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Abstract—Weakly-supervised temporal action localization (W-TAL) aims to classify and localize all action instances in untrimmed videos
under only video-level supervision. Without frame-level annotations, it is challenging for W-TAL methods to clearly distinguish actions and
background, which severely degrades the action boundary localization and action proposal scoring. In this paper, we present an adaptive
two-stream consensus network (A-TSCN) to address this problem. Our A-TSCN features an iterative refinement training scheme: a
frame-level pseudo ground truth is generated and iteratively updated from a late-fusion activation sequence, and used to provide
frame-level supervision for improved model training. Besides, we introduce an adaptive attention normalization loss, which adaptively
selects action and background snippets according to video attention distribution. By differentiating the attention values of the selected
action snippets and background snippets, it forces the predicted attention to act as a binary selection and promotes the precise
localization of action boundaries. Furthermore, we propose a video-level and a snippet-level uncertainty estimator, and they can mitigate
the adverse effect caused by learning from noisy pseudo ground truth. Experiments conducted on the THUMOS14, ActivityNet v1.2,
ActivityNet v1.3, and HACS datasets show that our A-TSCN outperforms current state-of-the-art methods, and even achieves comparable
performance with several fully-supervised methods.

Index Terms—Temporal action localization, weakly-supervised learning.
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1 INTRODUCTION

THE task of weakly-supervised temporal action localiza-
tion (W-TAL) aims at simultaneously localizing and

classifying all action instances in a long untrimmed video
given only video-level categorical labels in the learning
phase. Compared to its fully-supervised counterpart, which
requires frame-level annotations of all action instances during
training, W-TAL greatly simplifies the procedure of data
collection and avoids annotation bias of human annotators,
and therefore has been widely studied [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14] in recent years.

Several previous W-TAL methods [2], [4], [5], [6], [9],
[10], [11], [12], [13], [14] adopt a multiple instance learning
(MIL) framework, where a video is treated as a bag of
snippets to perform video-level action classification. During
testing, the trained model slides over time and generates
a temporal-class activation map (T-CAM) [4], [15] (i.e., a
sequence of probability distributions over action classes at
each time step) and an attention sequence that measures the
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Fig. 1. Visualization of two-stream outputs and their late-fusion result.
The five rows show the input video, the ground truth action instances
and attention sequences (scaled from 0 to 1) predicted by the RGB
stream, the flow stream and their weighted sum (i.e., the fusion result),
respectively. The horizontal and vertical axes denote the time and the
intensity of attention values, respectively. The green boxes denote the
localization results generated by thresholding the attention at the value
of 0.5. By properly combining the two different attention distributions
predicted by the RGB and flow streams, the late-fusion result achieves
better localization performance.

relative importance of each snippet. The action proposals are
generated by thresholding the attention value and/or the
T-CAM. This MIL framework is usually built on two feature
modalities, i.e., RGB frames and optical flow, which are fused
in two mainstream ways. Early-fusion methods [3], [5], [6],
[8], [12] concatenate the RGB and optical flow features before
they are fed into the network, and late-fusion methods [4],
[6], [9], [10] compute a weighted sum of their respective
outputs before generating action proposals. An example of
late fusion is shown in Fig. 1.

Despite these recent developments, one major challenge
remains to be solved: the lack of frame-level supervision
makes W-TAL methods hard to distinguish action from
the background clearly. This problem degrades the local-
ization performance in two major ways. First, the detected
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action instance may not necessarily correspond to the video-
level labels, e.g., the detector may falsely recognize frames
including a pool as the swimming action. Second, the
ambiguity between actions and background will influence
the activation sequences. This not only makes thresholding
methods generate incomplete or over-complete action pro-
posals but also leads to unreliable action proposal confidence
scores. Therefore, it is necessary to exploit more fine-grained
supervision to guide the learning process.

In this paper, we introduce an adaptive two-stream
consensus network (A-TSCN) to address this problem. First,
we present an adaptive attention normalization loss to better
differentiate actions and background. Inspired by Otsu’s
method in image binarization [16], the adaptive attention
normalization loss automatically distinguishes the action
snippets and the background snippets according to the video
attention distribution. By maximizing the difference between
attention values of the action snippets and background
snippets, the adaptive attention normalization loss promotes
precise localization of action boundaries. Besides, inspired
by two-stream late fusion [17], we introduce a frame-level
pseudo ground truth to provide more fine-grained supervi-
sion. As shown in Fig. 1, with a proper fusion parameter (e.g.,
the hyperparameter controlling the relative importance of
the two modalities), the late-fusion activation sequence is of
higher quality compared with each single stream. Therefore,
we propose to generate a frame-level pseudo ground truth
based on the late-fusion activation sequence, which is then
used to iteratively refine the two-stream base models. To
alleviate the adverse effect caused by learning from noisy
pseudo labels, we propose a video-level and a snippet-level
uncertainty estimator. They respectively compute a video-
level confidence score and a snippet-level confidence score
for the pseudo labels based on the agreement of two-stream
outputs. By applying larger weights to confident pseudo
labels and smaller weights to ambiguous pseudo labels, the
model can avoid learning from possibly wrong pseudo labels,
and gradually generate more precise pseudo labels.

Given an input video, snippet-level features are first
extracted with pre-trained backbones from RGB frames and
optical flow, respectively. Then the two-stream base models
are trained with video-level labels on RGB and optical
flow features, respectively, where the adaptive attention
normalization loss is used to learn the attention distribution.
After obtaining two-stream attention sequences, a frame-level
pseudo ground truth is generated based on their weighted
sum (i.e., the late-fusion attention sequence). Meanwhile,
the video-level uncertainty estimator and the snippet-level
uncertainty estimator compute the pseudo label confidence
given two-stream outputs. The pseudo ground truth in turn
provides frame-level supervision to improve the two-stream
base models. We iteratively update the pseudo ground
truth and refine the two-stream base models, where the
adaptive attention normalization loss simultaneously forces
the predicted attention to act as a binary selector. The final
localization result is obtained by thresholding the late-fusion
attention sequence.

To summarize, our contribution is threefold:
• We introduce an adaptive two-stream consensus net-

work (A-TSCN) for W-TAL. The proposed A-TSCN
features an iterative refinement training method. The

pseudo ground truth generated from the late-fusion
attention sequence at the previous iteration can provide
more precise frame-level supervision at the current
iteration, and iteratively refine base models. In addition,
we propose a video-level uncertainty estimator and
a snippet-level uncertainty estimator to mitigate the
adverse effect caused by learning noisy pseudo ground
truth.

• We propose an adaptive attention normalization loss to
differentiate actions and background. The proposed loss
function adaptively distinguishes the action snippets
and the background snippets based on the video at-
tention distribution, leading to more training signals.
The adaptive attention normalization loss promotes
precise action boundary localization and accurate action
proposal scoring.

• Extensive experiments are conducted on four datasets
(i.e., THUMOS14, ActivityNet v1.2, ActivityNet v1.3,
and HACS) to demonstrate the effectiveness of the
proposed method. Our A-TSCN significantly outper-
forms previous state-of-the-art W-TAL methods, and
even achieves comparable performance to some recent
fully-supervised TAL methods.

