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Abstract. This paper presents a Generative RegIon-to-Text transformer,
GRiT, for object understanding. The spirit of GRiT is to formulate object
understanding as <region, text> pairs, where region locates objects and
text describes objects. Specifically, GRiT consists of a visual encoder to
extract image features, a foreground object extractor to localize objects,
and a text decoder to generate natural language for objects. With the
same model architecture, GRiT describes objects via not only simple
nouns, but also rich descriptive sentences. We define GRiT as open-set
object understanding, as it has no limit on object description output from
the model architecture perspective. Experimentally, we apply GRiT to
dense captioning and object detection tasks. GRiT achieves superior dense
captioning performance (15.5 mAP on Visual Genome) and competitive
detection accuracy (60.4 AP on COCO test-dev). Code is available at
https://github.com/JialianW/GRiT

1 Introduction

Great efforts have been made in object detection task [1,20,27,47]. To answer
‘what the object is?’, object detection models classify objects among a closed-set
of object classes, where class names are usually simple nouns. Recent open-
vocabulary object detectors [12,18,44,45] exploit fertile vision and language data
to enable object detectors to recognize object classes that do not exist in object
detection data. Open-vocabulary object detectors, however, still has to first know
what object classes are there in inference phase so as to define a closed-set of
class name embeddings to achieve object classification. The “open-vocabulary”
only means some of the class name embeddings, so-called novel classes, are not
associated with object detection bounding box data during training. As illustrated
in Fig. 2 (a), these closed-set frameworks behave like performing a multiple-choice
question, choosing the most likely answer from a limited number of candidates.

In contrast, humans understand objects in an open-set configuration that does
not limit the number of object categories and can therefore learn new objects
⋆ Work was done when the author interned at Microsoft.
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Fig. 1: GRiT’s object understanding pipeline with multi-task training. GRiT
is an open-set object understanding framework that localizes objects and generates
object description texts in free-form. The right figures show the predictions from the
model trained on object detection data and dense (object) captioning data together.
During inference, the trained GRiT can generate either simple class names for object
detection task, or rich descriptive sentences for dense captioning task, instructed by
two special tokens [ObjectDet] and [DenseCap], respectively.

effortlessly. Also, humans perceive auxiliary information associated with the
object to improve understanding, e.g ., color, shape, and action expressed through
adjectives and verbs. Toward human-like object understanding, we propose a
Generative RegIon-to-Text transformer, coined as GRiT. GRiT is not classifying
objects into categories but generating natural language for objects. It does not
need to define a list of categories as shown in Fig. 2 (b), and can provide more
information about an object as shown in Fig. 1.

Given an input image, GRiT localizes all presented objects and generates
object descriptions for each of them in free-form. Specifically, GRiT consists of
three main components: a visual encoder, a foreground object extractor, and a text
decoder. The visual encoder extracts image features, on which the foreground
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(a) Closed-set Frameworks 

The object is  (C) ?

(A) dog 

sim=0.5

(object detectors, open-vocabulary object detectors)

(B) zebra 

(b) GRiT: Open-set Framework

(C) giraffe (D) cat 

sim=0.7 sim=0.8 sim=0.5

The object is gi #raf #fe ?

Fig. 2: GRiT vs. Closed-set object recognition models. Closed-set approaches
classify objects among a predefined set of categories by choosing the class embedding
that has the maximum similarity to the given object feature. In contrast, GRiT directly
generates text tokens to spell the words that describe the object. In this example,
“giraffe” is spelled by three text tokens generated by GRiT.

object extractor detects foreground object regions and crops object features.
Taking object features as input, the text decoder autoregressively generates
text tokens to describe the given object, where each word is tokenized by one
or multiple text tokens (a.k.a. sub-words) by the WordPiece [28, 34] model.
In addition to simple noun category names (e.g ., cat, giraffe), GRiT can also
generate rich descriptive sentences, providing more information as shown in
Fig. 1. In this way, GRiT achieves general object understanding that can unify
various region-level tasks into a single framework, e.g ., object detection and dense
(object) captioning.

GRiT is an open-set object understanding framework which means it has
unlimited words to describe objects, as any word can be represented by a
combination of text tokens. We note that our open-set object understanding
is different from the open-vocabulary object detection, where the former is to
generate texts for objects while the latter is to classify objects into categories. The
open-set object understanding is more universal and more challenging than the
closed-set object detection. It is also more friendly as data grows and evolves, as
it continuously learns new object concepts without adapting model architecture.

