθ(Z1:T |T1:C ,V1:C) =

T∏
t=1

pθ(zt|z1:t−1,p1:C , I1:C),

pϕ(T1:T |Z1:T ) =

T∏
t=1

pϕ(pt|zt,pt−1),

(3)

where the latent variable zt ∈ Z1:T is generated by tak-
ing as input zt−1 and the previous trajectory point pt and
RGB frame It. To address the label noise issue, we formu-
late the emission model pϕ(pt|zt,pt−1) as a probabilistic
module to learn the aleatoric uncertainty. In the following
paragraphs, we will elaborate on feature embedding, state
transition, and probabilistic prediction.

Visual and Trajectory Embedding As advocated by [41,
50], Transformers are effective to capture the long-term de-
pendency for sequential data. Therefore, we propose to
leverage visual and temporal Transformers [44] as encoders
to learn the features from the dense RGB frames and sparse



trajectory points. Specifically, we first embed the observed
sequence of egocentric RGB frames and 3D trajectory by
models fV and fT , followed by modality-specific trans-
formers gV and gT . This process can be expressed as

[x
(V)
t ,x

(T )
t ] = [fV(It), fT (pt)],

o
(V)
1 , . . . ,o

(V)
C = gV(x

(V)
1 , . . . ,x

(V)
C ),

o
(T )
1 , . . . ,o

(T )
C = gT (x

(T )
1 , . . . ,x

(T )
C ),

(4)

where fV is a vision backbone, e.g., ResNet [19] and
ViT [11]. fT is implemented as MLP following [34, 27]. gV
and gT are transformer encoders that consist of B stacked
multi-head attention blocks. For each block b, a single-head
attention block can be expressed as

Attn(Qb,Kb,Vb) = softmax
(
QbK

⊤
b√
d

+M

)
Vb, (5)

where Qb,Kb,Vb ∈ RT×d are the projected query, key,
and value matrices from the output of the previous block b−
1, i.e, [Qb;Kb;Vb] = [WQ

b Qb−1;W
K
b Kb−1;W

V
b Vb−1].

All the Wb are learnable parameters. The binary mask
M ∈ RT×T zeros out the last T −C columns and rows for
the trajectory prediction problem. To capture global tempo-
ral interaction, the input of the first block Q0, K0, and V0

are the same as xt + PE(t) where PE(t) is the positional
encoding for t ∈ [1, T ].

Transformer Transition With the encoded observations
ot = [o

(V)
t ;o

(T )
t ] where we use [; ] to represent the fea-

ture concatenation, it is critical to formulate the state tran-
sition and future trajectory prediction based on Eq. (3).
Inspired by [41], we propose an attention-based autore-
gressive module to formulate posterior pθ(zt|z1:t−1,o1:C).
Specifically, we first embed ot with positional encoding by
ht = LayerNorm(MLP(ot) + PE(t)). Then, the latent fea-
ture zt is recursively encapsulated by the hidden variables
w̄t and ŵt by attention modules (illustrated in Fig. 3):

w̄t = LayerNorm([zt−1;Attn(zt−1, z1:t−1, z1:t−1)]),

ŵt = LayerNorm([w̄t;Attn(w̄t,h1:C ,h1:C)]),

zt = LayerNorm(MLP([ŵt;MLP(ŵt)]) + PE(t)),
(6)

where the two multi-head attention modules capture the pre-
viously generated state z1:t−1 and the hidden states of all
observations h1:C . Contrary to ProTran, we use concatena-
tion [; ] rather than addition before layer normalization. The
insight behind this is that the queried feature from a histori-
cal context can be better preserved without being dominated
by zt−1 in addition operation. Moreover, we remove the
stochasticity of zt and instead use a probabilistic decoder
as introduced next to handle the dynamics of trajectory pre-
diction. The benefit is that we avoid the KL divergence van-
ishing issue from optimizing the ELBO objective which is
known to exist in variational recurrent models [14].
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Figure 3: Unrolled illustration of Eq. (6). Bold arrows are learn-
able, and green dashed lines show the attention ranges.

