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Abstract. Video extrapolation in space and time (VEST) enables view-
ers to forecast a 3D scene into the future and view it from novel view-
points. Recent methods propose to learn an entangled representation,
aiming to model layered scene geometry, motion forecasting and novel
view synthesis together, while assuming simplified affine motion and
homography-based warping at each scene layer, leading to inaccurate
video extrapolation. Instead of entangled scene representation and ren-
dering, our approach chooses to disentangle scene geometry from scene
motion, via lifting the 2D scene to 3D point clouds, which enables high
quality rendering of future videos from novel views. To model future 3D
scene motion, we propose a disentangled two-stage approach that initially
forecasts ego-motion and subsequently the residual motion of dynamic
objects (e.g., cars, people). This approach ensures more precise motion
predictions by reducing inaccuracies from entanglement of ego-motion
with dynamic object motion, where better ego-motion forecasting could
significantly enhance the visual outcomes. Extensive experimental anal-
ysis on two urban scene datasets demonstrate superior performance of
our proposed method in comparison to strong baselines.

1 Introduction
The Video Extrapolation in Space and Time (VEST) task, as introduced in
[55], combines the tasks of novel view synthesis and video prediction. VEST
involves extrapolating scenes to novel views while simultaneously being able to
forecast future videos. Addressing VEST requires solving intricate challenges
such as estimating scene geometry, forecasting future motion, and synthesizing
disoccluded content due to object movement and novel viewpoints.

Modeling the complex relationship between view changes (geometry) and
future scene (motion) for an entire scene presents a significant challenge. To
address this complexity, existing approaches like VEST-MPI [55] leverage gen-
eralized multi-plane image (MPI) representation. This technique simplifies the
task by breaking down images into layers based on fixed depth, facilitating the
modeling of view changes and future motion on a per-layer basis.

Despite the efficacy of this MPI-based approach, it has two major limita-
tions, as illustrated in Fig. 1. First, the learned representation of each layer
tends to be highly entangled. It attempts to simultaneously model scene geome-
try, future scene motion and the synthesis of disoccluded content. This entangle-
ment arises from the assumptions that all pixels within a layer can render novel
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Fig. 1: Comparisons of VEST approaches. Compared to VEST-MPI [55], our
method features: (1) Disentangled 3D geometry and motion representation:
While VEST-MPI [55] relies on an entangled layered MPI representation with simpli-
fied affine motion and homography-based warping, we employ depth maps to transform
2D images into 3D point clouds, disentangling scene geometry from motion for high-
quality rendering from novel viewpoints; (2) Disentangled ego-motion and object
motion forecast: Departing from VEST-MPI’s simultaneous modeling of ego-motion
and object motion, we adopt a disentangled two-stage forecasting approach. Our ap-
proach first predicts ego-motion, then addresses residual object motion. This separation
allows our model to predict 3D motion more accurately, improving the accuracy of 3D
motion forecasts.

view through simple homography-based warping, and future scene motions can
be approximated via affine transformations alongside flow-based warping. How-
ever, these assumptions often fall short in complex scenes, such as urban driving
scenarios, where the sophisticated geometry and the diverse motions of objects
within each layer challenge these simplifications. Consequently, this can result
in blurred visual content, especially in long-term forecasts.

Second, the layered MPI representation faces challenges in accurately mod-
eling future 3D motion, primarily due to the complexity inherent in predicting
both ego-motion and dynamic object motion within each layer. Ego-motion af-
fects all observed elements in the scene and can become entangled with the irreg-
ular motion of dynamic objects, potentially causing inaccuracies in the motion
prediction. The precise ego-motion forecasting is crucial since even slight errors
can lead to significant deviations in the visual outcome. It thus underscores the
importance of disentangling these motion components to achieve more accurate
motion predictions.

To address these challenges, we propose an approach that models 3D scene
geometry within a continuous space of point clouds rather than a layered MPI.
This continuous scene representation aids in the disentanglement of scene ge-
ometry from scene motion, enabling the rendering of scene from novel camera
perspectives, thereby achieving high-fidelity motion forecasting with photoreal-
istic synthesis of future videos. The key to our approach is to leverage estimated
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depth map and lift the scene representation from the 2D RGB images to 3D
point clouds. Each 3D point is defined by its 3D location and a learned appear-
ance feature. These point clouds can effectively account for 3D scene motion by
displacing 3D location of the corresponding point based on its physical motion
flow. Finally, we can use sophisticated 3D-to-2D rendering techniques [31] to
process these point clouds, to synthesize the future frame from a novel view,
instead of simple homography-based warping.

