
Interaction-centric Spatio-Temporal
Context Reasoning for Multi-Person

Video HOI Recognition

Yisong Wang1∗ , Nan Xi2∗� , Jingjing Meng3 , and Junsong Yuan2

1 School of EECS, Peking University
2 Department of Computer Science and Engineering, University at Buffalo

3 Amazon Inc.
wys05y98@gmail.com, {nanxi, jsyuan}@buffalo.edu, jingjing.meng1@gmail.com

Abstract. Understanding human-object interaction (HOI) in videos rep-
resents a fundamental yet intricate challenge in computer vision, requir-
ing perception and reasoning across both spatial and temporal domains.
Despite previous success of object detection and tracking, multi-person
video HOI recognition still faces two major challenges: (1) the three facets
of HOI (human, objects, and the interactions that bind them) exhibit in-
terconnectedness and exert mutual influence upon one another. (2) the
complexity of multi-person multi-object combinations in spatio-temporal
interaction. To address them, we design a spatio-temporal context fuser
to better model the interactions among persons and objects in videos.
Furthermore, to equip the model with temporal reasoning capacity, we
propose an interaction state reasoner module on top of context fuser.
Considering the interaction is a key element to bind human and object,
we propose an interaction-centric hypersphere in the feature embedding
space to model each category of interaction. It helps to learn the dis-
tribution of HOI samples belonging to the same interactions on the hy-
persphere. After training, each interaction prototype sphere will fit the
testing HOI sample to determine the HOI classification result. Empiri-
cal results on multi-person video HOI dataset MPHOI-72 indicate that
our method remarkably surpasses state-of-the-art (SOTA) method by
more than 22% F1 score. At the same time, on single-person datasets
Bimanual Actions (single-human two-hand HOI) and CAD-120 (single-
human HOI), our method achieves on par or even better results com-
pared with SOTA methods. Source code is released at the following link:
https://github.com/southnx/IcH-Vid-HOI.
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Fig. 1: Examples of multi-person video HOI. Three categories of interactions are pre-
sented, including co_working, cheering, hair_cutting.

1 Introduction

Video-based Human-Object Interaction (HOI) recognition aims to identify the
interactions occurring between human and object entities within video frames.
Precisely recognizing HOIs in real world scenarios is essential for a bunch of
applications, such as assisting patients by recognizing daily activities and pre-
dicting pedestrian movements to avoid accidents for autonomous vehicles.

Most existing HOI recognition research focus on static images [19, 36], with
much less attention on video-based HOI recognition. Video-based HOI recogni-
tion is more demanding than image-based HOI recognition due to the necessity of
comprehending complex spatio-temporal dynamics and reasoning about multi-
human and multi-object interaction combinations. The complexity is further ex-
acerbated when dealing with multi-person circumstances, as examples shown in
Fig. 1. In such cases, various human and object entities mutually influence each
other, resulting in intricate interdependencies within the scene. Additionally, the
three components (human, object and interactions that the entities are involved
in) of HOI exhibit interwind structures, e.g., the possible interactions that can
occur within a scene given a human and an object. However, current video HOI
recognition methods [23,27] do not fully explore such inherent structural nature
of HOI components. Instead, they often opt for disentangled representations for
each component, which may bring suboptimal representation capabilities.

To overcome the aforementioned limitations, we introduce an interaction-
centric spatio-temporal context reasoning approach for representing video HOIs.
For the purpose of enhancing the awareness of complex HOI structures in our
representations, we introduce the Context Fuser (CF), which encodes both en-
tity representations and interaction representations. Moreover, to empower our
model with the ability to reason about interaction state transitions across video
frames, we propose the Interaction State Reasoner (ISR) module for generating
interaction representations. In addition, we employ a bidirectional Gated Re-
current Unit (BiGRU) to model temporal dynamics across video frames. This
multi-level representation learning framework not only facilitates effective ex-
ploration of the interdependencies among structured HOI components but also
empowers the model with interaction reasoning capabilities in both spatial and
temporal domains. To compute the probability of an HOI in the scene, we intro-
duce an interaction-centric hypersphere. This approach leverages the concept of
a hypersphere, where the interaction is located at its center, while the human
and object entities involved in that interaction are situated on the hypersphere’s
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surface. We assume that human-object entities belonging to each interaction
class are located on their respective hyperspheres, specific to that interaction
class.