With the same architecture, GRiT can train on the short-description task
(e.g ., object detection) and the long-description task (e.g ., dense captioning)
separately or together. Joint training on short- and long-description tasks without
any adaptations can confuse the model to generate descriptions for the correct
task. To solve this issue, we add a special token [task] to control GRiT’s text
decoder to predict task-specific object descriptions.

In summary, this paper presents a generative and open-set object understand-
ing framework. On Visual Genome dense captioning [16], GRiT obtains 15.5 mAP
which surpasses standard (non-LLM) dense captioning models. On COCO object
detection [22], GRiT achieves 60.4 AP, which is comparable to the closed-set
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Fig. 3: Overview of GRiT. Given an input image, the visual encoder extracts image
features, from which the foreground object extractor predicts object boxes. Object
features are derived by cropping image features using object boxes. Taking object
features as input, the text decoder autoregressively generates text tokens one-by-one in
the task-i style, instructed by a begin token [task]i.

standard object detectors. We hope our work can inspire more future works on
this generative object understanding.

2 Related Work

Continuous progress has been made in standard object detection [1–3, 27, 40,
48]. Despite the excellent object localization and classification accuracy, these
frameworks are designed to recognize a fixed set of object categories.

Recent open-vocabulary object detection [12, 18, 44, 45] breaks the fixed
category limit. The goal is to recognize object categories that are not in object
detection datasets, using the knowledge learned from large-scale vision and
language data. For example, RegionCLIP [44] exploits the CLIP [26] trained
on hundreds of millions of image-text data to match region features with text
embeddings, where the knowledge in CLIP helps to annotate region-text pairs
not labeled in object detection data. ViLD [12] makes use of the CLIP language
embeddings and distills the CLIP vision knowledge into its own visual backbone.
More straightforwardly, Detic [45] treats the full image as a whole box and
learns directly from the large-scale image labels. These open-vocabulary object
detectors can vary the size of the category set and recognize more categories
beyond object detection datasets. However, the category set still needs to be
closed and predefined by humans in order to construct a contrastive matrix with
the object regions and have the model choose a category from it to label the
object. Besides, they do not show the ability to generate descriptive sentences.

In this work, we are inspired by the generative image-to-text transformer [14,
33,38]. The generative methods produce free-form words and sentences to achieve
various image understanding tasks like image captioning, question answering, and
classification. Our GRiT extends the spirit to region-level object understanding,
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aiming to generate object descriptions in free-form with not only class names
but also rich descriptive sentences. GRiT inherits the open-set feature of the
generative methods, which does not need humans to define a category list and
just spells out object descriptions on its own.

In contrast to standard dense captioning models [15, 19, 30, 36, 37], GRiT
is a general object understanding framework unifying both object detection
and dense captioning. In architecture, GRiT is advanced by the simple yet
successful generative image-to-text transformer. This enables our state-of-the-art
dense captioning performance without the need for complex object relation and
context modeling as in previous dense captioning models. Recent multimodal
large language models [42, 43] also show excellent performance in captioning
objects. Different from LLM-based models, GRiT’s language model part is small
and is trained from scratch (for the MAE pertaining scheme described in Sec. 4.1).

3 GRiT

3.1 Architecture

As illustrated in Fig. 3, GRiT comprises three major components: a visual encoder,
a foreground object extractor, and a text decoder. GRiT is end-to-end in both
training and inference.
Visual Encoder. Given an input image, a visual encoder is applied to obtain
image features. Our visual encoder consists of a backbone network, and a feature
pyramid that is proven helpful for object detection [20,21]. Following the image-to-
text transformer, we use ViT [10] as the backbone network for main experiments.
Different from image tasks, object understanding favors high-resolution input
images, which can consume huge GPU memory in training ViT’s self-attention.
Therefore, we divide ViT’s feature maps into non-overlapped windows with the
size of 14× 14, and compute self-attention only within the windows following [20].
A relative positional encoding is added during the window self-attention as in [23].
To exchange information across the windows, four evenly selected ViT blocks
keep the original ViT self-attention scheme which computes global self-attention
across all positions on the feature map. ViT extracts image features throughout
in a single scale without hierarchies, e.g ., 1

16× image size, which is however
incompatible with vanilla FPN [21]. To build feature pyramid on top of ViT, we
follow the idea of simple feature pyramid [20] that produces multi-scale features
by up/down-sampling from the last feature map of ViT. In this way, we construct
five scales of feature maps { 1

8 ,
1
16 ,

1
32 ,

1
64 ,

1
128} for our feature pyramid.

