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ABSTRACT
Response-based Knowledge Distillation refers to the technique of
supervising the student network with the teacher networks’ predic-
tions. Themethod is motivated by observing that the predicted prob-
abilities reflect the relation among labels, which is the knowledge to
be transferred. This paper explores the transferred knowledge from
a novel perspective: comparing the knowledge transferred through
different teachers. Two intriguing properties are observed. First,
higher confidence scores of teachers’ predictions lead to better dis-
tillation results, and second, teachers’ incorrectly predicted training
samples should be kept for distillation.We then analyze the phenom-
enon by studying teachers’ decision boundaries, of which some can
help the student generalize while some may not. Based on the obser-
vations, we further propose an embarrassingly simple distillation
framework named Efficient Distillation, which is effective on Ima-
geNet with different teacher-student pairs: When using ResNet34
as the teacher, the student ResNet18 trained from scratch reaches
74.07% Top-1 accuracywithin 98 GPU hours (RTX 3090), outper-
forming current state-of-the-art result (73.19%) by a large margin.
Our code is available at https://github.com/lsongx/EffDstl.
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1 INTRODUCTION
Response-based Knowledge Distillation (KD), introduced in [14],
transfers the knowledge contained by a well-trained teacher’s pre-
dictions network to a student network. KD has been successfully
applied to various visual tasks, such as semantic segmentation [20],
object detection [2], and human pose estimation [25].

KD is originally built on the insight that the teacher’s predicted
probabilities encode the correlation among classes. Adopting the
predictions as soft targets for supervision helps the student general-
ize. In this paper, we are concerned with understanding the knowl-
edge contained in the soft targets. Our investigation is inspired by
a phenomenon reported by a state-of-the-art (SoTA) distillation
framework MEAL v2 [36]: switching the teacher to a model with
lower accuracy leads to a significant distillation performance drop.
As demonstrated in Fig. 1, the distillation performance gap indicates
the existence of different knowledge transferred between the two
teachers.

The difference between two kinds of teachers is studied: high
performance with slow inference speed teacher, named as a strong
teacher, and relatively worse performance with faster inference
speed teacher, called a weak teacher. To explore the knowledge
transferred by different teachers, we propose to replace the soft
targets from the weak teacher with that from the strong teacher
with other schemes during training. The replacement is designed
in two aspects: replacement for sample subsets and replacement
for soft targets.

For sample subsets, two kinds of samples are studied, inspired
by previous studies [51, 53]: regularization samples and correct
samples, where regularization means that the teacher’s confidence
score is higher than the student’s score, and correct means the
teacher makes an accurate prediction. Furthermore, three replace-
ment schemes are designed to progressively explore the knowledge:
full replacement that changes all values, partial replacement that
changes relative confidence of non-ground-truth classes, and confi-
dence replacement that changes the confidence of the ground-truth
class. In our investigation, the soft targets from a weak teacher are
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Figure 1: Distillation results (Top-1 accuracy on ImageNet)
with different teachers for MEAL V2 [36] framework. The
performance of the teacher has a significant impact on the
distillation result.

replaced by those from a strong teacher and manually designed
labels on different training subsets.

Our exploration reveals two intriguing properties about the dis-
tillation scheme proposed in MEAL V2: 1) Replacing the confidence
score of the labeled class can boost the distillation performance.
Since the confidence of predictions from a strong teacher is higher
than that of a weak teacher, we observe that higher confidence
scores lead to better distillation results. 2) Replacing soft targets
from the teacher by manually designed labels on regularization and
not correct samples leads to a significant performance drop. That
is, teachers’ incorrectly predicted training samples should be kept
for distillation.

We hypothesize that the student mimics the teacher’s decision
boundaries as a reason behind the phenomenon. Some decision
boundaries help the student generalize, denoted as good boundaries
(good-bd), while some boundaries are the bias from the teacher
[22, 53], denoted as bad boundaries (bad-bd). Then, samples near
the good-bd should be kept while samples near the bad-bd can be
manipulated. We demonstrate networks’ predictions on adversarial
examples near the two boundaries as proof-of-concept experiments.