We note a conference version of this paper appears in [18].
This paper extends our previous version in three significant
aspects.
• We improve the original attention normalization loss

by adaptively selecting the action snippets and the
background snippets according to the attention dis-
tribution for each video, rather than using a fixed
portion. The improved adaptive attention normalization
loss provides more training signals and improve the
performance.

• To mitigate the adverse effect caused by learning from
noisy pseudo labels, we introduce a video-level uncer-
tainty estimator and a snippet-level uncertainty estima-
tor. They estimate the confidence scores for the pseudo
labels at the video level and snippet level, respectively,
thus reducing the weights of possibly wrong pseudo
labels.

• More ablation studies are conducted to validate the
effectiveness of the proposed method. In addition, we
compare it with more state-of-the-art methods, and also
include comparison on the new HACS dataset [19]. The
results reveal that the proposed A-TSCN outperforms
previous state-of-the-art methods on all benchmarks.

This paper is organized as follows: Section 2 briefly
reviews related work. We present the technical details of
the proposed method in Section 3. Experimental results and
discussions are presented in Section 4. Finally, we conclude
in Section 5.

2 RELATED WORK

We briefly review related work in action recognition, fully-
supervised temporal action localization, weakly-supervised
temporal action localization and self-training.
Action recognition. Traditional methods [20], [21], [22], [23]
aim to model spatio-temporal information via hand-crafted
features. Recently, Two-Stream Convolutional Networks [17]
use two separate Convolutional Neural Networks (CNNs)
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Fig. 2. An overview of the proposed adaptive two-stream consensus network, which consists of two parts. (1) Two-stream base models, where RGB
and optical flow snippet-level features are first extracted with pre-trained models, then action recognition is performed on the two modalities with
two-stream base models, respectively. (2) Pseudo ground truth learning, where a frame-level pseudo ground truth is generated from the two-stream
late-fusion attention sequence, along with video-level and snippet-level uncertainty estimators computing the confidence of the generated pseudo
ground truth. The pseudo ground truth in turn provides frame-level supervision to two-stream base models.

to exploit appearance and motion clues from RGB frames
and optical flow respectively, and use a late-fusion method
to reconcile the two-stream outputs. Feichtenhofer et al. [24]
focuses on studying different ways to fuse the two streams.
The Inflated 3D ConvNet (I3D) [25] expands the 2D CNNs in
two-stream convolutional networks to 3D CNNs, and further
improves the performance. Several recent methods [26], [27],
[28], [29], [30] focus on directly learning motion clues from
RGB frames instead of calculating optical flow. Besides,
some works [31], [32], [33], [34] also try to model long-term
temporal information in videos.

Fully-supervised temporal action localization methods
require frame-level annotations of all action instances during
training. Several large-scale datasets have been created for
this task, such as THUMOS [35], [36], ActivityNet [37],
and Charades [38]. Many methods [39], [40], [41], [42],
[43], [44], [45], [46] adopt a two-stage pipeline, i.e., action
proposal generation followed by action classification. Several
methods [43], [44], [46], [47] adopt the Faster R-CNN [48]
framework to TAL. Most recently, some methods [45], [49],
[50] focus on generating action proposals with a more flexible
duration. Several methods [51], [52], [53] apply the Graph
Convolutional Networks (GCN) [54], [55] to TAL to incor-
porate more contextual information and exploit proposal-
proposal relations. MS-TCN++ [56] proposes a smooth loss
to address the over-segmentation error. Different from theirs,
our smooth loss is proposed to smooth the attention sequence
and remove fragmentary action proposals.

Weakly-supervised temporal action localization, which only

requires video-level supervision during training, significantly
reduces the data annotation efforts, and draws increasing
attention from the community. Hide-and-Seek [1] randomly
hides part of the input video to guide the network to
discover other relevant parts. UntrimmedNet [2] consists
of a selection module to select the important snippets and a
classification module to perform per snippet classification.
Sparse Temporal Pooling Network (STPN) [4] improves
UntrimmedNet by adding a sparse loss to enforce the sparsity
of selected segments. W-TALC [5] jointly optimizes a co-
activity similarity loss and a multiple instance learning loss
to train the network. AutoLoc [3] and CleanNet [8] adopt a
two-stage pipeline, where they first generate initial action
proposals, and then regress the action proposal boundaries
based on prior knowledge: the action area should have higher
activation than its surrounding background area. Liu et
al. [6] propose a multi-branch network to model different
stages of action. Besides, several methods [9], [12] focus on
modeling the background to better differentiate actions and
background. DGAM [14] proposes to separate action and
context with a conditional Variational Auto-Encoder. A2CL-
PT [57] uses two parallel branches in an adversarial way
to generate complete action proposals. EM-MIL [58] also
leverages pseudo labels, where the class-agnostic attention
and the class-specific activation sequence are alternately
trained to supervise each other.

Previously, RefineLoc [59] also proposes an iterative
refinement framework to help the model capture a complete
action instance. Our method is distinct from RefineLoc in
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three main aspects. (1) We adopt a late fusion framework
while RefineLoc uses an early fusion framework. Note that
the amount of parameters in the late fusion framework is
only half of that in the early fusion framework, which also
has the potential overfitting problem according to recent
study [6], [60]. (2) Our pseudo ground truth is generated by
fusing two-stream attention sequences, which provides better
localization performance than individual streams, while
RefineLoc generates the pseudo ground truth by expanding
previous localization results, which might result in coarser
and over-complete action proposals. (3) In addition to the
classification loss, we also introduce an (adaptive) attention
normalization loss, which explicitly avoids the ambiguity of
attention, while RefineLoc does not have explicit constraints
on attention values. As will be shown in Section 4.4, all three
distinctions contribute to our performance superiority.
Self-training. In semi-supervised learning, self-training [61],
[62], [63], [64], [65] is a widely-used training scheme, which
mainly contains three steps: (1) train a student model with
labeled data, (2) generate pseudo labels on unlabeled data
with the trained model, and (3) train the student model
with both labeled data and pseudo-labeled data. Our pseudo
ground truth learning is similar to self-training by regarding
each video snippet as a data point.

3 PROPOSED METHOD

In this section, we first formulate the task of weakly-
supervised temporal action localization (W-TAL), and then
describe the proposed adaptive two-stream consensus net-
work (A-TSCN) in detail. As illustrated in Fig. 2, our A-TSCN
consists of two parts, i.e., two-stream base models and a
pseudo ground truth generation module. Given an input
video, two-stream base models are first used to perform
action recognition on RGB snippets and optical flow snippets
respectively, and get respective initial attention sequences.
To facilitate action and background distinguishment, an
adaptive attention normalization loss forces the attention to
act like binary selection. Then, a frame-level pseudo ground
truth is generated based on the late-fusion attention sequence,
which in turn provides frame-level supervision to two-stream
base models. Meanwhile, a video-level and a snippet-level
uncertainty estimator dynamically compute the weights for
the pseudo ground truth learning. Finally, the pseudo ground
truth is iteratively updated and refines the base models.

3.1 Problem Formulation
Assume we are given a set of training videos. For each
video, we only have its video-level categorical label y, where
y ∈ RC is a normalized multi-hot vector, andC is the number
of action categories. The goal of temporal action localization
is to detect a set of action instances {(ts, te, c, ψ)} for each
testing video, where ts, te, c, ψ denote the start time, the end
time, the predicted action category, and the confidence score
of the action instance, respectively.