To accurately forecast future motion, moving away from simultaneously es-
timating ego-motion and object motions used in VEST-MPI [55], we propose
a disentangled two-stage 3D motion forecasting approach. Our two-stage ap-
proach begins by forecasting camera ego-motion and subsequently addresses the
residual motion of dynamic objects (e.g . car, people), thereby modeling future
scene motion. Since static background motion in past frames can estimate fu-
ture ego-motion, we introduce an ego-motion forecasting module that analyzes
static background elements to forecast ego-motion. Subsequently, we introduce a
multi-scale object forecasting module to address the residual motion of objects.
This module analyzes the scene elements across past frames to predict residual
object motion. Utilizing the forecasted 3D motion, we relocate the point clouds,
creating a future 3D scene and then synthesizing the future frame.

In summary, our contributions include: (1) a novel approach that leverages
explicit 3D scene geometry to address VEST by disentangling 3D scene geometry
from scene motion, enabling the rendering of scene from novel views, and thereby
achieving high-fidelity scene forecasting with photorealistic synthesis of future
videos. (2) Disentangled two-stage approach for future motion forecast that first
forecasts ego-motion and then the residual motion of dynamic objects, in order
to achieve high quality video extrapolation in space and time.

Our method outperforms baselines in VEST, video prediction, and novel view
synthesis on benchmark datasets such as KITTI [9] and Cityscapes [5].

2 Related Work
Video prediction. Previous video prediction (VP) methods vary from uncondi-
tional synthesis [4,6–8,18,33,40] to conditional prediction tasks [1,10,13,19,34,
47, 50]. These conditional prediction methods use diverse strategies to forecast
motion. Some decompose videos using object-centric [50], semantic-aware [1]
and motion-aware [44] approaches to forecast motion. DMVFN [13] proposes to
handle diverse motion scales of objects through a pyramidal approach [30, 38],
while [19] forecasts the trajectory of object through sparse control points. How-
ever, these methods work in either the 2D or quantized 3D domain, facing chal-
lenges in modeling occlusions. In contrast, our approach employs 3D motion
forecasting, overcoming these limitations by incorporating the depth dimension.
This integration enables for accurate estimates of the object motion patterns as
they move in and out of each other’s paths.
Novel view synthesis. Novel view synthesis aims to reconstruct unseen viewpoints
from a set of input 2D images and their corresponding camera poses. Recent
neural rendering methods have achieved impressive synthesis results [23, 24, 27,
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Fig. 2: Method overview. Our framework aims to forecast a 3D scene into the future
and view it from novel viewpoints. It comprises three primary steps (1) Constructing
3D point clouds: Starting with two past frames as the input, we construct per-frame
3D point clouds. (i) The process for each frame involves depth estimation, dis-occlusion
handling via inpainting, and feature extraction to finally generate what we refer to as
feature layer. (ii) The point-wise features in this feature layer are then lifted into 3D
space using corresponding depth values, generating 3D point clouds. This process is
performed on both I(t−1) and I(t) to obtain feature layers F(t−1) and F(t) and point
clouds P(t−1) and P(t). (2) Forecasting future 3D motion: We leverage the feature
layers F(t−1) and F(t) to forecast future 3D motion for each of the point clouds. This
forecasted 3D motion allows us to update the positions of point clouds P(t−1) and P(t)

to their new, forecasted locations. (3) Splatting and Rendering: A point-based
renderer processes these motion-adjusted point clouds through 3D-to-2D splatting to
generate feature maps. Finally, refinement network takes these rendered feature maps
and decodes them to synthesize a novel view Î ′(t+1) based on the target viewpoint.

28, 37, 39, 46, 46]. However, these methods typically assume the availability of
dense views as input, a condition rarely met in practical scenarios. Moreover,
their primary focus lies in interpolating across frames rather than extrapolation.
Therefore, we consider methods capable of handling sparse views as input.