Concretely, we generate context-rich and reasoning-aware video HOI repre-
sentations through three key components: the Context Fuser (CF), Interaction
State Reasoner (ISR) and Bidirectional GRU (BiGRU). The CF module inte-
grates context information from human-object entities and interactions. It com-
prises three fuser blocks for humans, objects, and interactions. The Object Fuser
Block processes local video frame data, enhancing object features. The Interac-
tion Fuser Block combines human and object representations with interaction-
specific characteristics. Additionally, in multi-person scenes, the Human Fuser
Block captures human representations influenced by others. This approach fos-
ters comprehensive HOI representations via effective context fusion. To facilitate
interaction reasoning, we place the ISR module on top of the context fuser mod-
ule, yielding entity representations capable of capturing interaction transition
dynamics. These entity representations are then input into the BiGRU module to
model temporal dynamics across video frames, thereby ensuring a comprehensive
understanding of the evolving context and interactions within the video data. Fi-
nally, we determine interaction classes in each frame with the interaction-centric
hypersphere, computing the probability of human-object entities belonging to
specific interaction classes.

We assess our model’s performance on three video-based HOI datasets: MPHOI-
72 [27] (multi-person), Bimanual Actions [4] and CAD-12 [12] (single-person).
Our results highlight our model’s superiority in multi-person scenarios, achieving
an impressive over 22% F1 score improvement over the current state-of-the-art
(SOTA). In single-person scenarios, our method delivers on par or even better
performance compared to the current SOTA method. Our major contributions
are summarized as follows:

– To represent inherent HOI manifold structures, we propose an interaction-
centric hypersphere representation scheme. This scheme explicitly guide the
process of learning intrinsic structural nature of HOI and elucidates the
interdenpendencies among its components.

– To learn context-rich and reasoning-aware entity representations, we intro-
duce context fuser and interaction state reasoning modules. This enhance-
ment results in entity representations that are highly suitable for video-based
HOI tasks.

– Extensive experiment results showcase that our method achieves SOTA per-
formance with a huge improvement of more than 22% F1 score over existing
methods in multi-person scenario. Additionally, our model achieves compet-
itive results in single-person cases compared to SOTA method.

2 Related works

HOI detection in images: HOI detection in images aims at understanding in-
teractions in images between humans and objects. Different methods have been
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proposed in previous studies. Some works propose Convolutional Neural Net-
works (CNN)-based methods which can be further divided into one-stage meth-
ods [9,17,37] and two-stage methods [5,7,16,33]. However, these methods usually
lack of ability to capture global context information. Recently, Transformer-
based models [8,10,31,36] became the main approach for the HOI task. Follow-
ing the architecture of DETR, these models achieved superior performance on
HOI detection. Moreover, some works also utilize graph [25] and interactiveness
field [19] to achieve better performance. These various approaches to image HOI
provide the fundamentals for video HOI recognition.
HOI recognition in videos: Video HOI recognition is the foundation of many
real-world applications, including understanding surgical activities in the op-
eration room [34] and guiding 3D human reconstruction [20, 21]. Video-based
HOI recognitions have to deal with both spatial and temporal reasoning. Before
the use of neural networks, some early studies formulated this task using the
Markov model [12] to utilize temporal cues. In [24], HOI hotspots in videos are
learned in a novel approach, with two networks trained jointly to capture spatial
regions where actions happen. While [6] focuses on visual relation prediction
in open-vocabulary with pretrained visual-language models. Recent works have
used Recurrent Neural Networks (RNN) combined with Graph Neural Networks
(GNN) [23, 26, 27, 30] to predict human-object relations in videos. Inspired by
ViT [3], some works also propose Transformer-based methods to reason spa-
tial relations better [32]. However, RNN-based models usually require complex
training strategies or long training time in order to achieve the best performance.
Moreover, when multiple persons are involved in an activity jointly, these meth-
ods lack the ability to model their collaboration, resulting in poor performance
when the interactions are performed by multiple persons.
Hyperspheres for class representation: Hyperspheres have been demon-
strated to be an effective approach to model class representation [2, 22]. Ge-
ometrical modeling strategy has been proposed in [2], where the effectiveness
has been confirmed. This approach proves advantageous for capturing and rep-
resenting enriched class-level information, particularly well-suited for creating
measurements in Euclidean space. Consequently, it is naturally adaptable to
structured prediction tasks.