3.2 Two-Stream Base Models
We follow recent W-TAL methods [3], [4], [5], [6], [8], [9],
[10], [11], [12], [13], [14] to construct two-stream base models
upon snippet-level feature sequences extracted from the raw

video volume. After that, we use two-stream base models
to perform action classification with only video-level labels,
and then iteratively refine the base models with a frame-level
pseudo ground truth.
Feature Extraction. The RGB and optical flow snippet-level
features are extracted with pre-trained networks (e.g., I3D
[25]) from non-overlapping fixed-length RGB and optical
flow snippets, respectively. They provide high-level appear-
ance and motion information of the corresponding snippets.
Formally, given a video with T non-overlapping snippets,
we denote the extracted RGB feature and optical flow feature
as FRGB = {fRGB,i}Ti=1 and Fflow = {fflow,i}Ti=1, respectively,
where fRGB,i, fflow,i ∈ RD are the feature representations
of the i-th RGB snippet and the i-th optical flow snippet,
respectively, and D denotes the channel dimension.

The features of the two modalities are fed into two
separate base models respectively, and the two base models
use the same architecture but do not share parameters.
Therefore, in the rest of this section, for conciseness, we omit
the subscript RGB and flow to indicate a general operation
for both modalities.
Feature Embedding. Since the feature-extraction backbones
are not originally trained for the W-TAL task, we embed the
extracted feature F with two layers of temporal convolutional
layer interleaved with LeakyReLU activation. We denote
the output feature as X = {xi}Ti=1, where xi ∈ RD. The
embedding temporal convolutional layer consists of D
convolutional kernels with a temporal size of 3 and a stride
of 1. Besides, zero padding is used to retain the temporal
dimension.
Action Recognition. As untrimmed videos may contain
background snippets, to perform the video-level classifica-
tion, we need to select snippets that are likely to contain
action instances and meanwhile filter out snippets that are
likely to contain background. To this end, an attention value
ai ∈ (0, 1) to measure the likelihood of the i-th snippet
containing an action is given by an attention module:

ai = σ (gatt(xi;Ψatt)) , (1)

where σ(·), gatt(·) and Ψatt are the sigmoid function, the for-
ward pass of the attention module and learnable parameters
of the attention module, respectively. The attention module
is implemented as a single temporal convolutional layer with
a kernel size 3.

With the obtained attention sequence, we then perform
attention-weighted pooling over the feature sequence to
generate a single foreground feature xfg, and feed it to a
classification module to get the video-level prediction ŷ:

xfg =
1∑T
i=1 ai

T∑
i=1

aixi, (2)

ŷ = softmax
(
gcls
(
xfg;Ψcls

))
, (3)

where softmax(·) is a softmax function along the class dimen-
sion, gcls(·) is the forward pass of the classification module,
and Ψcls is the learnable parameters of the classification
module. The classification module share a similar structure
with the attention module, except that the output layer
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consists of C convolutional kernels. The classification loss
function Lcls is defined as the standard cross entropy loss:

Lcls = −
C∑
c=1

yc log (ŷc) , (4)

where yc and ŷc denote the values of the label vector y and
the action prediction result ŷ at index c, respectively.

In addition, the temporal-class activation map (T-
CAM) [4], [15] S = {si}Ti=1, si ∈ RC , which is used to
measure the action proposal confidence score in Section 3.4,
is generated by sliding the classification module over all
snippet-level features:

si = softmax (gcls(xi;Ψcls)) . (5)

Adaptive attention normalization loss. Ideally, the attention
values are expected to be binary, where 1 indicates actions
while 0 indicates background. To this end, the original
TSCN [18] uses an attention normalization loss to maximize
the difference between the top-l and bottom-l average
attention values:

Lnorm =
1

l
min
a⊂{ai}
|a|=l

∑
φ∈a

φ− 1

l
max
a⊂{ai}
|a|=l

∑
φ∈a

φ, (6)

where l = max
(
1, bTs c

)
and s is set to 8 empirically.

One problem with this loss function is that it only
applies on 1/4 of the whole video, leading to limited
training samples. However, in the weakly-supervised setting,
the portions of actions and background are unknown. To
address this problem, inspired by Otsu’s method in image
binarization [16], we dynamically determine an attention
threshold θotsu via Otsu’s method, which is further used to
separate action snippets and background snippets. Otsu’s
method searches for a threshold that minimizes a weighted
sum of action and background attention variances:

θotsu = argmin
θ∈{ai}

|{ai|ai < θ}|var({ai|ai < θ})+

|{ai|ai ≥ θ}|var({ai|ai ≥ θ}),
(7)

where var(·) denotes the variance, and | · | denotes the
cardinality of a set. In this way, a background set Abg and an
action set Aact can be generated as Abg = {ai|ai < θotsu} and
Aact = {ai|ai ≥ θotsu}, respectively. Then, the final adaptive
attention normalization loss is defined as:

La-norm =
1

lbg
min
a⊂{ai}
|a|=lbg

∑
φ∈a

φ− 1

lact
max
a⊂{ai}
|a|=lact

∑
φ∈a

φ, (8)

where lbg = max
(
bTs c, b

|Abg|
s′ c

)
, and lact =

max
(
bTs c, b

|Aact|
s′ c

)
. We note the lower bound bTs c is

indispensable, otherwise the loss function will converge
to only a few snippets being regarded as actions. Besides,
under the weakly-supervised setting, a single stream is
prone to make incorrect snippet-level action-background
classification. Thus, a hyperparameter s′ is used to make the
loss function only focus on a portion of the most confident
part. s′ = 2 is empirically determined so that it doubles the
training snippets than the original attention normalization
loss.

Smooth Loss. As a minor improvement, we introduce a
smooth loss to enforces temporally proximate snippets to
give similar attention predictions, and thus helps generate a
more smooth attention sequence [66]:

Lsmooth =
1

T − 1

T−1∑
t=1

|at − at+1|. (9)

Total Loss. The overall loss for the base model training is a
weighted sum of the classification loss, the adaptive attention
normalization term, and the smooth loss:

Lbase = Lcls + αLa-norm + βLsmooth, (10)

where α and β are hyperparameters to control the weight
of the adaptive attention normalization loss and the smooth
loss.

3.3 Pseudo Ground Truth Learning

After training the base models with only video-level labels,
we then iteratively refine the two-stream base models with a
novel frame-level pseudo ground truth.

Specifically, we divide the whole training process into
several refinement iterations. At refinement iteration 0,
only video-level labels are leveraged for training. And at
refinement iteration n + 1, a frame-level pseudo ground
truth is generated at refinement iteration n, and provides
frame-level supervision for the current refinement iteration.
However, without true frame-level ground truth annotation,
we can neither measure the quality of the pseudo ground
truth, nor guarantee the pseudo ground truth can help the
base models achieve higher performance.

Inspired by two-stream late fusion [4], [6], [9], [10], [17],
we introduce a simple yet effective method to generate
the pseudo ground truth. Intuitively, the late fusion is a
voting ensemble of two streams: locations at which both
streams have high activations are likely to contain ground
truth action instances; locations at which only one stream
has high activations are likely to be either false positive
action proposals or true action instances that only one stream
can detect; locations at which both streams both have low
activations are likely to be the background. Therefore, late
fusion can effectively combine knowledge learned by two
streams, and generates a more reliable attention sequence
than each individual stream.