Probabilistic Forecasting Instead of placing the stocas-
ticity in the transition model pθ(zt|z1:t−1,o1:C), we pro-
pose to formulate the emission process pϕ(pt|zt,pt−1) as
a probabilistic model by predicting both the mean p̂t and
variance σ̂2

t of each 3D hand trajectory point:

[p̂t, α̂t] = [MLP([zt;o
(T )
t−1]), softplus(MLP([zt;o

(T )
t−1]))],

(7)
where the uncertainty α̂t := log σ̂2

t to enable numerical sta-
bility. The trajectory point pt follows a predictive Gaussian
distribution, i.e., pt ∼ N (p̂t, σ̂t). As the o

(T )
t−1 encodes

the observation from pt−1 and its global historical context,
our emission model is thus more powerful to predict pt.
This predictive mode has also been successful in traditional
methods such as the SRNN [13] and VRNN [6].

Discussion Compared to ProTran [41], our formulation
could individually formulate the trajectory and visual con-
text p1:C and I1:C in state transition by modality-specific
embeddings and the predictive link from pt−1 to pt, while
ProTran only handles single modality context p1:C in state
transition and emission. In addition, to learn model pa-
rameters θ and ϕ, ProTran has to use variational posterior
distribution qθ(zt|z1:t−1,p1:C) to help approximate Eq. (2)
by ELBO maximization. In contrast, our method does not
need approximation and formulates the data uncertainty of
pt from a Bayesian perspective (Eq. (6)), which is empiri-
cally more effective to handle data noise.

3.2. Model Training

Depth Robust Aleatoric Uncertainty With the predicted
trajectory points p̂t along with the uncertainty α̂, accord-
ing to [22, 3], the model training is essentially to learn the
heteroscedastic aleatoric uncertainty (HAU) from data. As
shown in [23, 20], by minimizing the KL divergence be-
tween the predictive Gaussian distributions and Dirac distri-
bution of the ground truth trajectory, the objective in Eq. (1)



is equivalent to minimizing the HAU loss at each time t:

Lhaul(α̂, p̂,p) = e−α̂
|p|∑
i=1

∥pi − p̂i∥2 + α̂, (8)

where pi and p̂i are 3D coordinate values (x, y, z) of ground
truth and model prediction, respectively.

In our task, the trajectory depth z is more challenging to
predict than x and y due to 1) the weak implicit correspon-
dence between the past visual context V1:C and future hand
depth, and 2) more importantly, the inevitable annotation
noise from depth sensors. To handle these challenges, we
propose to decouple the aleatoric uncertainty into α̂t which
is isotropic for (x, y) and β̂t specifically for z, respectively.
Then, the predictions of (x, y) and z are weighted by factors
wt so that the regression loss becomes

L(t)
DRAU(ŷ, α̂) = Lhaul(α̂t, p̂

(2d)
t ,p

(2d)
t )+wtLhaul(β̂t, ẑt, zt),

(9)
where the weight wt is determined by the negative temporal
difference of ground truth z1:T with softmax normalization:

wt =
exp(−∆zt)∑T
t=1 exp(−∆zt)

, ∆zt = |zt − zt−1|. (10)

Since ∆zt indicates the stability of depth transition, the mo-
tivation of wt is to encourage large weight on the stable
depth transitions (small ∆zt) in a trajectory, which enables
the training to focus less on the unstable depth so that the
model is robust to noisy depth annotations.