3 Motivation

Video HOI recognition task involves identifying both the human and object en-
tities engaged in an interaction across a sequence of video frames. This task
encompasses spatial and temporal aspects, as it requires understanding the re-
lationships between humans, objects, and their interactions over time. However,
current methods for video HOI recognition often neglect this crucial dependency
structure, resulting in the separation of learned representations associated with
humans, objects, and their interactions, ultimately compromising their represen-
tational accuracy. To address this issue, we propose a novel approach featuring
a context fuser and an interaction state reasoner to capture spatio-temporal
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Fig. 2: Model Overview. Each video frame is applied with a backbone for feature
extraction. Subsequently, a context fuser and interaction state reasoner is employed
for learning interaction representations zI and human-object entity representations
{ẑtE}Tt=1. Bidirectional GRU is further utilized to model temporal dynamics across
video frames. The final predicted interaction probability {ut}Tt=1 is computed from the
interaction-centric hypersphere. The dimension of each hypersphere is d, which is the
same with the feature dimension in our model.

contextual representations. Additionally, we introduce an interaction-centric hy-
persphere to represent HOI manifold structure and model the inter-dependency
among predicted humans, objects, and interactions.

4 Method

4.1 Problem formulation

For a video dataset V, given a video clip V ∈ V containing T video frames
{v1, ..., vT }, video HOI recognition aims to predict the temporal segmentation
of interactions between human and object entities across all the video frames.
Formally, we aim to learn an HOI recognition model M that outputs the segmen-
tation of human’s sub-activity {sn}Nn=1 in each frame, where N is the number
of human sub-activity segments. Each segment sn is represented as an interval
from its start time tn to end time tn+1: sn = [tn, tn+1). The start and end time
of each segment are determined from interaction probability prediction {ut}Tt=1

of each frame, where ut ∈ RK , K is the number of possible interaction classes.



6 Wang et al.

4.2 Model Design

In the following section, we introduce our interaction-centric hypersphere rea-
soning model for video HOI recognition in detail. As shown in Fig. 2, our major
idea is to construct a hypersphere to represent each HOI in the scene. For each
hypersphere, the interaction locates at the center of the hypersphsere, while the
corresponding human-object entity belongs to that interaction locates at the
surface of the hypersphere. We construct Context Fuser (CF) module to learn
context-rich human-object entity representations. For the aim of enabling model
with reasoning ability over interaction state transitions, we propose Interaction
State Reasoner (ISR) to reason on whether the current interaction will be con-
tinued or stopped. To model the temporal dynamics of HOI in videos, we update
human-object entity representations {ẑtE}Tt=1 along the temporal domain with
bidirectional GRU (BiGRU). Finally, predicted interaction class probability ut

of each frame is computed from the interaction-centric hypersphere.

Context fuser For a sequence of video frames {vt}Tt=1, we follow 2G-GCN [27]
to extract feature of humans and objects from backbone network. The extracted
human features zH ∈ Rd contain both bounding box information and skeleton
keypoint information, where d indicates the feature dimension. Object features
zO ∈ Rd contain only bounding box information.