Following this intuition, we use the fusion attention
sequence {a(n)fuse,i}Ti=1 at refinement iteration n to generate

pseudo ground truth {G(n+1)
i }Ti=1 for refinement iteration

n+ 1, where a(n)fuse,i = λa
(n)
RGB,i + (1− λ)a(n)flow,i, and λ ∈ [0, 1]

is a fusion hyperparameter to control the relative importance
of RGB and flow attentions. We then refine the base models
by forcing the attention sequence predicted by each stream to
fit the pseudo ground truth. In this paper, we introduce two
pseudo ground truth generation methods.

• Soft pseudo ground truth directly uses the fusion attention
values as pseudo labels: G(n+1)

i = a
(n)
fuse,i. The soft pseudo

labels contain the probability of a snippet being the
foreground action, but also add uncertainty to the model.
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• Hard pseudo ground truth thresholds the attention se-
quence to generate a binary sequence:

G(n+1)
i =

{
1, a

(n)
fuse,i > θ;

0, a
(n)
fuse,i ≤ θ,

(11)

where θ is the threshold value. Setting a large value
of θ will eliminate the action proposals that only one
stream has high activations, reducing the false positive
rate. In contrast, setting a small value of θ will help
models to generate more and longer action proposals and
achieve a higher recall. Hard pseudo labels remove the
ambiguity and provide stronger supervision, but introduce
a hyperparameter.

After generating the pseudo ground truth, the attention
sequences of each single stream are forced to fit the pseudo
ground truth with a mean square error loss:

L(n+1)
pseudo =

1

T

T∑
i=1

(
a
(n+1)
i − G(n+1)

i

)2
. (12)

However, under only video-level supervision, the pseudo
labels are prone to be noisy. To alleviate this issue, we
introduce a video-level uncertainty estimator wvideo and
a snippet-level uncertainty estimator wsnippet,i for pseudo
ground truth learning. The video-level and snippet-level
uncertainty estimators leverage the agreement of two-stream
outputs at video-level and snippet-level, respectively. Specif-
ically, the video-level uncertainty estimator measures the
confidence of the pseudo ground truth for a given video,
and assigns larger/smaller weights to confident/ambiguous
pseudo ground truth in a batch. The snippet-level uncertainty
estimator measures the snippet-level confidence for the
pseudo ground truth, and assigns larger/smaller weights
to confident/ambiguous snippets in a video. The adaptive
pseudo ground truth learning loss with video-level and
snippet-level uncertainty estimators is formulated as

L(n+1)
a-pseudo = wvideo

1

T

T∑
i=1

wsnippet,i

(
a
(n+1)
i − G(n+1)

i

)2
. (13)

For the video-level uncertainty estimator, we consider
two different implementations.
• Attention difference: the difference between two-stream

average attention values is leveraged to measure the
uncertainty, where the video-level uncertainty is defined
as wvideo = 1− | 1T

∑T
1 aRGB,i − 1

T

∑T
1 aflow,i|.

• Symmetric KL divergence on attention distribution:
this estimator considers the two-stream attention dis-
tribution, and measures the video-level consensus with
symmetric KL divergence. To simplify computation, we
approximate the attention distribution by dividing the
attention into b bins, where b is a hyperparameter. The
i-th bin contains snippets with an attention value in
the range [ i−1b , ib ]. In this way, we can denote the at-
tention distribution as a vector ã ∈ Rb, where its i-
th value ãi denotes the ratio of the number of snippet
contained in the i-th bin to the total number of snippets.
Therefore, the two-stream attention distributions can be
obtained as ãRGB and ãflow, respectively, and the video-
level uncertainty is estimated by symmetric KL divergence

wvideo = exp(−KL(ãRGB‖ãflow) − KL(ãflow‖ãRGB)), where
KL(·‖·) denotes the KL divergence.

For the snippet-level uncertainty estimator, we also
consider two different implementations.
• Attention difference: this estimator measures the snippet-

level uncertainty via the difference between two-stream
attention values, where wsnippet,i = 1− |aRGB,i − aflow,i|.

• Symmetric KL divergence on T-CAM: this estimator
computes the symmetric KL divergence between the
two-stream T-CAM: wsnippet,i = exp(−KL(sRGB,i‖sflow,i)−
KL(sflow,i‖sRGB,i)).

To avoid the impact of numerical differences of different
uncertainty estimators, we further normalize the uncertain-
ties with min-max normalization, and add a bias so that the
video-level/snippet-level uncertainties have a batch-/video-
wise average uncertainties of 1.

Note that we only apply the pseudo ground truth learning
to the attention sequence, while no constraint is applied to
the classification module. This is because the classification
module is primarily guided by the attention: the classification
module uses an attention-weighted pooled feature to perform
action recognition, and thus its activation resembles the
attention.

Finally, at refinement iteration n + 1, the total loss for
each stream is

L(n+1)
total = Lbase + γL(n+1)

a-pseudo, (14)

where γ is a hyperparameter to control the relative impor-
tance of the pseudo ground truth learning.

3.4 Action Localization

During testing, following recent methods [4], [12], we first
temporally upsample the attention sequence and T-CAM
by a factor of 8 via linear interpolation. Since a video
may contain action instances from different categories, we
then select top-k action categories from the fusion video-
level prediction ŷfuse to perform action localization, where
ŷfuse = λŷRGB + (1 − λ)ŷflow. For each of these categories,
following common practice [4], [9], [12], we generate action
proposals by progressively thresholding the attention values,
and concatenating consecutive snippets. The action proposals
are scored via a variant of the Outer-Inner-Constrastive
score [3]: instead of using average T-CAM, we use attention-
weighted T-CAM to measure the temporal contrast between
the action proposal and its surrounding areas. Formally,
given an action proposal (ts, te, c), a fusion attention se-
quence {afuse,i}Ti=1 and a fusion T-CAM {sfuse,i}Ti=1, where
sfuse,i = λsRGB,i + (1 − λ)sflow,i, the confidence score ψ is
computed as

ψ =

∑te
i=ts

afuse,isfuse,i,c

te − ts
−∑Te

i=Ts
afuse,isfuse,i,c −

∑te
i=ts

afuse,isfuse,i,c

Te − Ts − (te − ts)
,

(15)

where Ts = ts − L
4 , Te = te +

L
4 , L = te − ts, and sfuse,i,c

is the fusion T-CAM value of i-th snippet for category c.
Finally, non-maximum suppression is used within each class
to remove duplicated detections.
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4 EXPERIMENTS AND DISCUSSIONS

In this section, we first introduce four standard benchmarks,
the evaluation metrics, and the implementation details. Then,
we compare the proposed A-TSCN with state-of-the-art
methods, followed by a set of ablation studies. Note that
only video-level categorical labels are leveraged to train the
proposed A-TSCN.