Among these, several works [11, 20, 22, 41, 42, 52, 53] aim to infer the 3D
structure of scenes by learning to predict a scene representation from a single
image. Yet, these methods lack the ability to forecast into the future.
Depth-based 3D scene representation. Recent “3D photography” methods [15,
16, 21, 35] demonstrate how estimated depth can bring 2D images to life for a
3D viewing experience. For instance, 3D Photo [35] employs monocular depth
mapping to generate layered depth images (LDIs) [29], enabling contextually
aware color and depth inpainting. These methods benefit by disentangling 3D
scene geometry from camera pose. However, unlike our approach, these methods
assume a static scene. Among these, 3D Moments [45] and Li et al.’s work [21]
are most related to our approach as they achieve space-time view synthesis.
However, 3D Moments [45] focuses on space-time interpolation across frames
and Li et al [21] focuses on animating a static scene. In contrast, our approach
conditions on past frames to forecast future scene motion.
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3 Our Method
Given two consecutive frames from a video sequence, I(t−1) and I(t) as the input,
our goal is to forecast a future frame Î′(t+1) rendered from a novel viewpoint. Our
framework is illustrated in Fig. 2. The output of our framework is a future video
featuring high-fidelity video forecast with high-quality novel view synthesis.

Initially, we generate an estimated depth map for the input frames. Subse-
quently, we construct 3D point clouds by first addressing potential dis-occlusions
in each frame through inpainting, followed by feature map extraction and their
unprojection into 3D space, based on depth values (Sec. 3.1). For future 3D
motion prediction, since the 3D motion would result from both camera motion
and dynamic object motions, we disentangle these 3D motions via a two-stage
approach that initially forecasts ego-motion by leveraging static background re-
gions across frames, and subsequently predicting residual motion for dynamic
objects (e.g., cars, persons) (Sec. 3.4). With these forecasts, we update the point
cloud’s location to reflect the anticipated 3D motion. Finally, we project these
modified 3D point clouds into 2D space, according to the target viewpoint, to
synthesize the future frame (Sec. 3.3).

Our framework operates in a fully end-to-end differentiable manner, incorpo-
rating ego-motion forecasting modules and object motion forecasting modules,
and directly supervises the training process based on the L1 loss and perceptual
losses [36], which can be obtained by comparing the predicted future frame Î′(t+1)

and the ground truth future frame I(t+1).

3.1 Disentangled 3D Scene Representation
Instead of quantizing a 3D scene into multiple depth layers as in [55], we intro-
duce an approach to model the geometry of a 3D scene as a continuous space
of point clouds. This is achieved via lifting scene from 2D RGB images to 3D
through estimated depth map. This simple yet effective treatment provides feasi-
bility to disentangle scene geometry from scene motion, enabling better rendering
of the scene from novel camera perspectives. Moreover, For each input frame,
we build a 3D point cloud P = {(xi, f i)}, where xi represents the 3D location of
each 3D point and f i signifies its appearance feature. Furthermore, we disentan-
gle the process of forecasting future 3D motion to first forecast ego-motion and
subsequently predict residual motion for objects. Such disentanglement enables
the model to more accurately forecast 3D motion by focusing on the crucial ego-
motion forecasting, where even minor deviation to precisely forecast can lead
to significant deviations in visual outcome, then focuses on object motion at
various scales. The following sections detail the process of constructing these
point clouds and the methodology for forecasting future 3D motion ui, aiming
to displace each 3D point to where it is forecasted to be in the future.

3.2 Constructing 3D Point Cloud

As shown in Fig. 3, we start by estimating the 3D geometry of the input frame
I using the metric depth estimation methods such as ZoeDepth [2], which can
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estimate depth in absolute physical units, e.g. meters. Accurate depth map is
crucial for 3D scene representation. The resulting depth map is denoted by D.

Semantic segmentation. A major challenge in synthesizing photorealistic fu-
ture frames is handling dis-occlusions caused by dynamic object motion and
transitions to novel views. These dis-occlusions appear as “holes” in the fu-
ture frames, where visual information is missing. Many 3D photography meth-
ods [15, 21, 35, 45] employ depth-based layering [20] to address dis-occlusions
during view transitions. Despite their efficacy, these methods often struggle with
dis-occlusions due to the motion of objects within each depth layer.