Finally, based on the observations, we propose a distillation
framework named efficient distillation (EffDstl). The critical com-
ponent in the framework is that we enforce the teacher’s confi-
dence score consistently higher than the student’s score for the
bad-bd samples while keeping distillation on the good-bd samples
unchanged. Since the subset of samples is dynamically determined
during training, we name the simple technique consistent knowl-
edge mining. With consistent knowledge mining, a weak teacher
can be converted to a strong teacher, reducing the distillation cost
of querying a teacher’s soft targets. A straightforward comparison
between our EffDstl and MEAL V2 is demonstrated in Fig. 2. With
the proposed EffDstl and ResNet34 as the teacher, the student net-
work ResNet18 can be trained from scratch and reaches 74.07% on
ImageNet [3], while remarkably reducing distillation costs. To sum
up, our contributions are as follows:
• We explore the knowledge transferred on the large-scale
dataset ImageNet by comparing the distillation performance
of a strong teacher and a weak teacher. Two intriguing prop-
erties are found with SoTA distillation method MEAL V2
[36]: 1) higher confidence in predictions leads to better dis-
tillation for some samples, 2) the student should follow the
teacher if the teacher’s prediction is different from the given
label.

Figure 2: The comparison of distillation results between our
Efficient Distillation (EffDstl) and the current SoTA MEAL
V2. ResNet18 is chosen as the student.

• We analyze the observed phenomenon from the perspec-
tive of decision boundaries: samples that should be distilled
are near the teacher’s decision boundaries that can help
the student generalize, while samples far away from such
boundaries can be manipulated. Our results provide a new
perspective for understanding knowledge distillation.
• Motivated by our observations, a distillation framework
named efficient distillation is developed, and consistent knowl-
edge mining is proposed to convert a weak teacher to a
strong teacher. Our framework reaches a new SoTA distil-
lation performance. With our framework, classical manu-
ally designed networks like MobileNet V2 outperform ad-
vanced lightweight networks, including transformer-based
and neural-architecture-search-based networks.

2 RELATEDWORK
Knowledge distillation. Knowledge distillation has been widely

studied in recent years. In a recent review [10], the knowledge used
for distillation is categorized into three groups: response-based
knowledge, Feature-based knowledge, and relation-based knowl-
edge. Our method can be classified into response-based knowledge
distillation. Response means the final output class-wise probabil-
ity score of the network. Response-based knowledge is first in-
troduced by [14], in which the distillation loss is defined as the
Kullback-Leibler divergence between the student’s prediction and
the teacher’s prediction. The intermediate feature maps are used
to supervise the student for feature-based knowledge and are first
introduced in FitNets [32]. Feature-based knowledge then further
improved by a lot of works, such as attention in [50]. , SVD in
[17], AB in [13], ALP in [28] and SemCKD in [1]. The Gram matrix
of feature maps from different layers is used as the knowledge in
[47]. In [27], mutual information flow from pairs of feature maps
is defined as knowledge. Relations contained in samples are also
widely used, such as RKD [26], IRG [19], and SP [43].

Investigation of soft targets based knowledge. Besides training
with the soft targets generated from a teacher network, several
methods are proposed to directly generate the soft targets, such
as label smoothing [29, 38]. The connection between soft targets
designed manually and generated by the teacher received a lot of
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attention recently. In [24], the authors demonstrate that teachers
trained with label smoothing techniques are not suitable for distil-
lation. However, more recently, in [35], empirical results show that
label smoothing does not always suppress the effectiveness of KD.
The connection is also studied in [49], and the authors found the
regularization property of the soft targets. Analyses of sample-wise
soft label-based knowledge are presented by [34, 39, 40, 45, 51]. Our
work is more related to [53], in which the authors propose to reduce
the weight of the samples that the teacher performs worse than
the student. There are mainly three differences between our paper
and WSL [53]: 1) We analyze the knowledge by comparing a weak
and a strong teacher, while WSL analyzes the knowledge of the
same teacher on different samples; 2) We find that the incorrectly
predicted samples should be kept unchanged for distillation, which
is not observed before; 3) We propose a method to enhance the
knowledge of a weak teacher.