Foreground Object Extractor. On top of the feature pyramid, our foreground
object extractor detects foreground objects with bounding boxes and objectness
scores. The foreground object extractor borrows the architecture of two-stage
object detectors [1, 27,46], comprised by a proposal generator and an RoI head.
The proposal generator produces a large amount of proposal boxes. Then, the
RoI head refines the box position and predicts an objectness score indicating the
confidence that the box contains a foreground object. Thus, it is a binary classifier
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in the RoI head for foreground/background classification, which is different from
the multi-category classifier in standard object detectors. Lastly, the foreground
object extractor removes highly overlapped boxes by NMS and the boxes with
low objectness scores.

Text Decoder. Our text decoder is the core part of GRiT for understanding
and describing objects in free-form. The text decoder takes object features as
input and generates text tokens to describe the given object. To derive object
features, we use object boxes produced by the foreground object extractor to
crop image features to a fixed size, e.g ., 14× 14, and then flatten them into 1D
vectors. Object features encode not only object appearance but also image context
thanks to the global self-attention blocks in ViT. This is important for dense
captioning task where object descriptions may contain context descriptions in
other image regions as well, as shown by the example of “young girl watching the
horse” in Fig. 1. To convert words into text tokens, we use the BERT’s WordPiece
tokenizer [9, 28, 34], where any word can be represented by a combination of text
tokens from the overall 30,522 tokens of vocabulary. For example, the class name
“giraffe” in COCO is converted into three text tokens “gi”, “#raf”, and “#fe”.

The text decoder is achieved by a 6-layer transformer following the image-
to-text transformer GIT [33]. Our text decoder, equipped with a begin token
[task], produces object descriptions by generating text tokens one-by-one in
an autoregressive way until an end token [EOS]. In each step, object features
and previously generated tokens, including the begin token, are concatenated as
input to the transformer. Both object features and text tokens are embedded into
the same dimensions before feeding into the transformer, where we also add a
positional encoding to the text embeddings. A seq2seq attention mask is applied
to make sure text tokens are attending to object features and only previous
text tokens, and object features are only attending to themselves. At the end
of the transformer, a linear layer projects the text embeddings into 30,522 text
token logits, and a softmax is applied afterward to yield the score for each text
token. The text token with the highest score is kept. To predict the class name
“giraffe”, GRiT needs to consecutively generate the three tokens “gi”, “#raf”,
and “#fe”. Thanks to this flexible application of text tokens, GRiT achieves an
open-set object understanding that can describe whatever we provide in training.

Different tasks may have varied styles of object descriptions. For example,
object detection task interprets objects by short class names, while dense cap-
tioning task describes objects with rich descriptive sentences including object
attributes, quantity, or actions. Jointly training them can confuse the model in
inference, not knowing which style of object descriptions it should generate. To
solve this issue, we define a set of begin tokens {[task]i}Ti=1 for jointly training
tasks with different styles of object descriptions. T is the number of different
styles of tasks. In training, we select [task]i as the begin token when the object
description annotation is from the task-i. In this way, during inference, [task]i
can inform the trained model to generate descriptions in the task-i style.
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3.2 Training

The training loss of GRiT consists of two major parts L = Lo + Lt, where Lo

and Lt are for the foreground object extractor and text decoder, respectively.
Lo is the same as the standard object detector loss that includes box losses and
classification losses for both the proposal generator and RoI head. Lt is achieved
by the language modeling (LM) loss as follows:

Lt =
1

N + 1

N+1∑
i=1

CE(yi, p(yi|o, y0,...,i−1)), (1)

where p(yi|o, y0,...,i−1) is the predicted score for the i-th text token given the
object features o and previously generated text tokens y0,...,i−1. N is the number
of text tokens in the given object description. y0 and yN+1 are the begin token
and end token, respectively. CE is the cross-entropy loss with a label smoothing
of 0.1. Note that the text decoder loss Lt is only imposed on foreground objects
predicted by the foreground object extractor.