To better address dis-occlusions, we leverage semantic segmentation on the
input image to identify potential regions for “holes” by segmenting both dynamic
category objects and likely foreground category objects. Semantic segmenta-
tion is performed on I to generate binary mask M. This mask distinguishes
static/background categories (e.g., building, roads, sidewalk, vegetation) from
dynamic/foreground categories (e.g., car, bus, pedestrian, pole). For simplicity,
we refer to the former category regions as the background and the later as fore-
ground. Note that binary mask M specifically identifies the background regions.
For a detailed categorization, please check supplementary material.

Image and Depth Inpainting. To mitigate dis-occlusions, we leverage M to
inpaint the areas where foreground regions are masked out in both I and its
depth map D using the surrounding background as context. Importantly, we
ensure that the depth values assigned to the inpainted regions are farther in
depth than those pixels belonging to the foreground objects. This is given by:

IBG,DBG = Inpaint(I⊙M,D⊙M,M), (1)

where ⊙ is element-wise multiplication. Here, IBG refers to the inpainted image
frame, and DBG is the inpainted depth map.

Feature Encoding. To enhance rendering quality and minimize artifacts in the
synthesized future frames, we employ a 2D feature extraction network. This net-
work processes both the original frame, I and inpainted frame, IBG, generating
features F, and FBG, respectively.

Subsequently, we unproject the features F from the original 2D frame into
3D space using the corresponding depth map D. To ensure that visual content is
present behind the foreground objects in 3D space, we unproject the inpainted
regions, using the corresponding features FBG and depth map DBG dedicated to
these regions. This unprojection process facilitates the creation of point clouds,
represented as P:

P = Unproject(F,D) ∪ Unproject(FBG ⋄ [1−M],DBG ⋄ [1−M]), (2)

where 1−M inverts the binary mask and ⋄ operator selectively retains pixel-wise
features from F for which the corresponding value in 1−M is 1. For simplicity,
we refer to the set {F,D,M} as original feature layer, denoted by F and the set
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{FBG,DBG,M} as inpainted feature layer FBG. Applying the above process to
both input frames I(t−1) and I(t) results in:

F(t−1) = {F(t−1),D(t−1),M(t−1)},FBG
(t−1) = {FBG

(t−1),D
BG
(t−1),M(t−1)}.

F(t) = {F(t),D(t),M(t)},FBG
(t) = {FBG

(t) ,D
BG
(t) ,M(t)}.

(3)

And the resultant 3D point clouds P(t−1) and P(t) can be obtained from feature
layers {F(t−1),FBG

(t−1)} and {F(t),FBG
(t) } using Unproject operation as mentioned

in Eq. 2. Next, we outline the methodology for generating a future frame using
the point clouds P(t−1) and P(t), and the forecasted 3D motion for these point
clouds. This is followed by a detailed description of forecasting the 3D motion.

3.3 Splatting and Rendering

In order to generate the future frame given a novel camera pose, we leverage the
differentiable point-based rendering technique [31] that “splats” the 3D points in
motion adjusted point clouds onto a 2D image plane, synthesizing novel views.

Given two input frames It−1 and It, we have point clouds P(t−1) and P(t). Let
u(t−1)→(t+1) refer to the forecasted 3D motion flow for 3D points in P(t−1) and
u(t)→(t+1) to the forecasted 3D motion flow for 3D points in P(t). The method for
calculating these motion flows will be explained later. The process of generating
future frames from a novel viewpoint K can be summarized in three steps:

1. Displacement by 3D Motion Flow:

P(t−1)→(t+1) = P(t−1) + u(t−1)→(t+1),P(t)→(t+1) = P(t) + u(t)→(t+1), (4)

2. Scene Rendering via Point-based Splatting:

F(t−1)→(t+1) = Render(P(t−1)→(t+1),K),F(t)→(t+1) = Render(P(t)→(t+1),K),
(5)

3. Future Frame Synthesis:

Î′(t+1) = Refine(Concat[F(t−1)→(t+1),F(t)→(t+1)]). (6)

where “Concat” refers to the concatenation of two forecasted features F(t−1)→(t+1),
F(t)→(t+1). Here, the Render function employs a point-based renderer [31], while
the Refine function uses a refinement network based on 2D U-Net architec-
ture [32]. And Î′(t+1) is the forecasted future frame. For long-term forecasts, we
can recursively predict future frames {Î′t+2, Î′t+3, . . . } in a similar manner.