Velocity Constraints To explicitly inject the physical rule
of hand motion into the model, we additionally take the mo-
tion inertia into consideration. Specifically, we leverage the
transitioned states {z1, . . . , zT } learned from Eq. (6) to pre-
dict the velocities {v1, . . . ,vT } by an MLP. Then, we pro-
pose the following velocity constraint in training:

Lvelo(v̂,p) =

T∑
t=1

(
∥pt − pt−1 − v̂t∥2

)
+ γ

T∑
t=C+1

(
∥pC +

t∑
i=C+1

v̂i − p̂t∥2
)
,

(11)

where the first term uses the first-order difference of loca-
tions pt to supervise the predicted velocity v̂ and we set p0

to zero. The second term is to constrain the future predicted
trajectory point p̂t with the warped point, which is com-
puted by adding the accumulative predicted velocities onto
the last observed point pC since the time interval is one.
Empirically, we found the velocity constraint enables better
generalization capability to unseen data (see Table 3).
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Figure 4: Annotation Workflow. For more details of the annota-
tion procedure, please refer to our supplementary materials.

Visual Prompt Tuning Visual prompt tuning (VPT) [21]
has been recently successful to adapt large visual founda-
tion models to downstream vision tasks. In this paper, we
leverage VPT to adapt pre-trained visual backbone fV for
the trajectory prediction task. The basic idea is to append
learnable prompt embeddings P to the input image I and
only learn a few layers of MLP head hψ while keeping the
backbone parameters Ψ frozen as Ψ∗ in training:

x
(V)
t = hψ(f

Ψ∗

V (It,P)) (12)

where only the head parameters ψ and visual prompt P are
learned in training. Since {ψ,P} are much smaller than
Ψ, the VPT is highly efficient in training. We implemented
fV with both ResNet [19] and ViT [11], without noting sig-
nificant performance difference. However, applying VPT
achieves better 3D hand trajectory prediction performance
than traditional fine-tuning (see Fig. 8). This is interesting
as there is no existing literature that explores the VPT for
vision-based trajectory prediction problems.

4. Experiments
4.1. Datasets

Since there is no available egocentric 3D hand trajec-
tory dataset, we collect annotations based on two existing
datasets, i.e., H2O [25] and EgoPAT3D [27], which contain
egocentric RGB-D raw recordings for annotation purpose.

H2O [25] dataset is initially collected for 3D hand pose
and interaction recognition using RGB-D data from both
egocentric and multiple third-person views. We first use the
precisely annotated 3D hand poses to compute the 3D cen-
troids as the ground truth of the 3D hand trajectory, named
H2O-PT, which is guaranteed to be of high-quality in [25]
by multi-view verification.

EgoPAT3D [27] dataset is much larger than H2O. It is
initially collected for predicting the 3D action targets from
egocentric 3D videos. However, it does not provide either
the 3D hand trajectory or the 3D hand poses. Thus, simi-
lar to [27], we develop an annotation workflow as shown in
Fig. 4. More details about the annotation workflow are in
the supplement. Eventually, we obtained sufficiently large



Table 1: ADE and FDE results on H2O-PT dataset. All models
are built with ResNet-18 backbone. Best and secondary results are
viewed in bold black and blue colors, respectively.

Model
ADE (↓) FDE (↓)

3D(3D) 2D(3D) 2D(2D) 3D(3D) 2D(3D) 2D(2D)

DKF [24] 0.159 0.186 0.211 0.137 0.163 0.185
RVAE [26] 0.046 0.055 0.056 0.067 0.081 0.037
DSAE [48] 0.051 0.060 0.059 0.057 0.067 0.076
STORN [4] 0.043 0.053 0.053 0.094 0.141 0.076
VRNN [6] 0.041 0.050 0.050 0.051 0.081 0.068
SRNN [13] 0.040 0.048 0.049 0.036 0.061 0.044
EgoPAT3D* [27] 0.039 0.046 0.048 0.034 0.064 0.060
AGF* [50] 0.039 0.046 0.081 0.069 0.065 0.146
OCT* [34] 0.252 0.311 0.387 0.278 0.471 0.381
ProTran* [41] 0.066 0.088 0.109 0.099 0.168 0.123
USST 0.031 0.037 0.040 0.052 0.043 0.043

collections of 3D hand trajectories for training and evalua-
tion, named EgoPAT3D-DT. To verify the reliability of the
annotation workflow, we also apply it to H2O, resulting in
a H2O-DT dataset.