Understanding teacher-student distillation. Our exploration re-
veals intriguing properties about teacher-student distillation since
some training samples can be ignored while achieving better dis-
tillation performance. Lopez-Paz et al. [21] proves that distillation
is helpful when soft targets can speed up training. In [30], the ef-
fectiveness of distillation is proven by analyzing the optimization
process. Mobahi et al. [23] and Zhang et al. [52] analyzed the reason
behind the effectiveness of self-distillation. Hsu et al. [16] investi-
gated the generalization bounds of the student network. In [22], a
bias-variance perspective on distillation is provided, and a formal
criterion as to what constitutes a “good” teacher is provided. Our
work does not provide a theoretical explanation of the effectiveness
of distillation, but we provide novel intuition about the knowledge
transferred by response-based teacher-student distillation.

3 PRELIMINARIES
For KD, we aim to train a student network s under the guidance
of a teacher network t . For each sample x associated with a label
y, we denote the ith logits output of network s as zsi , then the

predicted probability for kth class of s is ŷsk ,τ =
ez

s
k /τ∑

i e
zsi /τ

, where τ

is a scaling parameter named temperature. Similarly, ŷtk ,τ denotes
the predicted probability for kth class of t . Then the KD loss of
this sample is defined as LKD = −τ 2

∑
k ŷ

t
k ,τ log ŷ

s
k ,τ . Moreover,

cross-entropy loss, LCE = −
∑
k y log ŷsk ,1, is commonly used for

supervising the student and the total loss is a balanced sum of the
two losses L = (1−λ)LCE +λLKD, where λ is a balancing weight. In
[14], λ is manually tuned to be 0.9. The practice of manual tuning
is followed by works like [41]. In [51, 53], the authors propose
dynamically determining λ for each training sample. Moreover,
MEAL V2 [36] sets λ = 1 and discards the cross-entropy loss during
distillation.

4 KNOWLEDGE FROM DIFFERENT
TEACHERS

In Fig. 1, we can observe that switching to a weak teacher (ResNet50
with Top-1 79.04%) leads to a drop of 0.4% distillation accuracy. To
figure out why such a performance gap exists, we explore the knowl-
edge transferred by a strong teacher and a weak teacher. Inspired

Figure 3: To investigate the difference in knowledge between
a weak and a strong teacher, we design three schemes for
adjusting the knowledge of the weak teacher based on the
strong teacher.

Figure 4:We study how the two sets of samples affect the dis-
tillation performance. A correct sample means the teacher
makes an accurate prediction, and a regularization sample
means the student generates higher confidence than the
teacher.

by previous analyses of distillation [24, 35, 53], the exploration is
conducted to answer the following two questions: 1) Which value
in the teacher output [ŷt1,τ , ..., ŷ

t
n,τ ] leads to the distillation gap? 2)

Which sample during training leads to the distillation gap?

4.1 Replacing the soft targets
To answer the two questions, our principle is to adjust the predic-
tions of a weak teacher t− according to a strong teacher t+ based
on different rules. For the first question, we design three alteration
schemes: full replacement, partial replacement, and confidence re-
placement. An illustration of the three alteration schemes of t− is
demonstrated in Fig. 3. Mathematically, for an input labelled as kth
class, the distillation label becomes [ŷt

+

1,τ , ..., ŷ
t+
n,τ ] for full replace-

ment, which means simply using outputs from t+ as the label. For
partial replacement, the ith (i , k) label becomes

ŷti ,τ ← ŷt
+

i ,τ ·
1 − ŷt

−

k ,τ

1 − ŷt+k ,τ
. (1)

Partial replacement means that we keep the confidence score of the
ground-truth label and use the distribution of other classes from
t+ as the supervision. For confidence replacement, the ith (i , k)
label becomes

ŷti ,τ ← ŷt
−

i ,τ ·
1 − ŷt

+

k ,τ

1 − ŷt−k ,τ
. (2)