4.1 Dataset and Evaluation

THUMOS14 dataset [35] contains 200 validation videos
and 213 testing videos within 20 categories for the TAL
task. We use the 200 validation videos to train, and use
the 213 testing videos to evaluate. Following BaS-Net [12],
we remove testing video #270, #1292 and #1496 as they are
incorrectly annotated. Each video averagely contains 15.5
action instances in the THUMOS14 dataset.
ActivityNet dataset [37] has two release versions, i.e., Activi-
tyNet v1.3 and ActivityNet v1.2. ActivityNet v1.3 covers 200
action categories, with a training set of 10, 024 videos and a
validation set of 4, 926 videos. ActivityNet v1.2 is a subset
of ActivityNet v1.3, and covers 100 action categories, with
4, 819 and 2, 383 videos in the training and validation set,
respectively.1 We use the training set and the validation set
for training and testing, respectively. Each video averagely
contains 1.5 action instances in ActivityNet datasets.
HACS dataset [19] is a recently released dataset for the
TAL task. To our knowledge, it is so far the largest TAL
benchmark, and covers 200 action classes, with a training set
of 37, 612 videos, and a validation set of 5, 981 videos. We
use the HACS v1.1.1 to conduct the experiments. Each video
in this dataset contains 2.5 action instances on average.
Evaluation Metrics. Following the standard protocol on
temporal action localization, we evaluate our method with
mean Average Precision (mAP) under different Intersection-
over-Union (IoU) thresholds. We use the evaluation code
provided by ActivityNet to measure the performance.

4.2 Implementation Details

The optical flow is estimated via the TV-L1 algorithm [71].
Two off-the-shelf feature-extraction backbones are used in
our experiments, i.e., UntrimmedNet [2] and I3D [25], with
snippet lengths of 15 frames and 16 frames, respectively.
The two backbones are pre-trained on ImageNet [72] and
Kinetics-400 [25] respectively, and are not fine-tuned for a fair
comparison. The RGB and optical flow snippet-level features
are extracted at the global_pool layer as 1024-D vectors.

The network is implemented in PyTorch [73]. We use the
AdamW optimizer with a fixed learning rate 0.0001 during
the whole training process. For the pseudo ground truth
generation, we simply select models in the last epoch of each
refinement iterations as the teacher model. The batch size is
set to 16. During testing, we choose top-2 action categories
and reject categories whose fusion classification prediction
scores are lower than 0.1 to perform action localization. To
remove fragmentary action proposals in ActivityNet datasets,

1. In our experiments, there are 9, 937 and 4, 575 videos in the training
and validation set of ActivityNet v1.3 respectively, and 4, 471 and 2, 211
videos in the training and validation set of ActivityNet v1.2 respectively,
because the rest of the videos are inaccessible from YouTube.

we downsample the input at a rate of 1/30. The numbers of
epochs are set to 80, 20, and 20 for refinement iteration 0 for
THUMOS14, ActivityNet and HACS, respectively; and for
later refinement iterations, the numbers of epochs are set to
40, 10 and 10, respectively. The number of training epochs is
largely affected by the number of training videos per class
in each dataset. For all datasets, we train the model for 8
refinement iterations.
Hyperparameters. For the s in the original attention normal-
ization loss, we follow similar weakly-supervised classifica-
tion loss functions [5], [12] to set s = 8. And s′ in the adaptive
attention normalization loss is set to 2, which doubles the
training snippets than our conference version. The weights
for loss functions are set by only adjusting their magnitudes:
α = β = 0.1, and γ = 1. And the fusion parameter λ is
set to 0.5, so that the two modalities are equally weighted.
According to our intuition that the attention performs binary
classification, the thresholding parameter θ is set to 0.5. For
the symmetric KL divergence in the uncertainty estimators,
we set b = 10. As will be shown in the ablation study, our
method is robust to most of the hyperparameters.

4.3 Comparisons with the State-of-the-art

THUMOS14. Table 1 summarizes the performance com-
parison between the proposed A-TSCN and state-of-the-art
fully-supervised and weakly-supervised TAL methods on
the THUMOS14 testing set. With UntrimmedNet features,
A-TSCN outperforms other W-TAL methods at most IoU
thresholds by a large margin, and even achieves comparable
results to some recent W-TAL methods with I3D features
(e.g., BaS-Net [12] and DGAM [14]) at several IoU thresholds.

The proposed A-TSCN achieves higher performance
with I3D features, and outperforms all of the previous W-
TAL methods at the average mAP between 0.3 and 0.7.
Furthermore, our A-TSCN achieves similar performance to
some recent fully-supervised methods (e.g., SSN [40]), and
even outperforms TAL-net [46] at IoU thresholds 0.1 and 0.2.
However, as the IoU threshold increases, the performance
of A-TSCN drops significantly, because localizing more
precise action boundaries needs true frame-level ground
truth supervision.
ActivityNet. The performance comparisons on ActivityNet
v1.2 and v1.3 are shown in Table 2 and Table 3 respectively,
where our models are trained with I3D features. The pro-
posed A-TSCN outperforms previous W-TAL methods at
the average mAP at IoU threshold 0.5 : 0.05 : 0.95 on both
release versions of ActivityNet, verifying the efficacy of our
design intuition.
HACS. The performance comparison on the HACS valida-
tion set is presented in Table 4, where all methods are trained
with I3D features. Our A-TSCN outperforms the previous
fully-supervised method SSN [40], the weakly-supervised
method BaS-Net [12] and our baseline model TSCN [18] at
all IoU thresholds and the average mAP. To our knowledge,
the HACS dataset is the largest dataset for the TAL task, and
it is a realistic and challenging one due to its fine-grained
annotation. Thus, our performance superiority on this dataset
indicates its applicability to real scenarios.

To summarize, on the above four datasets, the pro-
posed A-TSCN outperforms state-of-the-art W-TAL methods,
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TABLE 1
Comparison of our method with state-of-the-art TAL methods on the THUMOS14 testing set. Recent fully-supervised and weakly-supervised

methods are reported. UNT and I3D are abbreviations for UntrimmedNet feature and I3D feature, respectively. The Avg column indicates the average
mAP at IoU thresholds 0.3:0.1:0.7.

Method Supervision Feature mAP@IoU (%) Avg (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3:0.1:0.7

Richard et al. [67] Full - 39.7 35.7 30.0 23.2 15.2 - - - - -
Yuan et al. [68] Full - 51.0 45.2 36.5 27.8 17.8 - - - - -

CDC [39] Full - - - 40.1 29.4 23.3 13.1 7.9 - - 22.8
R-C3D [44] Full - 54.5 51.5 44.8 35.6 28.9 - - - - -

SSN [40] Full - 66.0 59.4 51.9 41.0 29.8 - - - - -
BSN [45] Full - - - 53.5 45.0 36.9 28.4 20.0 - - 36.8
BMN [50] Full - - - 56.0 47.4 38.8 29.7 20.5 - - 38.5

GTAN [49] Full - 69.1 63.7 57.8 47.2 38.8 - - - - -
G-TAD [52] Full - - - 54.5 47.6 40.2 30.8 23.4 - - 39.3

TAL-Net [46] Full I3D 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - - 39.8
P-GCN [51] Full I3D 69.5 67.8 63.6 57.8 49.1 - - - - -

UntrimmedNet [2] Weak - 44.4 37.7 28.2 21.1 13.7 - - - - -
STPN [4] Weak UNT 45.3 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3 17.1

W-TALC [5] Weak UNT 49.0 42.8 32.0 26.0 18.8 10.9 6.2 - - 18.8
Liu et al. [6] Weak UNT 53.5 46.8 37.5 29.1 19.9 12.3 6.0 - - 21.0
AutoLoc [3] Weak UNT - - 35.8 29.0 21.2 13.4 5.8 - - 21.0