Dataset Split The H2O(-PT/DT) dataset consists of 184
untrimmed long videos. We temporally sample the videos
into multiple 64-frame clips with a step-size of 15 frames,
resulting in 8203, 1735, and 3715 samples in training, vali-
dation, and testing splits, respectively. The EgoPAT3D-DT
consists of 14 scenes and we split it into 11 seen scenes
containing 8807 samples and 3 unseen testing scenes con-
taining 2334 samples. The unseen scenes are not used in
training, and the seen scenes are split into 6356, 846, and
1605 samples for training, validation, and seen testing.

Evaluation Setting We use the 3D Average Displacement
Error (ADE) and Final Displacement Error (FDE) in me-
ters as the evaluation metrics. The 2D trajectory results are
normalized with reference to the video frame size. For all
metrics, a small value indicates better performance. Each
model is trained with 3D and 2D trajectory targets individ-
ually and evaluated by 3D metrics (3D(3D)) and 2D metrics
(2D(2D)), respectively. The 3D model is additionally evalu-
ated by 2D metrics (2D(3D)) by projecting the 3D trajectory
outputs to the 2D image plane.

4.2. Implementation Detail

The proposed method is implemented by PyTorch. In
pre-processing, RGB videos are down-scaled to 64 × 64.
The 3D global trajectory data are normalized and further
centralized to the range [-1,1]. By default, we set the ob-
servation ratio to 60%, the feature dimensions of o(V) and
o(T ) to 256, and the dimension of z to 16 for all methods.
In training, we use Huber loss to compute the location error.

Table 2: ADE results on EgoPAT3D-DT dataset. All models are
built with ResNet-18 backbone. Best and secondary results are
viewed in bold black and blue colors, respectively.

Model
Seen Scenes (↓) Unseen Scenes (↓)

3D(3D) 2D(3D) 2D(2D) 3D(3D) 2D(3D) 2D(2D)

DKF [24] 0.294 0.237 0.157 0.260 0.202 0.133
RVAE [26] 0.216 0.110 0.121 0.194 0.104 0.109
DSAE [48] 0.214 0.129 0.143 0.188 0.116 0.131
STORN [4] 0.194 0.092 0.083 0.161 0.084 0.070
VRNN [6] 0.194 0.092 0.083 0.164 0.086 0.070
SRNN [13] 0.192 0.088 0.079 0.166 0.081 0.067
EgoPAT3D* [27] 0.186 0.081 0.079 0.170 0.080 0.068
AGF* [50] 6.149 0.136 0.099 6.045 0.119 0.087
OCT* [34] 0.853 0.163 0.098 0.782 0.139 0.091
ProTran* [41] 0.314 0.179 0.135 0.240 0.154 0.107
USST 0.183 0.089 0.082 0.120 0.075 0.060

We adopt the Adam optimizer with base learning rate 1e-4
and cosine warmup scheduler for 500 training epochs on
EgoPAT3D and 350 epochs on H2O datasets, respectively.
More implementation details are in the supplement.

4.3. Main Results

Table 1 and 2 show the comparison between our method
and existing sequential prediction approaches on H2O-
PT and EgoPAT3D-DT datasets, respectively. The meth-
ods in the first multi-row section are general RNN-based
while those in the second multi-row section show recent
Transformer-based models. We put the FDE results on
EgoPAT3D-DT in the supplement. The tables show our
method achieves the best ADE performance and com-
parable FDE results with AGF and SRNN on H2O-PT,
and significantly outperforms AGF, OCT, and ProTran on
EgoPAT3D-DT. The competitive performance of SRNN is
because of its both forward and backward passes over time
such that all future positional encodings are utilized for
forecasting. We notice that AGF, OCT, and ProTran do not
work well on EgoPAT3D-DT, potentially due to the KL di-
vergence vanish issue. The higher performance on the un-
seen split than the seen split can be attributed to the less
distribution shift between unseen test trajectories and the
training trajectories.