3.3 Inference

Beam Search. Standard object detectors may yield multiple object class labels
for one box to improve performance. To enable a similar mechanism in GRiT,
we employ a beam search algorithm in the text decoder, which is commonly used
in image captioning. Specifically, we select the top k text tokens in terms of their
scores when generating the first token of object description in addition to the
begin token, where k is the beam size. The text decoder then continues to decode
k object descriptions following these k text tokens. In experiments, we find k = 3
is sufficient for object detection on COCO. We do not use beam search for dense
captioning.
Object Scoring. GRiT rates object predictions by objectness score from the
foreground object extractor and an object description score from the text decoder.
Since an object description may contain multiple text tokens, its score is computed
by averaging the scores of all text tokens. The final object confidence score is
computed by multiplying the square roots of these two scores.

4 Experiments

To evaluate GRiT’s general object understanding capability, we experiment on
the COCO dataset [22] for object detection task and the Visual Genome (VG)
dataset [16] for dense (object) captioning task.
COCO. COCO contains 80 object classes and all class names are nouns. Each
class name in COCO is encoded by 1∼3 text tokens. We train on COCO 2017
train and evaluate on COCO 2017 val and 2017 test-dev. Evaluation Metric:
Object detection is evaluated by COCO box AP and AR. As our approach
imposes no hard constraint in generating the class names, we remove boxes whose
class names are not in COCO during evaluation.
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Visual Genome. We use VG v1.0 train set and test set for training and
evaluation. Following the original paper [15], we pre-process VG data to discard
object descriptions with more than 15 words and convert symbols into English
words, e.g ., ◦ → “degree”. The pre-processing leaves 77,396 images for the train
set and 5,000 images for the test set. There are ∼4 million annotated region
descriptions with over 50,000 unique words in the train set. The annotations
contain some typographical mistakes like “tranportation” → “transportation”,
which we don’t perform further processing as GRiT can be fault-tolerant to some
extent. Different from COCO object detection, object descriptions in VG have
adjectives and verbs in addition to nouns, describing object attributes, actions,
etc. Evaluation Metric: Similar to object detection metric, dense captioning
measures an mAP across a range of thresholds for both localization and description
accuracy, following [15]. For localization, it uses box IoU thresholds of .3, .4, .5,
.6, .7. For language description, a METEOR score [17] with thresholds of 0, .05,
.1, .15, .2, .25 is used. The mAP is averaged by the APs across all pairwise of
these two types of thresholds.

Since COCO and VG have inconsistent box annotations as we will discuss
in Sec. 4.6, we train GRiT separately on these two datasets in comparison with
state-of-the-arts and ablations, in order to fairly compare with other single-task
methods and reliably study GRiT’s properties.

4.1 Implementation Details

Visual Encoder. We employ ViT-B, ViT-L, and ViT-H [10] as the backbone
of the visual encoder unless otherwise specified. The input image patch size is
16×16. A layer-wise learning rate decay [5,20] of 0.7/0.8/0.9 is set for ViT-B/L/H.
For feature pyramid, the feature maps of { 1

8 ,
1
16 ,

1
32} scales are constructed in

the way of simple feature pyramid [20]. The feature maps of { 1
64 ,

1
128} scales are

built by downsampling from that of 1
32 scale following [46].

Foreground Object Extractor. We use CenterNet [47] as the proposal genera-
tor. It generates 2000 and 256 proposal boxes in training and testing, respectively.
The RoI head is achieved by a 3-stage Cascade R-CNN [1]. The object box used
by the text decoder is predicted from the last stage. The number of classes of each
stage classifier is set to 2, i.e., foreground and background, where our objectness
score is computed by averaging the foreground scores of all the three stages. For
COCO object detection, soft NMS is applied in testing, and a mask head is added
for multi-task training.
Training. In experiments, we explore two pre-training schemes: 1) MAE pre-
training: The ViT backbone is initialized from the self-supervised MAE [13]
trained on ImageNet-1K [8], while the rest of the model parameters are randomly
set; 2) GIT pre-training: The ViT backbone and text decoder are initialized from
the pre-trained image-to-text transformer GIT [33] and the rest are randomly
set. We use MAE pre-training for most experiments by default unless otherwise
specified. For the model initialized from GIT pre-training, we finetune on the
downstream tasks by 90k iterations with a training batch size of 32. We find
MAE pre-training can alleviate overfitting and benefit from more training epochs
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Method mAP
JIVC [36] 9.31
ImgG [19] 9.25
COCD [19] 9.36
COCG [19] 9.82
CAG-Net [37] 10.51
TDC+ROCSU [30] 11.49
ControlCap [43] 18.2
GRiTMAE (Ours) 15.48
GRiTGIT (Ours) 15.52