TSM [11] Weak UNT - - 37.3 - 21.9 - 6.0 - - -
RefineLoc [59] Weak UNT - - 36.1 29.6 22.6 12.1 5.8 - - 21.2

Huang et al. [13] Weak UNT 54.2 47.1 37.8 29.4 21.2 13.9 6.8 - - 21.8
CleanNet [8] Weak UNT - - 37.0 30.9 23.9 13.9 7.1 - - 22.6
BaS-Net [12] Weak UNT 56.2 50.3 42.8 34.7 25.1 17.1 9.3 3.7 0.5 25.8
EM-MIL [58] Weak UNT 59.0 50.4 42.7 34.5 27.2 18.9 10.2 - - 26.7

TSCN [18] Weak UNT 58.9 52.9 45.0 36.6 27.6 18.8 10.2 4.0 0.5 27.6
A-TSCN (Ours) Weak UNT 60.5 54.0 46.3 37.4 28.8 19.2 10.3 3.8 0.4 28.4

STPN [4] Weak I3D 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1 18.5
W-TALC [5] Weak I3D 55.2 49.6 40.1 31.1 22.8 14.5 7.6 - - 23.2
Liu et al. [6] Weak I3D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - - 23.7

TSM [11] Weak I3D - - 39.5 - 24.5 - 7.1 - - -
RefineLoc [59] Weak I3D - - 40.8 32.7 23.1 13.3 5.3 - - 23.0
BaS-Net [12] Weak I3D 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 27.3

Nguyen et al. [9] Weak I3D 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4 27.5
Huang et al. [13] Weak I3D 62.3 57.0 48.2 37.2 27.9 16.7 8.1 - - 27.6

DGAM [14] Weak I3D 60.0 54.2 46.4 38.2 28.8 19.8 11.4 3.6 0.4 29.0
A2CL-PT [57] Weak I3D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 4.8 1.0 29.4
EM-MIL [58] Weak I3D 59.1 52.7 45.5 36.8 30.5 22.7 16.4 - - 30.4

TSCN [18] Weak I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 3.9 0.7 28.8
AUMN [69] Weak I3D 66.2 61.9 54.9 44.4 33.3 20.5 9.0 - - 32.4

TSCN+UGCT [70] Weak I3D 67.5 62.1 55.3 45.2 33.3 20.7 9.5 - - 32.8
A-TSCN (Ours) Weak I3D 65.3 59.0 52.1 42.5 33.6 23.4 12.7 4.5 0.5 32.9

TABLE 2
Comparison of our method with state-of-the-art TAL methods on the
ActivityNet v1.2 validation set. The Avg column indicates the average

mAP at IoU thresholds 0.5:0.05:0.95.

Method Sup. mAP@IoU (%) Avg (%)
0.5 0.75 0.95 0.5:0.05:0.95

SSN [40] Full 41.3 27.0 6.1 26.6
UntrimmedNet [2] Weak 7.4 3.2 0.7 3.6

AutoLoc [3] Weak 27.3 15.1 3.3 16.0
TSM [11] Weak 28.3 17.0 3.5 17.1

W-TALC [5] Weak 37.0 12.7 1.5 18.0
Liu et al. [6] Weak 36.8 22.0 5.6 22.4

Huang et al. [13] Weak 37.6 23.9 5.4 23.3
BaS-Net [12] Weak 38.5 24.2 5.6 24.3
DGAM [14] Weak 41.0 23.5 5.3 24.4

EM-MIL [58] Weak 37.4 - 2.0 20.3
TSCN [18] Weak 37.6 23.7 5.7 23.6

AUMN [69] Weak 42.0 25.0 5.6 25.5
TSCN+UGCT [70] Weak 40.0 23.6 5.6 24.3

A-TSCN (Ours) Weak 39.6 25.1 5.8 25.6

including TSCN proposed in our conference paper [18].
Surprisingly, our A-TSCN achieves similar or even higher
performance than some recent fully-supervised methods

TABLE 3
Comparison of our method with state-of-the-art W-TAL methods on the
ActivityNet v1.3 validation set. The Avg column indicates the average

mAP at IoU thresholds 0.5:0.05:0.95.

Method mAP@IoU (%) Avg (%)
0.5 0.75 0.95 0.5:0.05:0.95

STPN [4] 29.3 16.9 2.6 -
TSM [11] 30.3 19.0 4.5 -

Liu et al. [6] 34.0 20.9 5.7 21.2
Nguyen et al. [9] 36.4 19.2 2.9 -

BaS-Net [12] 34.5 22.5 4.9 22.2
A2CL-PT [57] 36.8 22.0 5.2 22.5

TSCN [18] 35.3 21.4 5.3 21.7
AUMN [69] 38.3 23.5 5.2 23.5

TSCN+UGCT [70] 38.1 21.2 5.4 22.8
A-TSCN (Ours) 37.9 23.1 5.6 23.6

on the four benchmarks. The clear performance superiority
demonstrates the effectiveness of the proposed A-TSCN.

4.4 Ablation Study

In this subsection, to better analyze the contribution of each
component, we conduct ablation studies on the THUMOS14
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TABLE 4
Comparison of our method with state-of-the-art TAL methods on the

HACS validation set. The Avg column indicates the average mAP at IoU
thresholds 0.5:0.05:0.95. * denotes our reproduced results.

Method Sup. mAP@IoU (%) Avg (%)
0.5 0.75 0.95 0.5:0.05:0.95

SSN [40] Full 28.82 18.80 5.32 18.97
BaS-Net [12]* Weak 30.12 16.69 6.13 18.63

TSCN [18] Weak 33.40 19.97 6.45 20.80
A-TSCN (Ours) Weak 34.86 20.89 6.60 21.71

TABLE 5
Ablation study on the adaptive attention normalization loss La-norm. #Act
and #Bg denote the average number of positive and negative snippets

participated in the loss function computation in the testing set,
respectively. Performances are reported w/o pseudo ground truth

learning.

Loss s s′
mAP@IoU (%) Avg (%) #Act #Bg0.3 0.5 0.7 0.3:0.1:0.7

- - - 33.1 19.0 5.7 18.2 - -

Lnorm

2 - 42.8 24.3 8.0 23.3 196.4 196.4
4 - 44.4 27.1 9.7 26.6 98.2 98.2
8 - 45.7 29.3 10.6 28.4 49.1 49.1
16 - 44.0 28.1 9.7 27.3 24.6 24.6