3.4 Forecasting Future 3D Motion

Now, we detail the process of forecasting future 3D motion flows, u(t−1)→(t+1)

and u(t)→(t+1), as depicted in Fig. 3.
Most previous video prediction methods focused on forecasting 2D scenes

[1,13,25,51], or simplified layered 3D scene. They often rely on pixel-wise back-
ward warping [14] to forecast the next frame from previous frames. However,
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Fig. 3: (a) Constructing 3D point cloud. (1) Estimate the depth map D from
the input image I. (2) Address “holes” in future frames caused by dis-occlusions from
dynamic object motion: (i) segment dynamic category (foreground) objects to produce
a binary mask M, identifying potential regions for “holes”. (ii) mask these foreground
regions in both input image and depth map, then inpaint them using the background
context. (3) Extract features from both original and inpainted frames to produce F and
FBG. (4) Create 3D point cloud P by unprojecting the 2D features F, FBG into 3D,
using depth maps D, DBG, respectively. For simplicity, we refer to the set {F,D,M}
as original feature layer, denoted by F and the set of {FBG,DBG,M} as inpainted
feature layer FBG. (b) Forecasting future 3D motion. Given feature layers from
past frames, our method forecasts future 3D motion flow in two stages: (1) ego-motion
forecasting using the EMF module, which processes the background (static category)
across frames using inpainted feature layers FBG

(t−1) and FBG
(t) , yielding two relative

ego-pose transformations, T(t−1)→(t+1) and T(t)→(t+1). These transformations lead to
initial 3D motion flows u0

(t−1)→(t+1) and u0
(t)→(t+1), referred as U0

(t+1). (2) The OMF
module then refines the initial 3D motion flow U0

(t+1) by accounting for foreground
object motion, using original and inpainted feature layers to derive the final forecasted
3D motion flow, UL

(t+1), after L MMFB blocks. (c) Multi-scale motion flow block
(MMFB). We illustrate the design of a MMFB block here.

2D motion forecasting may encounter ambiguities when dealing with occlusions.
Additionally, backward warping inherently lacks one-to-one pixel correspondence
across frames, resulting in content stretching. In contrast, our 3D motion fore-
casting mitigates the ambiguities around occluded regions by considering the
extra depth information, enabling more accurate estimations of how objects
move in and out of each other’s paths. To avoid content stretching, we opt for
a one-to-one correspondence among 3D points across the future and the past
frames.
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To accurately forecast future 3D motion, we propose a dis-entangled two-
stage approach that first forecasts relative ego-motion and then addresses the
residual 3D motion of dynamic objects (e.g., cars, people). Ego-motion impacts
every observed element within the scene, and its interaction with the irregular
motion of dynamic objects can lead to inaccuracies in motion prediction. By
disentangling these two components, we can achieve more reliable and detailed
forecasts. Moreover, ego-motion forecasting is crucial as it influences all observed
elements in the scene. Failure to precisely forecast ego-motion can lead to signif-
icant inaccuracies in the predicted scene dynamics, as even minor deviations in
camera trajectory prediction can cause large deviations in the visual outcome.

Ego-motion forecasting (EMF). To address this, we design an ego-motion
forecasting (EMF) module that infers relative pose changes of the camera from
previous frames to future frames. Our EMF module E takes inpainted fea-
tures and inpainted depth along with binary mask from inpainted feature layers
FBG

(t−1) and FBG
(t) as input, and forecasts the two separate pose transformations

T(t−1)→(t+1) and T(t)→(t+1). The transformation T is parameterized as a rota-
tion matrix R in the quaternion form (qw, qx, qy, qz) and translation vector t is
(tx, ty, tz). The EMF module can be defined as:

T(t−1)→(t+1), T(t)→(t+1) = E
(
FBG

(t−1),D
BG
(t−1),M(t−1),F

BG
(t) ,D

BG
(t) ,M(t)