We design a context fuser (CF) module shown in Fig. 3 to generate human-
object entity representations {ztE}Tt=1 based on human, object and contextual
information. In multi-person circumstances, CF contains object fuser block, in-
teraction fuser block and human fuser block sequentially. First, we design an
object fuser block to incorporate object representations in local temporal regions
into current object representations, generating learned object representation ẑO1

and ẑO2 :

ẑO1
= FFN(SA(Q = ztO1

;K,V = zt̄O1
) + ztO1

),

ẑO2 = FFN(SA(Q = ztO2
;K,V = zt̄O2

) + ztO2
),

(1)

where SA indicates self-attention, FFN is feed forward network, ztO1
∈ Rd and

ztO2
∈ Rd are the initial object features, while zt̄O1

∈ R20d and zt̄O2
∈ R20d are

stacked object features from a local time window, t̄ ∈ [t − 10, t + 10). Sub-
sequently, for all the K possible interactions {Ii}Ki=1 as shown in Fig. 3, each
interaction class Ii is prompted as a sentence s =“The human is [interact]ing
in the scene.”, where [interact] indicates the specific interaction class. Then
the sentence is applied with the text encoder (FT ) of large-scale vision-language
model CLIP [28] to initialize the interaction feature zI = FT (s) ∈ Rd. We also
generate context feature zC ∈ Rd to represent the semantic information of each
frame. Specifically, we extract frame caption ci from video frame i(i = 1, ..., T )
with BLIP [15] model and apply the caption with CLIP model to extract text
embedding. In order to adapt the human (zH1

, zH2
) features, object (zO1

, zO2
)

features and context feature (zC) to the specific interaction feature zI , we con-
struct an interaction fuser block that contains a cross-attention (CA) module
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Fig. 3: Context fuser. In multi-person scenario (left), the context fuser consists of
object fuser block, interaction fuser block and human fuser block. In single-person
case (right), only object fuser block and interaction fuser block are employed. Detailed
descriptions of the architecture and annotations can be found in Sec. 4.2.

followed by a Feed Forward Network (FFN), generating interaction-aware hu-
man features (z′H1

∈ Rd, z′H2
∈ Rd), object features (z′O1

∈ Rd, z′O2
∈ Rd) and

context feature (z′C ∈ Rd). Furthermore, to model the influence between the
two humans in multi-person scenarios, we construct a human fuser block, fea-
turing the same architecture with interaction fuser block. For the first human
(Human1), the updated human feature ẑH1

∈ Rd is generated as:

ẑH1
= FFN(CA(Q = SA(z′H1

);K,V = z′H2
) + SA(z′H1

)). (2)

Human2 feature ẑH2 ∈ Rd is generated in the same way as Eq. 2. Finally, the
human-object entity representation zE1

∈ Rd of Human1 is computed by max-
pooling operation over all the d dimensions of the four representations shown in
Eq. 3:

zE1
= MaxPool(ẑH1

, z′O1
, z′O2

, z′C). (3)

The human-object entity representation zE2
∈ Rd of Human2 is computed

with similar approach as Eq. 3. The CF module for single-person cases are similar
with multi-person, except that the human fuser block is removed and there is
only one human feature as query to be fed into the interaction fuser block.

Interaction State Reasoner To augment the model’s ability in interaction
state transition reasoning, we introduce an Interaction State Reasoner (ISR)
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module following CF module. ISR module explicitly empowers the model to
determine whether the current interaction should persist or transit to another
interaction. Specifically, as shown in Fig. 4, at each time t, the two possible states
state1 and state2 represent “continue” or “stop” of an interaction, respectively.
Each state is prompted as one sentence, where s1 =“This interaction is
going to continue.” and s2=“This interaction is going to stop and
change to another interaction.”. Then the embeddings of the two states
zstate1 and zstate2 are generated from CLIP [28] text encoder FT : zstate1 =
FT (s1) ∈ Rd, zstate2 = FT (s2) ∈ Rd. Interaction state embeddings zstate1 and
zstate2 are further fed to a reasoner block (shown in Fig. 4) together with the
interaction embedding zt

Î
∈ Rd at time t, generating state-informed interaction

embeddings ẑstate1 and ẑstate2 . The reasoner block contains a FFN and a State
Interpolation (SI) module. The SI module generates the weights ω1, ω2 for the
two interaction states in the following approach:

ω1, ω2 = Softmax(FFN(ztE) · [z⊤state1 , z
⊤
state2 ]), (4)

where ⊤ indicates transpose operation. Subsequently, the final human-object
entity representation ẑtE ∈ Rd at time t is generated by interpolate over the
current entity representation ztE at time t and the entity representation zt−1

E at
time t− 1:

ẑtE = ω1 · zt−1
E + ω2 · ztE . (5)

Consequently, the generated human-object entity representation ẑtE is able to
reason on the possible future interaction state transitions.