Unlike partial replacement, confidence replacement keeps the dis-
tribution on other classes and uses the confidence score on kth class
from y+.
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Figure 5: Exploration of replacing the soft labels from a weak teacher to a strong teacher. Three replacement schemes are
tested (c.f ., Fig. 3). For each weak/strong teacher and student triplet, denote the result with the weak teacher only and strong
teacher only as acc− and acc+. Then a distillation result acc is normalized by acc−acc−

acc+−acc− , so that we can explore different teacher-
student settings in the same figure. We repeat distillation experiments several times and each point in the figure denotes
one distillation result. Results on CIFAR10 and ImageNet are demonstrated. The colors denote the groups of samples to that
replacements are applied. The results demonstrate that the confidence of predictions (c.f ., Fig. 3) is more important than class-
wise relations for being a good teacher.
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Figure 6: Exploration ofmanuallymanipulating the soft labels from aweak teacher. Threemanipulation schemes fromEqs. (3)
to (5) are investigated. Similar to Fig. 5, distillation is repeated with different pairs and then normalized. The results demon-
strate that augmenting theweak teacherwith the label smoothing scheme on the reg & cor samples (c.f ., Fig. 4) can approximate
the performance of a strong teacher.

For the second question, distillation on different sample sub-
sets is conducted. Two kinds of samples, inspired by the empirical
results in [51, 53], are of interest: correct samples and regulariza-
tion samples. As illustrated in Fig. 4, a sample labeled as kth class
is called a correct sample if ŷtk ,τ > ŷti ,τ (∀i , k). Regularization
sample follows the idea in [53] and is defined by ŷsk ,τ > ŷtk ,τ .

Fig. 5 demonstrates the distillation results with different alter-
ation schemes and specific sample subsets combinations. The “not
correct” sample denotes the sample on which the teacher makes a
wrong prediction. As a response to the two questions asked above,
two intriguing properties can be observed from the table: First,
full replacement and confidence replacement act similarly; Second,
only replacing samples from the “regularization&correct” subset
leads to good results. The first property indicates that the confi-
dence of prediction matters most, then a question naturally arises:
Can we increase the confidence of prediction and convert a weak
teacher into a strong teacher? In the next section, we study several
strategies for manipulating soft targets.

4.2 Manipulating the soft targets
Since previous experiments in Fig. 5 suggest that the confidence
score matters, a straightforward idea is to increase the confidence
scores of teacher outputs. Similar to the experiments conducted
in the last section, we design three manipulation baselines: label
smoothing, teacher amplification, and student amplification. Label
smoothing, proposed in [38], changes the label of a sample labeled
as kth class to

ŷtk ← t, ŷti ←
(1 − t)
N − 1

, (3)

where N is the number of classes and t is a predefined number.
Teacher amplification increases the confidence of kth class by a
certain value δ > 0, that is,

ŷtk ← max{ŷtk + δ , 1}, ŷti ←
ŷti (1 − ŷ

t
k )

1 − ŷtk − δ
. (4)
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Student amplification is similar to teacher amplification, except that
the output of students is amplified,

ŷtk ← max{ŷsk + δ , 1}, ŷti ←
ŷsi (1 − ŷ

s
k )

1 − ŷsk − δ
. (5)

Results are demonstrated in Fig. 6, from which we find that label
smoothing outperforms the other two simple manipulations. An-
other noteworthy point is that the label smoothing manipulation
on the “regularization&correct” subset achieves the best result, ap-
proximating the strong teacher-based distillation. In comparison,
teacher amplification and student amplification cannot enhance
the knowledge or even lead to worse results.

After beingmanipulated with label smoothing, the regularization
samples are not regularized anymore, that is ŷsk < t . In other words,
by applying label smoothing to the “regularization&correct” subset,
we enforce that the correct predictions from the teachers output
higher confidence than the student.

4.3 Understanding difference of knowledge
Existing theories [16, 22, 30] have proved that the student mimics
the teacher, and the student converges to favorable optima after
distillation. We hypothesize that the student mimics the teacher’s
decision boundaries during training. The teacher’s decision bound-
aries are approximated by mimicking the teacher’s response to
different training samples. We further hypothesize that some deci-
sion boundaries of the teacher can help the student generalize, and
these boundaries are denoted as good boundaries. The other bound-
aries can not help the student generalize, and we denote them as
bad boundaries. Then during training, a sample should be distilled
if it is close to the good-bd, and a sample can be manipulated if it is
close to the bad-bd.