)
. (7)

EMF processes past inpainted features FBG
(t−1) and FBG

(t) with corresponding in-

painted depths DBG
(t−1) and DBG

(t) through several convolutional layers. After that,
these features are concatenated and passed through a series of self-attention
blocks [43], using masks M(t−1) and M(t) to focus on non-inpainted background
spatial positions. The self-attention blocks allows the module to focus on rel-
evant features across the temporal sequence, enhancing its ability to predict
future ego-motion by identifying patterns and dependencies in the movement of
the background across frames. Following the self-attention blocks, the resultant
features are input to a linear layer to output the 7 (4 rotation and 3 translation)
parameters for each of the transformations T(t−1)→(t+1) and T(t)→(t+1).

Computing 3D motion flow. Finally, for each of the predicted ego-pose change
T = (R, t) from Eq. 7, we compute the 3D motion flow u for every 3D point
p ∈ P as follows:

u = Rx+ t− x, (8)

where x is the 3D location of point p.

Object motion forecasting (OMF). Dynamic objects display a varied na-
ture of motions within a given scene. To handle this diversity, we propose an
object motion forecasting module. This module is specifically tailored to predict
the residual motion of objects after taking into account the ego-motion, while
accounting for the object motions. By doing so, we can achieve a more nuanced
and accurate prediction of each object’s 3D motion, enhancing the overall realism
and coherence of the forecasted 3D scene.
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Our object motion forecasting module (OMF) is inspired by the 2D motion
forecasting module in DMVFN [13], which preserves spatial resolution and cap-
tures significant motion. We thus propose new multi-scale motion flow block
(MMFB), constructed using a series of convolutional blocks, with its architec-
ture depicted in Fig. 3. Unlike DMVFN, which focuses on appearance features
to predict 2D optical flow, our MMFB leverages both appearance features and
depth information to estimate future 3D motion.

Our OMF module consists of L MMFB blocks. As shown in Fig. 3, each
MMFB block contains two branches for processing the input frame along with
the depth map. One branch operates at downsampled scale factor S that fo-
cuses on capturing larger-scale motion, while the other branch operates at higher
image resolution, enhancing spatial details. Let u(t)→(t+1) encompass the mo-
tion field representing the motion of each 3D point. For brevity, let U(t+1) =
{u(t−1)→(t+1), u(t)→(t+1)} represent two predicted 3D motion flows from two
separate frames. The ith MMFB block, denoted as F i

MMFB , learns to estimate
the target 3D motion flow Ui

(t+1) by utilizing the original feature layers F(t−1)

and F(t), as well as the estimated previous blocks motion flow Ui−1
(t+1) and the

scale factor Si as input:

Ui
(t+1) = F i

MMFB

(
F(t−1),D(t−1),M(t−1),F(t),D(t),M(t),U

i−1
(t+1), S

i
)
. (9)

Note that the initial pair of 3D motion flows U0
(t+1) is obtained from ego-motion

forecasting using T(t−1)→(t+1), T(t)→(t+1), serving as a foundation for subsequent
residual motion forecasting of dynamic objects. Finally, after processing through
L MMFB layers, OMF obtains the final forecasted 3D motion flow UL

(t+1) =

{u(t−1)→(t+1),u(t)→(t+1)}.

4 Experiments
Dataset and Metric. We experiment with two urban datasets. KITTI [9]
comprises 28 driving videos with a resolution of 375×1242, using 24 for training
and the remaining 4 for testing. Cityscapes [5] contains 3,475 videos with res-
olution 1024× 2048. We use 2,945 driving videos for training and 500 videos for
testing, all at a resolution of 512× 1024. Our evaluations extend to forecasting
up to 5 frames into the future for the KITTI dataset and up to 10 frames for
the Cityscapes dataset. For evaluation, we employ standard error metrics: the
Multi-Scale Structural Similarity Index Measure (SSIM) [49] and the perceptual
metric LPIPS [54], following the conventions of [19,55].

Implementation Details. We use the following networks in our framework.