Fig. 4: Interaction
State Reasoner. ⊙
indicates inner product.

Interaction-centric Hypersphere With the above
generated human-object entity representation ẑtE and
interaction representation zI , we need to calculate the
probability of a human-object entity E categorizing
into the interaction class Ii. To that end, we design
an interaction-centric hypersphere with interaction at
the center of hypersphere and human-object entity at
its surface. We call it “hypersphere” because this is a
sphere in the Rd space, where d is the feature dimension
in our model, which is obviously larger than 3. This hy-
persphere design models the manifold structure of HOI,
which is in charge of the specific interaction class. Con-
cretely, we employ a hyperspherical measurement:

U(E, Ii) =
exp

(
−
[
||zIi − ẑE ||2 − λ

]
+

)
∑K

j=1 exp
(
−

[
||zIj − ẑE ||2 − λ

]
+

) , (6)

where zIi and zIj indicate the interaction representations of interaction class i

and j, respectively. ẑE denotes the human-object entity representation. [s]+ ≜
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max(0, s). λ indicates the radius of the hypersphere, which is set to be a constant
in our model. The higher value of U(E, Ii) suggests that the human and object
entity E is more likely to be categorized into Ii.

4.3 Learning Objective

The learning objective of our model contains two parts: (i) focal loss Lcls for in-
teraction classification; (ii) interaction feature loss Lfea that controls the smooth-
ness of interaction features in local region.

Focal loss Lcls: We employ focal loss [18] for interaction classification, miti-
gating the interaction class imbalance problem on model performance. For each
video frame vi(i = 1, ..., T ), our model predicts the probability ŷi ∈ RK of all the
interaction classes. The corresponding ground-truth of interaction class yi ∈ RK

is a binary vector. For each intraction class k, the focal loss Lk
cls is formulated

as: Lk
cls = −(1 − pk)

γ log(pk), where γ is a hyperparameter to control the fo-
cusing extent, pk is defined as: {pk = ŷki , if yki = 1; pk = 1 − ŷki , otherwise}.
Subsequently, the focal loss Lcls of each video frame is obtained by combining
the focal loss of each individual interaction class k: Lcls = ΣK

k=1Lk
cls.

Interaction feature loss Lfea: We introduce interaction feature loss Lfea

to control the temporal smoothness of interaction features. Our model outputs
the feature of each human-object entity E in each frame. Inspired by [1], in
order to improve the continuity, we minimize the feature distance in the same
segment and maximize the distance between different segments for each subject.
Denote ut

E as whether the interaction will continue or change to another action
for entity E at time t. ut

E = 1 indicates the interaction will stop and change to
another action at time t for entity E and ut

E = 0 otherwise. We minimize

Lfea =
1

2

T−1∑
t=0

[
(1−ut

E)(||ztE − zt+1
E ||2)2+ut

E(max(L−||ztE − zt+1
E ||2, 0))2

]
, (7)

where L is a threshold that controls the minimal feature distance when interac-
tion changes. In total, the overall loss is written as:

L = Lcls + αLfea, (8)

where α is a hyperparameter to control the weight of each loss.

Model Inference During model inference, we compute the interaction prob-
ability ŷi ∈ RK for each video frame. The interaction class a with the highest
probability is chosen as the predicted interaction for that frame: a = argmax

i
ŷi.