Table 1: Comparison with state-of-the-art dense captioning models on
Visual Genome. GRiTMAE refers to the model initialized by MAE pre-training
scheme. GRiTGIT is initialized from the GIT model that is re-pretrained on CC3M and
CC12M [31] datasets removing the VG dataset. Our results are based on ViT-B. Gray
color indicates the LLM-based model.

as discussed in [20]. Thus, for the model initialized from MAE pre-training, we
increase finetuning iterations to 180k and batch size to 64. We use the AdamW
optimizer [24] with a learning rate of 8× 10−5 and the cosine learning rate decay
schedule. In training, the input image size is 1024× 1024 pixels resized by the
large-scale jittering [11]. The testing image size is 800× 1300 pixels.

4.2 Comparison to State-of-the-Arts on VG

We evaluate the dense captioning performance in Table 1. GRiT achieves state-
of-the-art performance compared to standard dense captioning models but loses
to ControlCap [43] which is an LLM-based model.

4.3 Comparison to State-of-the-Arts on COCO

As shown in Table 2, we compare GRiT with the state-of-the-art object detectors
on COCO. Generally, all the methods use the visual backbone pre-trained on
ImageNet (IN). To deliver the best performance, some models are also finetuned
on extra object detection datasets, e.g ., Object365 [29], before finetuning on
COCO. The results of the state-of-the-art object detectors are cited from their
best model settings. Therefore, some listed models may be achieved in different
training and testing configurations than others. For example, GLIPv2 [41] makes
use of Object365 plus four object detection datasets [41], image-text datasets
CC [31] and SBU [25], and grounding datasets GoldG [41]. DyHead [7] utilizes a
larger input image size with 2000 pixels at maximum. CenterNet2 [46] adopts
BiFPN [32], DCN [6], and a larger input image size of 1560×1560 pixels. GRiT
performs comparably with the state-of-the-art closed-set object detectors, which
is remarkable in view of the challenge of our open-set way. It demonstrates GRiT’s
open-set generative region-to-text model can be a new promising formulation for
object detection that is previously solved in the closed-set way.
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2017 val 2017 test-devModel Backbone AP AP50 AP75 AP AP50 AP75

Closed-Set framework:
Deformable DETR [48] ResNeXt-101 - - - 50.1 69.7 54.6
EfficientDet-D7x [32] EfficientNet-B7 54.4 - - 55.1 74.3 59.9
CenterNet2 [46] Res2Net - - - 56.4 74.0 61.6
HTC++ [3,23] Swin-L 57.1 - - 57.7 - -
DyHead [7] Swin-L 58.4 - - 58.7 77.1 64.5
ViT-Adapter-L [4] ViT-L 58.4 - - 58.9 - -
Soft Teacher∗ [35] Swin-L 60.1 - - - - -
ViTDet [20] ViT-H 60.4 - - - - -
DINO∗ [40] Swin-L 63.1 - - 63.2 - -
GLIPv2† [41] Swin-H - - - 60.6 - -

Open-Set framework:
GRiT (Ours) ViT-B 53.6 71.6 58.2 53.8 71.8 58.7
GRiT (Ours) ViT-L 56.3 73.8 61.4 56.6 74.5 61.8
GRiT (Ours) ViT-H 58.8 76.6 64.4 59.0 76.9 64.5
GRiT∗ (Ours) ViT-H 60.3 78.1 65.7 60.4 78.1 66.0

Table 2: Comparison with state-of-the-art object detectors on COCO. All
results are reported under single-scale testing. The reference results are cited from the
best-performing models in their papers. ∗ indicates the model is pretrained on Object365.
† indicates GLIPv2 is pretrained on Object365, FourODs, GoldG, and CC15M+SBU.