– Pre-trained Networks: we utilize the ZoeDepth [2] method for per-frame
depth estimation due to its zero-shot performance across datasets, employ-
ing the pre-trained ZoeD-M12-NK model. For segmentation, we incorporate
DeepLabV3 [3] pre-trained on the Cityscapes dataset, and the 3D Photo [35]
method for RGB-D inpainting on a per-frame basis.
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(a)	VEST-MPI (b)	Ours (c)	Ground	Truth
Fig. 4: Qualitative comparison with VEST-MPI [55] on video prediction
task (VEST-[S,T]). The results show that our method produces sharper frames with
high-quality motion forecasts, particularly over the long term.

SSIM (×10−2)↑ LPIPS (×10−2)↓

Method Publication Inputs t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

DMVFN [13] → 3D Photo [35] CVPR’23 R+D 85.4 72.9 62.6 13.0 22.7 29.2
WALDO [19] → 3D Photo [35] ICCV’23 R+L+F+D 85.7 75.0 68.3 12.9 19.5 24.9

Ours R+L+D 86.2 76.1 69.3 12.3 17.1 21.4

Table 1: Quantitative results for concurrent video extrapolation in space
and time (VEST-[S+T]) on KITTI [9] dataset. We use the train-test splits
from [19] and compare our method with state-of-the-art video prediction techniques,
in combination with the 3D Photography method, 3D Photo [35], as baselines. ‘R’, ‘F’,
‘L’ and ‘D’ denote the video frames, optical flow, segmentation map, and depth map,
respectively. Our method achieves comparable performance with better predictions
farther into the future.

– Trainable Networks: the feature extraction and refinement networks are im-
plemented using the ResNet34 [12] and 2D U-net architectures [32], respec-
tively. The Ego Motion Forecasting (EMF) module leverages a network ar-
chitecture elaborated in Section 3.4. Furthermore, the 9 (L) MMFB blocks
within the OMF module, depicted in Figure 3, employs a decreasing scal-
ing factor sequence of [4, 4, 4, 2, 2, 2, 1, 1, 1]. We provide more details on the
architectures in the supplementary material.

Training utilizes the Adam optimizer [17] with a cosine annealing strategy and
a base learning rate of 10−4. The training utilizes equal weights of one for both
L1 and perceptual losses [36]. We train on two A6000 GPUs with a batch size of
4 for 300 epochs. Further, to address issues such as foreground objects becoming
semi-transparent due to gaps between samples when the camera zooms in, we
use adaptive point-based rendering [31] where each 3D point can be rendered by
adjusting its point radius proportional to its depth.

4.1 Baseline Methods
We compare our approach with several state-of-the-art methods in video pre-
diction (VP) task, novel view synthesis (NVS) and video extrapolation in space
and time (VEST). Additionally, we closely analyze the following baselines for
further comparison.
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Extrapolation In space only In time only

LPIPS↓ SSIM↑ LPIPS (×10−2)↓

Method Publication t+ 1 t+ 3 t+ 5

LDI [42] ECCV’18 N/A 57.2 N/A
MINE [20] ICCV’21 10.8 82.2 N/A

Tucker et al. [41] CVPR’20 N/A 73.3 N/A
PredRNNV2 [48] TPAMI’22 N/A N/A 30.8 45.7 54.2
VEST-MPI [55] ECCV’22 8.5 82.5 11.5 28.8 39.1

Ours 5.2 94.6 8.1 18.6 20.4

Table 2: Results for independent VEST
(VEST-[S,T]) on KITTI dataset. We fol-
low [55] and use the LDI [42] train-test splits.

SSIM (×10−2)↑ LPIPS (×10−2)↓

Method t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

A) w/ fixed depth 83.2 73.1 66.4 15.1 20.2 25.8
B) w/o EMF 85.6 75.5 68.4 12.9 18.1 22.4
C) w/o OMF 84.6 74.8 67.9 13.5 19.1 24.3

Full 86.2 76.1 69.3 12.3 17.1 21.4

Table 3: Ablation study on
VEST-[S+T] on KITTI [9].