5 Experiments

5.1 Experimental setup

Datasets: We evaluate our method on MPHOI-72, Bimanual Actions, and CAD-
120 datasets, each representing multi-person collaboration, one person with two
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hands and a single hand respectively.
(I) MPHOI-72 dataset is proposed in [27], which consists of multiple humans
and objects in the scene. The dataset comprises 72 videos featuring 3 human
subjects and 6 objects. Within each video, 2 individuals are paired to engage in
3 distinct activities, encompassing a total of 13 sub-activities, while utilizing 2
to 4 objects
(II) Bimanual Actions dataset [4] is the first HOI dataset to include two hands for
subjects to perform interactions which is common in reality. There are 540 videos
with one person performing activities with both hands. There are 6 subjects
performing 9 different activities with 10 repetitions. There are a total of 14
action labels assigned to each hand, and entity-level annotations are provided
on a per-frame basis within the video.
(III) CAD-120 dataset [13] is popular for HOI recognition. It contains 120 videos
with 10 activities performed by 4 participants. There are 10 human sub-activities
labeled per frame.
Evaluation Metric: We report F1@k metric [14] with thresholds k = 10%,
25%, and 50%. Compared to frame-based metrics which evaluate prediction on
every single frame, this metric could measure prediction continuity in action
segments because it views each predicted action segment as correct only when it
has the Interaction over Union (IoU) with the corresponding ground truth over
the threshold k.

5.2 Implementation details

In the experiment, we use three layers of context fuser for Bimanual and two
for CAD-120 and MPHOI. The features of humans and objects are extracted
from [27] and their dimension is mapped to 768, 256, and 512 for MPHOI,
Bimanual, and CAD-120 respectively. More implementation details can be found
in the supplementary material.

5.3 Quantitative results

Multi-person HOI recognition The quantitative results of joined segmenta-
tion and label recognition of sub-activity on MPHOI-72 in Tab. 1 show the per-
formance of our method in multi-person HOI circumstance. Our method outper-
forms SOTA method 2G-GCN [27] by a large margin in all the three evaluation
metrics. For F1@10, F1@25 and F1@50 scores, our method surpasses 2G-GCN
23.0%, 23.7% and 22.5%, respectively. The significant improvement achieved by
our method indicates that the human fuser block in the CF module effectively
improves the context-aware human representation learning under multi-person
scenarios.
Single-person HOI recognition We show the quantitative results for single-
person HOI recognition in Tab. 2 and Tab. 3, which are performed on CAD-120
and Bimanual Actions datasets, respectivey. Results in Tab. 2 show that our
method performs slightly better on CAD-120 dataset compared to SOTA method
2G-GCN, with around 1% improvement over 2G-GCN on all the three metrics.
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Table 1: The results of joined segmentation and label recognition of sub-activity on
MPHOI-72.
∆CF: removing context fuser module; ∆ISR: removing interaction state reasoner mod-
ule; ∆Lfea: removing interaction feature loss; λ = 0: ablating the hypershere by re-
placing it with Euclidean distance; ∆CLIP+BLIP: ablating CLIP and BLIP model;
Traditional Classifier: ablating the interaction-centric hypersphere by replacing it with
a traditional classifier constructed with MLP and Softmax classifier. The improvements
of our method over current SOTA method is highlighted with upward arrows.

Model F1@10 F1@25 F1@50

ASSIGN [23] 59.1± 12.1 51.0± 16.7 33.2± 14.0
2G-GCN [27] 68.6± 10.4 60.8± 10.3 45.2± 6.5

Ours 91.6± 0.9(↑ 23.0) 84.5± 2.6(↑ 23.7) 67.7± 2.2(↑ 22.5)
Ours (∆CF) 65.8± 12.4 57.6± 14.0 39.2± 12.6
Ours (∆ISR) 80.1± 5.5 73.0± 8.2 55.6± 6.1
Ours (∆Lfea) 73.5± 15.7 69.7± 13.3 48.8± 13.0
Ours (λ = 0) 81.2± 0.7 74.8± 4.2 53.2± 0.3
Ours (∆CLIP+BLIP) 80.0± 6.7 73.0± 9.9 55.6± 7.4
Ours (Traditional Classifier) 84.6± 7.2 74.7± 10.5 54.6± 13.7

For the Bimanual Actions dataset, our method performs as good as 2G-GCN in
F1@10 while achieves 0.9% and 5.0% higher than 2G-GCN in F1@25 and F1@50
score, respectively. These results indicate that our method achieves generally on
par or even better performance on single-person video HOI recognition task.