Theoretical clues. Existing theories in [22] shed light on how to
determine if a teacher is good for distillation. For a predictor s , we
denote its risk (i.e., generalization error) as R(s) and its empirical
risk (i.e., training error) on dataset D as R̂(s ;D), then with symbols
defined in Sec. 3 and for any bounded loss ℓ, we have the following
result (Proposition 3 in [22]),

E[(R(s)−R̂(s;D))2] ⩽
1
|D |
V[t(x)T ℓ(s(x))] + O

(
E[∥t − t∗∥2]

)2
,

(6)

where V is the variance and t∗ is the Bayes class-probability dis-
tribution. In Eq. (6), the left side (E[(R(s) − R̂(s;D))2]) is the gap
between training and testing and can be bounded by the sum of two
terms: The first one 1

|D |V[t(x)
T ℓ(s(x))] quantifies the difference be-

tween student and the teacher. The second term O (E[∥t − t∗∥2])2

measures the difference between the teacher and the Bayes class-
probabilities. Exactly assessing Bayes class-probabilities is infea-
sible in practice, but we can assume that t∗ is generally consis-
tent with the given label (i.e., clean annotations). Therefore, if the
teacher’s prediction becomes inconsistent with t∗, the teacher is
introducing a bad-bd to the student. In our exploration, we find
that a correct prediction with low confidence is close to bad-bd and
thus making the term O (E[∥t − t∗∥2])2 larger.

Proof-of-concept experiments. Experiments in Figs. 5 and 6 demon-
strate that some samples should be kept and some samples should
be manipulated to achieve a better distillation performance. We pre-
sume that the kept samples are near the good-bd and manipulated
samples are near the bad-bd or far from boundaries. Adversarial
attack method FGSM [9] is employed to study the distance between
the samples and the boundaries. We randomly select 1000 samples
of the kept and manipulated subset and demonstrate the attack
results in Fig. 7. We can first observe that confidence in manipu-
lated samples is less sensitive to adversarial examples. Thus these
samples are relatively far from decision boundaries. Also, when
applying the attack on other networks (student and an undistilled
MobileNet), the impact gap between the two sample subsets (peaks
of the red and blue lines) becomes larger. This indicates that other
networks share boundaries close to those of the kept samples. Fur-
thermore, in Fig. 8, we demonstrate the impact of not keeping the
incorrectly predicted training samples during distillation. We can
observe that the gap between training accuracy and validation accu-
racy increases when incorrectly predicted training samples are not
kept, which indicates that the student starts to overfit the training
set.

5 EFFICIENT DISTILLATION
Based on the previous exploration, we find that the confidence
score of predictions is an important difference between a weak and
a strong teacher. Besides, the scores can be manually manipulated
to enhance the teacher. In this section, we convert our findings into
a detailed distillation framework.

5.1 Consistent Knowledge Mining
During training, for a sample labeled askth class, if the teachermake
a correct prediction, i.e., ŷtk ,τ > ŷti ,τ (∀i , k), and the prediction
confidence is lower than that of the student, i.e., ŷtk ,τ < ŷsi ,τ , we
manually manipulate the distillation label and make the distilled
knowledge consistent with provided labels. For manipulation, we
use label smoothing with high confidence (0.99) to replace the
soft target provided by the teacher. Distillation on other samples
remained unchanged. The simple technique is named consistent
knowledge mining.

5.2 Framework
We propose testing the distillation performance with improved
training hyper-parameters for the classification task, widely adopted
for evaluating Neural Architecture Search [6]. Specifically, cosine
learning rate decay and more training epochs (300 epochs in to-
tal) are adopted in our training. Only “RandomResizedCrop” and
“RandomHorizontalFlip” are used for data augmentation, and input
resolution is 224×224.

EffDstl consists of a two-stage optimization strategy: The first
stage takes 240 epochs with weight decay 4e-5, and the network is
trained with WSL distillation loss [53]; The second stage takes 60
epochs with weight decay 0, and the network is trained with our
proposed consistent knowledge mining scheme.