4.4 Ablation Studies

In this section, we perform ablation experiments on object detection task to
study GRiT’s properties.
GRiT vs. Closed-set Object Detector: GRiT achieves object detection in
an open-set way, which is more difficult than the closed-set way of standard
object detectors. To measure the performance gap between these two strategies,
we build a closed-set object detector by replacing GRiT’s text decoder with the
closed-set multi-category classifier as used in standard object detectors. The
rest of the model settings are exactly the same as GRiT’s settings. As shown in
Table 3b, GRiT is comparable to the closed-set object detector with a 0.8 AP
gap, which once again validates GRiT’s open-set framework is promising to be a
new formulation for object detection.
Object Feature Size: We experiment with different sizes of object features
input to the text decoder. As shown in Table 3a, 49 feature vectors achieve similar
performance to 196 feature vectors, which indicates the text decoder is robust to
the number of input object features.
Beam Search: Standard object detector outputs multiple class labels for one
box by its multi-category classifier. Similarly, we use beam search to output
multiple class name texts for each box as described in the method section. As
shown in Table 3c, beam search improves object detection metric, especially for
recall, and beam size=3 is a good trade-off between accuracy and inference time.
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Size AP AP50 AP75

7× 7 50.8 68.4 55.6
14× 14 50.9 68.6 55.6

(a) Object feature size. GRiT is not sensi-
tive to the number of object features.

Method AP AP50 AP75

Closed-set OD 51.7 70.0 56.4
GRiT 50.9 68.6 55.6

(b) GRiT vs. Closed-set object detector.
Closed-set OD follows the same setting as
GRiT but replaces the text decoder with a
closed-set classifier as in standard OD.

Beam size AP AR@1 AR@10
1 50.0 37.0 61.4
2 50.8 38.0 63.6
3 50.9 38.3 64.0
5 50.9 38.4 64.1

(c) Beam search. Beam search
improves especially recall by la-
beling one box with more than
one class name.

Training progress 0-60k 60k-80k 80k-90k AP

Training
object classes

60 60 80 49.1
60 80 80 50.4
80 80 80 50.9

(d) Incremental training. GRiT seamlessly learns new
object classes that are added in the middle of training.

Beam size Objectness Description AP AR@1 AR@10

1 ✓ 49.1 36.9 61.3
✓ ✓ 50.0 37.0 61.4

3 ✓ 19.7 32.3 61.3
✓ ✓ 50.9 38.3 64.0

(e) Object scoring. Object description score is crucial to remove false alarms when there
is more than one label for a box.

Table 3: Ablation studies on COCO 2017 val. All models are based on ViT-B trained
by 90k iterations with a batch size of 32.

Object Scoring: To rate object predictions, we combine both objectness score
from the foreground object extractor and object description score from the text
decoder. GRiT is always equipped with objectness score due to its function of
removing background boxes. As shown in Table 3e, description score improves 0.9
AP when beam size=1. However, the model without description score fails when
beam size=3, i.e., outputting three class names each box. The reason is that all
the three classes share the same confidence score though at least two of them are
false positives. This has a mild impact on recall but leads to significantly worse
precision and AP.

Incremental Training: GRiT is open-set and capable of generating unlimited
number of words. As data evolve, one can add new object classes or concepts in
the middle of training without adapting any architecture. We simulate this use
case on COCO in Table 3d, where we start training with 60 classes and add the
remaining 20 classes in the middle of training. Compared to the model that is
trained on all classes throughout, we achieve similar results when adding the rest
of the classes in the last one-third of training. GRiT performs reasonably even
in the case where we supplement the remaining classes in the last one-ninth of
training.
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Pre-training
Method Task (Data) Parameters Backbone AP

GIT [33] Language Modeling
(Image-text pairs)

backbone,
text decoder

ViT-B 52.0
ViT-L 52.7

Coswin-H 54.8

MAE [13]
Image

Reconstruction
(ImageNet-1K)

backbone
ViT-B 53.6
ViT-L 56.3
ViT-H 58.8

Table 4: GRiT pre-training. MAE pre-training outperforms GIT pre-training. GIT
adopts Coswin-H [39] as the visual backbone, so we adjust our backbone accordingly.
Results are evaluated on COCO 2017 val.

Fig. 4: Zero-shot object understanding predictions.

Pre-training: We study GRiT with different pre-training schemes. As shown
in Table 4, MAE pre-training shows better performance than GIT pre-training.
MAE pre-training is to recover the masked patches in the image, which may
exhibit a stronger localization capability helping object detection task. GIT pre-
training focuses more on the image-level representation and language modeling,
which shows slightly better performance on dense captioning task, as in Table 1.