Fig. 5: Qualitative ablation study results on MPHOI-72 dataset. Major pre-
diction errors are highlighted in red dashed boxes.

5.4 Ablation studies

In this section , we ablate the CF module and the ISR module for validating
the effectiveness of these proposed components. As shown in Tab. 1, remov-
ing CF module results in more than 20% F1 score drop of the three metrics in
MPHOI-72 dataset, indicating the essential improvement of CF module in learn-
ing context-rich representations. Visualization results of temporal segmentation
of interactions in Fig. 5 indicates that removing CF module results in incorrect
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Table 2: The results of joined segmentation and label recognition of sub-activity on
CAD-120. The notations are the same with Tab. 1.

Model F1@10 F1@25 F1@50

rCRF [29] 65.6± 3.2 61.5± 4.1 47.1± 4.3
Independent BiRNN [27] 70.2± 5.5 64.1± 5.3 48.9± 6.8
ATCRF [11] 72.0± 2.8 68.9± 3.6 53.5± 4.3
Relational BiRNN [27] 79.2± 2.5 75.2± 3.5 62.5± 5.5
ACoLP [35] 90.2± 2.6 87.4± 1.4 76.8± 2.3
ASSIGN [23] 88.0± 1.8 84.8± 3.0 73.8± 5.8
2G-GCN [27] 89.5± 1.6 87.1± 1.8 76.2± 2.8

Ours 90.7± 2.9(↑ 0.5) 88.1± 2.8(↑ 0.7) 77.6± 4.7(↑ 0.8)
Ours (∆CF) 81.1± 4.0 77.0± 4.8 65.2± 5.6
Ours (∆ISR) 88.5± 3.7 85.5± 3.6 73.9± 5.7
Ours (∆Lfea) 89.3± 1.9 85.6± 2.1 75.9± 4.4
Ours (λ = 0) 72.0± 4.4 65.0± 6.9 48.6± 6.3
Ours (∆CLIP+BLIP) 89.4± 2.3 85.5± 3.9 74.9± 5.7
Ours (Traditional Classifier) 79.5± 11.0 73.9± 11.4 56.6± 12.5

Fig. 6: Qualitative ablation study results on CAD-120 dataset. Major predic-
tion errors are highlighted in red dashed boxes.

interaction predictions in both humans (highlighted in red in Fig. 5). Similarly,
in CAD-120 and Bimanual Actions datsets, deleting CF module also results in
massive F1 score drop. The visualization results in Fig. 6 suggests an incorrect
prediction segment when removing CF module.

Furthermore, we ablate hypersphere by replacing it with Euclidean distance,
where λ = 0 in Eq. 6. Results in Tab. 1, 2 and 3 indicate that utilizing Eu-
clidean distance results in at least 7%, 10% and 3% F1 scores drop in MPHOI,
CAD-120 and Bimanual Actions dataset, respectively. Therefore, we conclude
that Euclidean distance do not introduce HOI structure priors, ignoring valuable
structure information of HOI for guiding predictions. Subsequently, we ablate
CLIP and BLIP models by randomly initialize interaction features and context
features. Results in Tab. 1, 2 and 3 indicate that removing CLIP and BLIP
models results in some drop of model performance, but is still on par with or
better than SOTA methods. Thus, it is the intricately designed structure of our
model that substantiates the substantial enhancement in performance. Finally,
we ablate the interaction-centric hypersphere by replacing it with a traditional
classifier constructed with multi-layer perceptron (MLP) and Softmax classifier.
The outcomes, as presented in Tab. 1, 2 and 3, reveal a notable decline of over
7% in the F1 score within the MPHOI dataset when employing the traditional
classifier. Likewise, in the CAD-120 dataset, the traditional classifier results in
a substantial decrease of more than 11%in the F1 score. Additionally, within
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Table 3: The results of joined segmentation and label recognition of sub-activity on
Bimanual Actions. The notations are the same with Tab. 1.