La-norm

- 1 44.6 27.3 10.4 26.8 157.5 239.2
- 2 40.1 22.9 6.0 21.9 35.2 162.7
- 4 37.4 18.1 4.5 17.6 14.6 83.9
- 8 32.2 14.4 3.8 13.9 6.3 42.6
8 1 45.4 27.8 10.3 27.5 168.8 216.0
8 2 47.9 30.3 10.7 29.6 71.1 130.9
8 4 46.9 30.0 10.5 29.2 50.2 66.6

testing set. The ablation studies are conducted with I3D
features. To improve readability, we use gray color to mark
the final setting used to compared with the state-of-the-art.
Ablation study on the adaptive attention normalization
loss La-norm. To reduce the ambiguity between foreground
and background, we introduce an adaptive attention nor-
malization loss to differentiate them in attention values.
Compared with the original version, where the action and
background portions are fixed, the new adaptive version
dynamically determines the action and background portions
according to the attention distribution, increasing the training
samples and improving the performance. Table 5 compares
the performance of the original attention normalization loss
and its adaptive version. We make the following observations.
(1) For the original attention normalization loss Lnorm, the
performance first raises as s increases from 2 to 8, indicating
manually setting a large portion of action or background does
not conform to the real action and background distribution
(e.g., setting s = 4 assumes action and background each
account for 25% of the whole video). The performance
drops at s = 16, which might attribute to the decrease
of training samples. (2) For the adaptive version without
a lower bound, the performance significantly drops as s′

increases. Besides, the number of action snippets decreases
much more quickly than the number of background snippets.
Without a lower bound constraint, we speculate that the
model only focuses on the most discriminative part of
actions for classification, while ignoring the completeness
of action instances. (3) With the lower bound constraint
(the last group), the performance improves significantly for
s′ = 2 and s′ = 4, which demonstrates the effectiveness of
our adaptive attention normalization loss. Besides, setting
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Fig. 3. Comparison between models trained with different pseudo ground
truth at different refinement iterations on the THUMOS14 testing set.
“Hard” denotes models trained with hard pseudo ground truth, and “Soft”
denotes models trained with soft pseudo ground truth.

s′ = 1 slightly decreases the performance, indicating that it
is unreliable to determine the action and background for the
whole video for a single modality.
Ablation study on the pseudo ground truth type. Fig. 3
plots the performance comparison between different pseudo
ground truth methods at different refinement iterations. The
results reveal that the hard pseudo ground truth dramatically
improves the performance for the RGB stream and the fusion
result. Despite the slight performance drop for the flow
stream, the fusion result outperforms both streams after
the hard pseudo label learning. In contrast, the soft pseudo
ground truth degrades the performance of the flow stream
and the fusion result. As for the RGB stream, though the soft
labels improve its performance, the improvement requires
more refinement iterations and is still lower than that trained
with hard labels. These results reveal the importance of
removing ambiguity in the pseudo ground truth.

In the following discussion, if not explicitly stated, the
pseudo ground truth denotes the hard pseudo ground truth.

Table 6 lists the detailed performance comparison be-
tween models trained with only video-level labels and those
trained with pseudo ground truth. The results show that the
pseudo ground truth improves the localization performance
for the RGB stream and the fusion result at all IoU thresholds,
and improves the flow stream at high IoU thresholds. Also,
the pseudo ground truth dramatically improves the precision
and recall for the RGB stream, and improves the precision
for the flow stream and the fusion result with a slight loss of
recall. The pseudo ground truth improves the F-measure for
all three results. This demonstrates that the pseudo ground
truth can help eliminate false positive action proposals.

The per category precision-recall (PR) curve is presented
in Fig. 4. The category-wise PR curve indicates that the
pseudo ground truth improves precision for most categories
(i.e., higher in the y axis), and thus achieves a larger area
enclosed by the PR curve, the x axis and the y axis (i.e.,
average precision, AP). However, for several categories (e.g.,
Cricket Shot and Tennis Swing), the performance slightly drops.
The reason is that some false positive action proposals are
wrongly reinforced in the iterative refinement, and we will
further illustrate this problem in qualitative analysis.
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TABLE 6
Comparison between the models trained with only video-level labels and the model trained with hard pseudo ground truth on the THUMOS14 testing

set. The “Label” column denotes the supervision used in training, where “Video” indicates only video-level labels are leveraged, and “Frame”
indicates the hard pseudo ground truth is also leveraged during training. Precision, recall and F-measure are calculated under IoU threshold 0.5.

Modality Label mAP@IoU (%) Avg (%) Recall (%) Precision (%) F-measure0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3:0.1:0.7
RGB Video 54.5 47.2 38.0 28.3 18.4 10.5 4.7 1.0 0.1 20.0 48.0 6.0 0.1067
RGB Frame 58.5 53.0 45.1 35.9 26.9 17.8 8.3 2.9 0.4 26.8 53.4 9.9 0.1670
Flow Video 63.5 58.2 51.0 41.8 32.2 21.6 11.9 3.7 0.4 31.7 61.0 7.3 0.1304
Flow frame 62.8 56.7 50.2 40.7 31.1 21.4 11.6 4.3 0.5 31.0 54.8 10.2 0.1720

Fusion Video 61.6 55.2 47.9 39.5 30.3 19.8 10.7 3.0 0.3 29.6 67.0 7.3 0.1316
Fusion Frame 65.3 59.0 52.1 42.5 33.6 23.4 12.7 4.5 0.5 32.9 63.2 9.4 0.1636

Recall (%)

Pr
ec

is
io

n 
(%

)

Fig. 4. Per category precision-recall (PR) curves on the THUMOS14 testing set. The PR curve is plotted under IoU threshold 0.3. The area enclosed
by the PR curve, x axis and y axis is average precision (AP) of each category.

Ablation study on the uncertainty estimators. To mitigate
the adverse effect caused by the noise of pseudo ground
truth, we introduce a video-level uncertainty estimator and
a snippet-level uncertainty estimator. They estimate the
reliability of pseudo ground truth in a batch and in a video
respectively, and thus decrease the weight for uncertain
pseudo ground and increase the weight for confident ones.
Table 7 summarizes the results, which demonstrate the usage
of either uncertainty estimator improves the performance,
and their combination leads to even higher performance.
Specifically, the snippet-level uncertainty estimator has more
impact than the video-level one. Moreover, symmetric KL
divergence-based uncertainty estimators perform better than
those using attention difference.

Sensitivity analysis on the thresholding parameter θ. The
thresholding parameter θ in the hard pseudo ground truth
generation has significant impact on the quality of the
pseudo ground truth. Fig. 5(a), Fig. 5(b) and Fig. 5(c) plot
the localization performance, precision and recall changes
under different θ values, respectively. In Fig. 5(b), a relative
large θ (e.g., 0.55 and 0.6) helps remove false positive action
proposals, and improve the precision, while a too large or
small θ decreases the precision. In Fig. 5(c), a relatively small
θ (e.g., 0.45) helps retain more action proposals, which may
contain some false negatives, and improve the recall, while
a too small or large θ decreases the recall. Therefore, the
localization performance in Fig. 5(a) shows a trade-off result
between precision and recall, where the best performance
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(c) Recall comparison under different θ values.

Fig. 5. Comparison between models trained with hard pseudo ground truth under different thresholding θ values.

TABLE 7
Ablation study on video-level and snippet-level uncertainty estimators.

Video Snippet mAP@IoU (%) Avg (%)
Uncertainty Uncertainty 0.3 0.5 0.7 0.3:0.1:0.7

None
None 50.9 32.8 11.9 32.1
Diff 51.2 33.1 12.2 32.3
KLD 51.5 33.2 12.3 32.4

Diff
None 51.1 32.8 11.8 32.1
Diff 51.4 33.2 12.3 32.4
KLD 51.7 33.3 12.4 32.6

KLD
None 51.0 33.0 12.0 32.2
Diff 51.7 33.2 12.3 32.5
KLD 52.1 33.6 12.7 32.9
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Fig. 6. Comparison between models under different fusion parameter λ
on the THUMOS14 testing set.

is achieved under θ = 0.5. To summarize, the localization
performance, precision and recall show the same tendency:
the performance is positively correlated with the distance
between θ and 0.5.
Sensitivity analysis on the fusion parameter λ. λ is an im-
portant hyperparameter controlling the relative importance
between the RGB stream and the flow stream at late fusion,
and thus influences the fusion result and the pseudo ground
truth. As shown in Fig. 6, with only video-level supervision,
the late-fusion result outperforms both individual streams
only when the stream that has higher performance dominates
(e.g., λ = 0.2). Under frame-level pseudo supervision, the
localization performances of the RGB stream and the fusion

TABLE 8
Results of the proposed method in the early-fusion framework.