4.4. Model Analysis

Ablation Study To validate the effectiveness of the pro-
posed modules and loss functions, we report the results of
the ablation study in Table 3 on the EgoPAT3D-DT dataset.

We first compare the ProTran with the proposed state
space transformer (SST), which is a vanilla version of USST

*We adapted the task-specific outputs of EgoPAT3D, AGF, OCT, and
ProTran to fulfill the 3D hand trajectory forecasting task in this paper.



Table 3: Ablation Study. All models are trained with 3D targets
and tested with both 3D and 2D ADE.

Variants
Seen (↓) Unseen (↓)

3D 2D 3D 2D
ProTran (svi) [41] 0.314 0.179 0.240 0.154
ProTran (det) [41] 0.201 0.104 0.195 0.106
SST (ours) 0.190 0.088 0.174 0.084
USST w/o. Lhaul 0.292 0.237 0.267 0.204
USST w/o. T1:C 0.244 0.176 0.267 0.208
USST w/o. pt−1 0.196 0.090 0.169 0.098
USST w/o. Lvelo 0.189 0.091 0.168 0.099
USST w/o. wt 0.183 0.090 0.130 0.077
USST (full model) 0.183 0.089 0.120 0.075
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Figure 5: Effect of depth re-
pair. mDE and mDZ are the
mean error of 3D displace-
ment and depth, respectively.

Metrics SRNN USST

H
2O

-D
T

ADE .087 / .076 .033 / .041

FDE .124 / .045 .052 / .041

H
2O

-P
T

ADE .040 / .049 .031 / .040

FDE .036 / .044 .052 / .043

Table 4: Annotation Reliabil-
ity. ADE results (3D(3D) /
2D(2D)) are from testing on the
same H2O-PT test set.

without uncertainty modeling, velocity constraint, and VPT.
For a fair comparison, we implement a deterministic (det)
version of ProTran in addition to the original method that
uses stochastic variational inference (svi). Table 3 shows a
clear advantage of our method over ProTran, which demon-
strates the superiority of our SSM for state transition.

Next, in Table 3, we individually remove the new com-
ponents and compare them with the full model of USST, in-
cluding 1) the uncertainty loss function Lhaul, 2) the trajec-
tory context T1:C , 3) the predictive link in pϕ(pt|zt,pt−1),
4) the velocity constraint Lvelo, and 5) the depth robust
weight wt. It shows that uncertainty modeling is critical to
guarantee reasonable forecasting results. Without historical
trajectory T1:C , as expected, the performance degradation
is significant. The predictive link from pt−1 to pt is also
important for the forecasting problem, which is consistent
with the recent finding in [17]. It is noticeable that the ve-
locity constraint shows a larger performance gain (4.8cm of
3D trajectory) on the unseen test set than on the seen data
(0.6cm of 3D trajectory), revealing the importance of the
physical rule for generalizable trajectory prediction. Lastly,
the depth robust weight wt (Eq. (10)) also boosts the perfor-
mance of unseen data, showing the importance of modeling
the depth noise from annotations.
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Figure 6: Arbitrary Observation Ratios. We report the results of
3D ADE (left) and 2D ADE (right) on EgoPAT3D-DT dataset.
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Figure 7: Impact of loss weights. Left: set the weight of Lvelo to
1.0 and tune γ. Right: set γ to 0.1 and tune the weight of Lvelo.
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Figure 8: Impact of Prompt Length. We report the results of
3D (left) and 2D (right) ADE on EgoPAT3D-DT. The “finetune
(unseen)” means finetune model on seen but test on unseen scenes.

Annotation Reliability By using the accurate H2O-PT as
a reference, in Fig. 5, we show the effect of repairing depth
of the 3D trajectory annotations from raw RGB-D data. We
see a clear improvement in mDE and mDZ measurements.
In Table 4, we further show the performance impact of an-
notation quality on SRNN and our USST models. It shows
that our USST achieves more consistent ADE and FDE re-
sults than SRNN over the H2O-PT and H2O-DT. For ref-
erence, in the supplement, we additionally report the full
results and analysis on H2O-DT and H2O-DT w/o repair.