Some other hyper-parameters are also tuned for the two stages
separately. For the first stage, the initial learning rate is 0.5, and the
batch size is 1024. For the second stage, the learning rate is 5e-2



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Liangchen Song et al.

Figure 7: Change of prediction confidence under adversarial attack for different distillation subsets. Adversarial examples are
generated from the teacher network.

Teacher: ResNet34 (TV, 73.31), ResNet34d (Timm, 77.12)
Student: ResNet18

Method Top-1 Acc Top-5 Acc

Advanced (100-epochs) Advanced (100-epochs)

No Distill 72.30 (69.75) 90.84 (89.07)

KD [14] 72.90 (70.67) 91.18 (90.04)

RKD [26] 72.19 (70.40) 90.78 (89.78)

WSL [53] 73.44 (72.04) 91.22 (90.70)

EffDstl 74.07 (72.17) 91.54 (90.95)

Teacher: ResNet50 (TV, 76.16), ResNet50 (Timm, 79.04)
Student: MobileNet V1

Method Top-1 Acc Top-5 Acc

Advanced (100-epochs) Advanced (100-epochs)

No Distill 73.29 (68.87) 91.38 (88.76)

KD [14] 74.50 (70.49) 92.08 (89.92)

RKD [26] 74.08 (68.50) 91.74 (88.32)

WSL [53] 74.78 (71.52) 91.89 (90.34)

EffDstl 75.49 (71.91) 92.32 (90.38)

Table 1: A comparison with other knowledge distillation methods. “Advanced” denotes the advanced training hyper-
parameters (300 epochs with cosine learning rate decay). “100-epochs” denotes the commonly used training hyper-parameters
for evaluating distillation methods, and the networks are not fully trained. Teachers with “TV” denote the models provided
by Torchvision, and teachers with “Timm” denote the models provided by Timm.

at the beginning and decreases to 5e-4 after 60 epochs with cosine
decay. The temperature τ for the first stage distillation is set to 2. For
the second stage, the temperature for the teacher is set to 0.7, and
the temperature for the student is set to 1. Moreover, we change the
teacher network to a better network with the same architecture for
the second stage. For example, we change the ResNet34 provided
by Torchvision to ResNet34d provided by Timm [46].

6 EXPERIMENTS
Our experiments are all conducted on ImageNet [4], a large-scale
benchmark for classification. There are 1.2 million training images
and 50,000 validation images in ImageNet, and the number of classes
is 1,000. All training are conducted on 4 NVIDIA RTX 3090 GPUs
with batch size 256 on each GPU. For calculating the GPU Hours,
we sum the training time of all 4 GPUs.

6.1 Comparison with Other Distillation
Methods

We first compare our method with other distillation methods in
Tab. 1. Five recently proposed methods are selected for compari-
son: KD [14], RKD [26], and WSL [53]. In the table, we report the
training hyper-parameters with 100 epochs and step learning rate
decay to demonstrate the necessity of using the advanced training
hyper-parameters. With the advanced training hyper-parameters,
ResNet18 and MobileNet V1 trained without distillation outperform
all previously reported distillation methods. There is even a large
margin between the directly trained MobileNet V1 and the distilled
with the 100-epochs hyper-parameters. Such significant gaps make
the distillation methods not appealing to practitioners who are
looking for compact models.

As reported in Tab. 1, ResNet18 and MobileNet V1 trained with
EffDstl are much better than all existing methods. We note that the
compared methods are reproduced from the released code from the
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Figure 8: Comparison of distillation results with and with-
out keeping the incorrectly predicted samples. Manipulat-
ing the incorrectly predicted samples from the teacher leads
to a higher training accuracy but lower testing accuracy.

authors with some balancing parameter tuning. Besides, for com-
parison methods, we also change the teacher network to a better
one for the last 60 epochs. We admit that there is inconsistency
among the comparisons since we use a two-stage training scheme
while the other does not. Thus we do not claim that the previous
frameworks, i.e., feature-based and relation-based, are inferior to
the proposed EffDstl, but we want to highlight that in-depth analy-
ses are needed for the comparison methods to achieve comparable
performance.