Loss Pseudo mAP@IoU (%) Avg (%)
Label 0.3 0.5 0.7 0.3:0.1:0.7

- - 31.6 16.8 5.4 16.7
Lnorm - 37.6 22.2 6.0 22.1
La-norm - 39.3 23.7 7.1 23.3

La-norm
Soft 40.2 24.1 7.3 23.7

Hard 41.2 25.0 7.9 24.4

result are greatly improved compared with those under
only video-level supervision. However, when the noisy RGB
stream predominates the pseudo ground truth (i.e., λ > 0.5),
the performance of the flow stream and the fusion result
corrupt significantly. We also note that performances for
λ = 0.2 and λ = 0.4 exceed the performance for λ = 0.5,
as the noisy RGB prediction has lower weights than the
more precise flow stream. That said, to demonstrate the
generalization ability of our method, we use λ = 0.5 in later
experiments.

Interestingly, under frame-level pseudo supervision with
λ = 1, (i.e., only the RGB stream is used for pseudo ground
truth generation), the flow stream still outperforms the RGB
stream by a large margin, which demonstrates the RGB
stream is insensitive to actions and lacks generalization
ability.
Ablation study on the early-fusion framework. As we
reviewed in Section 1, there are two mainstream two-
stream fusion methods, i.e., early fusion and late fusion.
To demonstrate the effectiveness of the proposed method,
we implement our method in the early-fusion framework,
where the concatenation of the RGB and optical flow features
on the feature dimension is fed into a single base model.
The pseudo ground truth is generated from the single base
model’s attention sequence and used for iterative refinement.

The performance comparison in the early-fusion net-
work is summarized in Table 8. Without pseudo ground
truth, the results show the same tendency with the late-
fusion framework: the original attention normalization loss
greatly improves the baseline performance, and its adaptive
version further boosts the performance, demonstrating its
effectiveness in both early- and late-fusion frameworks.
In the early-fusion framework, the pseudo ground truth
requires the base model to output previous results under
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TABLE 9
Hyperparameter sensitivity analysis.

(a) Sensitivity analysis on the attention nor-
malization loss weight α. Results are re-
ported w/o pseudo ground truth learning.

α
mAP@IoU (%) Avg (%)

0.3 0.5 0.7 0.3:0.1:0.7
0 33.1 19.0 5.7 18.2

0.05 47.8 29.8 10.3 28.9
0.1 47.9 30.3 10.7 29.6
0.2 48.3 30.2 10.4 29.5

(b) Sensitivity analysis on the smooth loss
weight β. Results are reported w/o pseudo
ground truth learning.

β
mAP@IoU (%) Avg (%)

0.3 0.5 0.7 0.3:0.1:0.7
0 46.8 29.8 10.5 29.2

0.05 47.5 30.1 10.5 29.5
0.1 47.9 30.3 10.7 29.6
0.2 47.0 29.7 10.5 29.2

(c) Sensitivity analysis on the pseudo
ground truth learning loss weight γ.

γ
mAP@IoU (%) Avg (%)

0.3 0.5 0.7 0.3:0.1:0.7
0.1 51.7 33.3 12.6 32.5
0.2 52.0 33.3 12.4 32.6
0.5 51.9 33.4 12.8 32.8
1 52.1 33.6 12.7 32.9
2 52.0 33.7 12.3 32.8

different stochastic model noise (e.g., dropout), and thus it
improves the generalization ability and robustness of the base
model. Therefore, both soft and hard pseudo ground truths
improve the performance in the early-fusion framework,
demonstrating their effectiveness. Furthermore, the hard
pseudo ground truth also achieves higher performance than
its soft counterpart, which agrees with the results in the
late-fusion framework.
Hyperparameter sensitivity. To demonstrate the robustness
of our method to hyperparameters, we present a set of
ablation study in Table 9. The results reveal that our method
is robust to loss weights for the adaptive attention normal-
ization loss (Table 9(a)), the smooth loss (Table 9(b)), and
the adaptive pseudo ground truth learning loss (Table 9(c)).
Specifically, our smooth loss improves the performance at
low loss weights, as it involves the temporal relationship in
attention learning.
Qualitative analysis. Four representative examples of TAL
results are plotted in Fig. 7 to illustrate the efficacy of the
proposed pseudo supervision. In the first example, with
only video-level labels, the RGB stream provides a worse
localization result than the flow stream, and thus leads
to a noisy fusion attention sequence. The pseudo ground
truth guides the RGB stream to identify false positive action
proposals and discover true action instances. It furthermore
leads to a cleaner fusion attention sequence, where high
activations correspond better to the ground truth. In the
second example, with only video-level supervision, both
streams have some non-overlapping false positive action
proposals at the beginning of the video. In this case, the
pseudo ground truth helps remove such false positives.
In the third example, with only video-level supervision,
the RGB stream can only distinguish certain scenes, and
fails to separate proximate action instances. In contrast, the
flow stream can precisely detect the ground truth action
instance. Therefore, the pseudo ground truth helps the RGB
stream to separate consecutive action instances. The last
example shows a classic case of performance degradation.
Both streams exhibit numerous false positives in the middle
of the video. The false positives are mostly overlapped,
and are reinforced in the pseudo ground truth, making the
models trained with the pseudo ground truth more confident
about the false positive. Eliminating such false positive action
proposals, however, requires true ground truth supervision.

To summarize, the two modalities have their own
strengths and limitations. The RGB stream is sensitive to
appearance. Thus, it fails in scene shot from unusual angles
or separating proximate action instances; the flow stream

is sensitive to motion, and provides more accurate results,
but it fails in slow or occluded motion. Qualitative results
reveal that the pseudo ground truth helps two streams reach
a consensus at most temporal locations. Therefore, the fusion
attention sequence becomes cleaner and helps generate more
precise action proposals and more reliable confidence scores.

5 CONCLUSION

In this paper, we propose an adaptive two-stream consensus
network (A-TSCN) for W-TAL, which benefits from an adap-
tive attention normalization loss and an iterative refinement
training approach. The adaptive attention normalization loss
dynamically selects the action and background snippets in a
video, and forces the attention to perform a binary selection,
thus reducing the ambiguity between the foreground and
background. The iterative refinement training scheme uses
a novel frame-level pseudo ground truth as fine-grained
supervision, and iteratively improves the two-stream base
models. Meanwhile, a video-level uncertainty estimator and
a snippet-level uncertainty estimator dynamically determine
the learning weights for each video and snippet, thus
mitigating the adverse effect caused by learning from noisy
pseudo labels. Experiments on four benchmarks demonstrate
the proposed A-TSCN outperforms current state-of-the-art
methods, and verify our design intuition.
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