Model F1@10 F1@25 F1@50

Dreher et al. [4] 40.6± 7.2 34.8± 7.1 22.2± 5.7
Independet BiRNN [27] 74.7± 7.0 72.0± 7.0 61.8± 7.3
Relational BiRNN [27] 77.7± 3.9 75.0± 4.2 64.8± 5.3
ASSIGN [23] 84.0± 2.0 81.2± 2.0 68.5± 3.3
2G-GCN [27] 85.0± 2.2 82.0± 2.6 69.2± 3.1

Ours 85.0± 2.5 82.9± 2.9(↑ 0.9) 74.2± 4.3(↑ 5.0)
Ours (∆CF) 82.5± 5.0 80.5± 5.5 71.1± 7.0
Ours (∆ISR) 84.1± 2.3 81.8± 2.8 73.0± 3.7
Ours (∆Lfea) 84.5± 4.6 82.0± 5.2 71.8± 6.9
Ours (λ = 0) 76.7± 5.2 74.3± 6.0 65.2± 6.3
Ours (∆CLIP+BLIP) 84.3± 1.4 81.8± 1.8 73.2± 2.7
Ours (Traditional Classifier) 82.0± 3.6 79.8± 4.1 71.0± 5.6

the Bimanual Actions dataset, the traditional classifier induces a decline exceed-
ing 2% in the F1 score. These findings unanimously underscore the efficacy of
modeling HOI manifold structures by the hypersphere module.

Fig. 7: (A) Visualization of interaction-centric hyperspheres, the learned interaction
representations (large points locate at the center of hyperspheres) and human-object
entity representations (small points surrounding the hyperspheres) in embedding space.
Selected frame samples are shown for each interaction-centric hypersphere. (B) 2D
visualization of interaction-centric hyperspheres.

5.5 Qualitative results

We show some visualization results on MPHOI in Fig 8 to compare our method
with SOTA method 2G-GCN. The red highlighted boxes indicate that 2G-GCN
tend to generate unreasonable interaction predictions, while our method gener-
ates more reasonable interaction predictions. The visualization results in Fig. 9
show similar prediction pattern where 2G-GCN predicted some unreasonable
short segments (highlighted in red boxes) while our method predicts more accu-
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rately. We also visualize the interaction-centric hypersphere, the learned interac-
tion representations and the human-object entity representations in embedding
space in Fig. 7. Results in Fig. 7 (A) show that human-object entity representa-
tions (small dots in Fig. 7 (A)) belonging to the specific interaction class locates
near the surface of the corresponding hypersphere. Similar with Fig. 7 (A), we
also visualize the intraction-centric hyerspheres in 2D sapce in Fig. 7 (B). Re-
sults in Fig. 7 (B) indicate that HOIs distribute around the sphere of different
interaction classes. The distributions of HOIs on each sphere also differ a lot,
where the sphere belongs to the solve interaction class captures HOIs on the
upper part of its sphere, while the sphere belongs to the cut interaction class
captures HOIs on the lower part of its sphere. These results suggest that our
model successfully model the manifold structure of HOI.

Fig. 8: Visualization results on MPHOI-72 dataset. Major prediction errors are
highlighted in red dashed boxes.

Fig. 9: Visualization results on CAD-120 dataset. Major prediction errors are
highlighted in red dashed boxes.

6 Conclusion

In this work, we propose an interaction-centric spatio-temporal context reasoning
network for multi-person video HOI recognition. Specifically, we propose a con-
text fuser and an interaction state reasoner to learn spatio-temporal context-rich
and reasoning-aware entity representations. We further represent HOI compo-
nents with an interaction-centric hypersphere for HOI classification. Experiment
results show that our method outperforms SOTA method by more than 22% F1

score in multi-person scenarios, and achieves competitive results on single-person
cases compared to SOTA methods.
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