6.2 Comparison with SoTA Lightweight
Networks

KD is frequently used for acquiring a compact network and is orig-
inally proposed for model compression. In Tab. 2, we compare net-
works distilled with other diligent lightweight network solutions:
MobileNet series [15, 33], Tokens-to-token ViT [48], RegNet [31],
GhostNet [11], Single-Path NAS [37], DenseNAS [7], Gluon ResNets
[12], SK ResNets [18], RepVGG [5], HRNet [44] and Res2Net [8].
The teachers for EffDstl - MbNetV3Small0.75 and EffDstl - SKResNet18 are
ResNet34 (Top-1: 73.31) for the first stage and ResNet34d (Top-1:
77.12) for the second stage. The teachers for EffDstl - MobileNet V2,
EffDstl - ResNet34 and EffDstl - ResNet34d are ResNet50 (Top-1: 76.16)
for the first stage and ResNet34d (Top-1: 79.04) for the second stage.

Method Params
(M)

FLOPs
(M) Top-1

MobileNet V3-Small 0.75 [15] 2.04 43.4 65.72
MobileNet V3-Small 1.0 [15] 2.54 56.5 67.92
EffDstl - MbNetV3Small0.75 2.04 43.4 67.34

MobileNet V2 [33] 3.50 300.8 72.97
T2T-ViT-7-Distilled [48] 4.30 1300.0 73.10

GhostNet [11] 5.18 141.2 73.98
DeiT-tiny distilled [42] 5.72 1080.1 74.51

DenseNAS-B [7] 4.77 313.6 74.55
EffDstl - MobileNet V2 3.50 300.8 74.45

Gluon-ResNet18-v1b [12] 11.69 1814.1 70.84
ResNet18d [46] 11.71 2053.7 72.26
SKResNet18 [18] 11.96 1814.3 73.04

EffDstl - SKResNet18 11.96 1814.3 75.12

RepVGG-A2 [5] 28.21 5685.3 76.46
HRNet-w18 [44] 21.30 4284.0 76.76
SKResNet34 [18] 22.28 3664.2 76.91
EffDstl - ResNet34 21.80 3663.8 77.06

Res2Net50-48w-2s [8] 25.29 4159.8 77.52
Gluon-ResNet50-v1b [12] 25.56 4089.2 77.58

EffDstl - ResNet34d 21.82 3903.4 77.62

Table 2: Comparison with SoTA lightweight networks.

Student Top-1 Training Time

MEAL V2 MobileNet V3-Small 0.75 67.60 103.1 (+?)
ResNet18 73.19 110.2 (+?)

EffDstl

MobileNet V3-Small 0.75 67.34 93.0
ResNet18 74.07 97.7

SKResNet18 75.12 127.3
MobileNet V1 75.49 111.5
ResNet34 77.06 160.8

Table 3: Comparison of the distillation costs. Training time
is GPU Hours measured with RTX 3090. For MEAL V2, (+?)
indicates the unknown training time for pre-training the
student network.As a comparison,we train the student from
scratch thus, no extra training time is needed.

The practical value of our proposed method can be observed
from Tab. 2. With EffDstl, the networks proposed years ago perform
better than some of the most advanced networks. For example, our
distilled MobileNet V2 outperforms the transformer-based network
T2T-ViT. Also, vanilla ResNet18 and ResNet34 boosted by EffDstl
surpasses ResNet34 and ResNet50 from GluonCV [12]. Our pro-
posed distillation is compatible with other lightweight network
enhancing techniques, which can be observed from the ResNet34
and ResNet34d pair. Our method provides a new baseline for evalu-
ating lightweight networks.
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Teacher Top-1
Stage 1 Stage 2

ResNet34 (73.31) ResNet34d (77.12) 67.34
MobileNet V2 (72.97) ResNet34d (77.12) 66.63
ResNet34 (73.31) MobileNet V3-Large (75.52) 67.52

MobileNet V2 (72.97) MobileNet V3-Large (75.52) 67.18

(a) The impact different teachers. (Student: MbNet V3-Small 0.75)

Student Top-1 Top-5

Before After Before After

MobileNet V2 74.45 74.76 91.74 92.03
ResNet18 74.07 74.46 91.54 91.61
ResNet18d 74.98 75.16 91.97 92.17
SKResNet18 75.12 75.32 92.14 92.24

(b) Further distillation with MEAL V2.