Forecast at Any Time To simulate the real-world prac-
tice that forecasting trajectory at an arbitrary time, we take
the advantage of the Transformer attention mask to fulfill
random observation ratios ranging from 10% to 90%. The
results are summarized in Fig. 6. It shows that with more
percentage of information observed, both the 2D and 3D
forecasting error are reduced as expected. It is interesting
to see the slight increase of 3D ADE for the seen test data
when using more observations. It could be caused by more
inaccurate trajectory depth values at the end of trajectories.
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Figure 9: Visualization on EgoPAT3D. For each example (in a column), we show the global 3D trajectory and its 2D projection on the
first frame. The blue, green, and red trajectory points represent the past observed, future ground truth, and future predictions, respectively.

Table 5: Impact of 3D coordinate systems. “Local” and “global”
mean using 3D camera and world coordinates, respectively.

3D Target Backbone
Seen (↓) Unseen (↓)

3D 2D 3D 2D
Local R18 0.202 0.083 0.174 0.062
Global R18 0.183 0.089 0.120 0.075
Local ViT 0.183 0.081 0.133 0.067
Global ViT 0.182 0.087 0.119 0.075

Loss Weights Fig. 7 shows the EgoPAT3D-DT results of
tuning the weights in Eq. (11), where the best performance
is achieved when γ is set to 0.1 and the weight of Lvelo is set
to 1.0, respectively. We apply them to H2O-PT by default.

Prompt Length of VPT As indicated in VPT litera-
ture [21], the length of the visual prompt in ViT models
needs to be carefully tuned for downstream tasks. In experi-
ments, based on the SST model, we select the prompt length
from {1, 5, 10, 15, 20} and compare their performance with
the baseline that fine-tunes the entire ViT backbone. Results
are reported in Fig. 8. It shows that VPT could steadily
achieve lower 2D and 3D ADE than fine-tuning, and the
best performance is achieved when the prompt length is 10.

Local vs Global 3D Trajectory We note that the ambigu-
ity of learning the appearance-location mapping exists when
using local 3D targets. To justify the choice of global 3D
trajectory targets, in Table 5, we compare the 3D and 2D
ADE results using both ResNet-18 and ViT as visual back-
bones. It clearly shows that for 3D trajectory prediction, a

global 3D coordinate system is a better choice, while for
2D trajectory evaluation, the local 3D target is better. These
observations are expected as in the local 3D coordinate sys-
tem, the projected 2D pixel locations of moving hands tend
to be in the visual center due to the egocentric view so that
the model training is dominated by the 2D hand locations.

Qualitative Results As shown in Fig. 9, the proposed
USST model is compared with the Transformer-based ap-
proach ProTran and the most competitive method SRNN. It
clearly shows that our trajectory forecasting is much better
than the three compared methods. Please refer to our sup-
plement for more visualizations.

Limitations & Discussions The dataset annotation is lim-
ited in scenarios when the RGB-D sensors or camera poses
are not available. The model is limited in the recursive way
of state transition, which is not hardware friendly for paral-
lel inference. Besides, in the future, other tasks like the 3D
hand pose and interaction recognition can be jointly studied
for a fine-grained egocentric understanding.

5. Conclusion
In this paper, we propose to forecast human hand tra-

jectory in 3D physical space from egocentric videos. For
this goal, we first develop a pipeline to automate the 3D tra-
jectory annotation. Then, we propose a novel uncertainty-
aware state space transformer (USST) model to fulfill the
task. Empirically, with the aleatoric uncertainty modeling,
velocity constraint, and visual prompt tuning, our model
achieves the best performance on both H2O and EgoPAT3D
datasets and good generalization to the unseen scenes.
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