4.5 Zero-shot Object Understanding

GRiT follows the image-to-text transformer’s design for the network structure
of the visual encoder backbone and text decoder (GIT [33] here in this paper).
We explore whether GRiT can achieve zero-shot object understanding by simply
using the image-to-text transformer’s trained parameters without finetuning
on object description annotations. To this end, we initialize GRiT by the GIT
model fine-tuned on COCO image captioning task. Then, we finetune our feature
pyramid and foreground object extractor on COCO detection data (no use of
the class names) while keeping GIT’s parameters fixed, such that GRiT is able
to generate object boxes. To align with GIT’s parameters, object features are
cropped from the last feature map of the visual backbone rather than the feature
pyramid. This zero-shot object understanding result is shown in Fig. 4. We see
that the model generates various object-level descriptions for different regions in
the same image though GIT is trained on the image-level description task. While,
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Testing TaskTraining Task ObjectDet DenseCap
ObjectDet, DenseCap 50.7 14.37

ObjectDet 53.8 -
DenseCap - 15.48

Table 5: Jointly vs. Separately training object detection and dense captioning.
Object detection and dense captioning are evaluated on COCO 2017 test-dev and VG
test, respectively. All experiments are based on ViT-B.

[Object Detection] [Object Detection]

[Dense Captioning] [Dense Captioning]

[BOS] [BOS]

Fig. 5: Predictions from the models jointly trained on object detection and
dense captioning. Row 1&2: the model using two begin tokens [ObjectDet] and
[DenseCap]. Row 3: the model using only one begin token [BOS]. To generate object
descriptions in a specific style, it is necessary to instruct the model with a unique begin
token for that style.

we also notice in experiments that there are images for which this zero-shot
scheme does not work well. We hypothesize the issue is that GIT’s text decoder
parameters do not well recognize the cropped features as GIT’s text decoder is
trained with the entire image’s features as input.
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4.6 Joint Object Detection and Dense Captioning

Since GRiT is a general object understanding model and can generate any style
of object descriptions in the same framework, we jointly train a model on both
object detection (short-description task) and dense captioning (long-description
task). As shown in Table 5, we compare the jointly trained model with two
models that are trained on each task separately. We find that the separately
trained model outperforms the jointly trained model. The main cause is that
the COCO and VG datasets are not in consensus about box annotations. All
boxes in COCO are specific objects, while VG has lots of “scene boxes” covering
a whole scene and describing multiple objects together. This leads to many false
positives when testing COCO object detection. For example, as shown in Fig. 5,
there are several large boxes predicted by the model focusing on a whole scene
rather than a specific object. These boxes are regarded as false positives in COCO
but they are meaningfully annotated in VG, for example, “a beach with trash”.
This annotation style difference can also cause low recall when testing VG dense
captioning as those “scene boxes” are suppressed during training when images
come from COCO dataset. We believe GRiT is capable of achieving both tasks
in the same trained model without performance drops if the box data have no
disagreement.

As discussed in the method section, we instruct GRiT to generate task-specific
descriptions by the begin tokens {[task]i}Ti=1 when jointly training the tasks
with different styles of descriptions. To demonstrate this adaptation is the key
to multi-task object understanding in one trained model, we compare to the
model that is jointly trained on both tasks using only one begin token [BOS]. As
shown in the last row of Fig. 5, the model with only [BOS] token cannot generate
consistent object descriptions in the same image. Some objects are described in
the way of dense captioning, while others are simply described by COCO class
names. We also notice that COCO-background regions are more likely described
by descriptive sentences because such regions only exist in the VG dataset during
training. In contrast, the model informed by [task]i token correctly generates
descriptions in the style we request.

Lastly, we inspect the generated captions by the joint trained model on 5,000
COCO test set images. We find that 38% of the object instances produced a
caption description that is outside COCO vocabulary and without any COCO
vocabulary words.

5 Conclusion

This work presents a general and open-set object understanding framework,
GRiT. GRiT formulates object understanding as region-text pairs, which is
capable of unifying various region/object-level tasks in a single paradigm. GRiT
is end-to-end from image feature extraction to foreground object detection to
object description generation. Extensive experiments on object detection and
dense captioning demonstrate the effectiveness and generality of GRiT.
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