Change
Teacher Student Top-1

✗ ResNet18 73.36
✓ ResNet18 74.07
✗ MobileNetV1 74.52
✓ MobileNetV1 75.49

(c) Ablation of two stage training.

Stage 2
τ

Student Top-1

1.0 ResNet18 73.99
0.8 ResNet18 74.24
1.0 MobileNetV1 74.52
0.8 MobileNetV1 75.46

(d) Ablation of τ for stage 2.

Consistent
Knowledge Mining Student Top-1

✗ MobileNetV1 74.23
✓ MobileNetV1 75.49
✗ ResNet34d 75.58
✓ ResNet34d 77.62

(e) Ablation of consistent knowledge mining.
Table 4: Ablation studies of our proposed Efficient Distillation framework.

6.3 Distillation Costs
One of the main contributions of our method is that we do not
rely on large teacher networks, thus significantly reducing the
distillation costs while keeping SoTA performance. In Tab. 3, we
demonstrate the distilled cost of our method and include the train-
ing time of MEAL V2 as a comparison.

The advantage of our EffDstl is obvious. We train the student
from scratch, and the final result is comparable to or better than
MEAL V2, which needs a well-trained student for initialization.
With EffDstl, ResNet18 can be trained from scratch and achieve
74.07 in about 24 hours if 4 RTX 3090 GPUs are available. Also,
ResNet34 achieves 77.06 after 1.5 days if trained on 4 RTX 3090
GPUs. These results highlight the efficiency of our proposed EffDstl.

6.4 Ablation Studies
Since different teachers are used for different students in Tab. 2,
we first study the impact of using different teachers for distillation.
The ablation results are demonstrated in Tab. 4 (a). We find that
using a slightly worse teacher MobileNet V2 in stage 1 leads to a
much worse result, perhaps due to the label smoothing trick used
when training the teacher, so a smaller temperature is needed to
make the teacher’s prediction sharper. Another possibility is that if
the teacher networks of the two stages are of the same type, the
student achieves a better result.

Consequently, as our approach draws a significant inspiration
from the MEAL V2 technique, we have conducted an investigation
to determine whether our method attains a similar objective as
MEALV2. To achieve this, we have subjected the distillation outputs
from EffDstl to MEAL V2, as illustrated in Tab. 4 (b). It is crucial
to highlight that MEAL V2 employs large teachers, whereas our
distillation teachers are either ResNet34 or ResNet50. From the table,
it is evident that the Top-1 performance of the students improves
by approximately 0.3 for MobileNet V2 and ResNet18. However, the
improvements are less significant when compared to the distillation
outcomes documented in MEAL V2.

7 DISCUSSION
Limitation. The motivation for this study stems from the uti-

lization of response-based distillation in MEAL V2. Other forms of
distillation, such as feature-based and relation-based distillation,
have not been thoroughly examined in this research. It is necessary
to investigate how the observed properties extend to these alter-
native distillation frameworks. Additionally, even though we have
supplied proof-of-concept experiments and offered intuitive expla-
nations for the observations, our analyses of the phenomenon could
be further supported by more in-depth theoretical underpinnings.

Conclusion. In this paper, we investigate the transfer of knowl-
edge via response-based distillation from a weak and a strong
teacher in order to further understanding the term “knowledge”.
We make two notable observations. Firstly, the strong teacher gen-
erates greater prediction confidence than the weak teacher, which
results in better distillation outcomes. Secondly, low confidence
samples that have been accurately predicted by the teachers can be
amplified. We provide an insightful analysis of this phenomenon
and demonstrate that samples that should be retained are located
closer to optimal decision boundaries. Lastly, we introduce a dis-
tillation framework, named EffDstl that is remarkably simple and
only requires a weak teacher. We show that, using EffDstl, efficient
classical network models such as MobileNet V2 can outperform
transformer-based or NAS-based networks.
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