WALDO [55], a video prediction method that employs layered decomposition to
split videos into object-centric layers and a background layer. Then, it generates
sparse control points for these layers and forecasts these points into the future,
and employs warping and occlusion handling to generate the next frame.
DMVFN [13], a video prediction method that employs dynamic 2D flow esti-
mation via multi-scale voxel flow blocks (MVFB) to capture diverse motion cues
between adjacent frames. This estimated flow is utilized for pixel-wise backward
warping [14] the past frames to generate next frame.
VEST-MPI [55] method addresses both Video Prediction (VP) and Novel View
Synthesis (NVS) tasks concurrently by introducing a generalized multi-plane im-
age representation. It decomposes images into RGBA planes and parameterizes
each plane to effectively model the spatial and temporal dynamics.
Experimental setups. We compare our approach with state-of-the-art (SOTA)
methods using three experimental setups, following the conventions established
in prior works [19, 55]. Additionally, we present a novel experimental setup and
corresponding baselines.
– Independent video extrapolation in space and time (VEST-[S,T])
– Concurrent video extrapolation in space and time (VEST-[S+T])
– Video Prediction (VP)

4.2 Independent VEST (VEST-[S,T])
Setup. Following VEST-MPI [55], we conduct experiments by independently
extrapolating in space (novel view synthesis) and in time (video prediction)
using the KITTI dataset [9], denoted as VEST-[S,T].
Baselines. We compare our approach with VEST-MPI [55] and three leading
novel view synthesis methods: LDI [42], MINE [20], and Tucker et. al [41].
Results. As shown in Table 2, our method outperforms the baselines on er-
ror metrics. Additionally, comparisons in the video prediction task are provided
in Table 4. In Fig. 4, our method is compared with VEST-MPI [55] on video
prediction task. VEST-MPI struggles with in accurate motion forecasting and
rendering details of moving objects, leading to blurred dynamic content (denoted
by the red arrow), especially in long-term forecasts. This limitation arises from
its highly entangled internal representation. In contrast, our approach synthe-
sizes sharper future frames with high-fidelity motion forecasting by disentangled
modeling of 3D scene geometry, camera pose and scene motion.
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Cityscapes (512× 1024) KITTI (256× 832)

t+ 1 t+ 5 t+ 10 t+ 1 t+ 3 t+ 5
Method Publication Inputs SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

PredNet [26] NeurIPS’17 R 84.0 26.0 75.2 36.0 66.3 52.2 56.3 55.3 51.4 58.6 47.5 62.9
MCNet [44] ICLR’17 R 89.7 18.9 70.6 37.3 59.7 45.1 53.0 24.0 63.5 31.7 55.4 37.3
VFlow [25] CVPR’17 R 83.9 17.4 71.1 28.8 63.4 36.6 53.9 32.4 46.9 37.4 42.6 41.5
OMP [50] CVPR’20 R+L 89.1 8.5 75.7 16.5 67.4 23.3 79.2 18.5 67.6 24.6 60.7 30.4

VPVFI [51] CVPR’22 R 94.5 6.4 80.4 17.8 70.0 27.8 82.7 12.3 69.5 20.3 61.1 26.4
CorrWise [10] CVPR’22 R 92.8 8.5 83.9 15.0 75.1 21.7 82.0 17.2 73.0 22.0 66.7 25.9

SADM [1] CVPR’21 R+L+F 95.9 7.6 83.5 14.9 N/A N/A 83.1 14.4 72.4 24.6 64.7 31.2
DMVFN [13] CVPR’23 R 95.7 5.6 83.5 14.9 N/A N/A 88.5 10.7 78.0 19.3 70.5 26.0
WALDO [19] ICCV’23 R+L+F 95.7 4.9 85.4 10.5 77.1 15.8 86.7 10.8 76.6 16.3 70.2 20.6

VEST-MPI [55] ECCV’22 R N/A N/A N/A N/A N/A N/A N/A 15.6 N/A 34.4 N/A 44.7

Ours R+L+D 96.4 4.6 86.2 9.8 78.0 14.9 87.7 10.1 77.6 15.4 71.3 19.8

Table 4: Comparisons to state-of-the-art video prediction methods on
Cityscapes [5] and KITTI [9] datasets. We compute multi-scale SSIM (×10−2)
and LPIPS (×10−2) for the future frame evaluation. ‘R’, ‘F’, ‘L’, ‘I’ and ‘D’ denote the
video frames, optical flow, segmentation map, instance map and depth map, respec-
tively. ‘N/A’ means not available.

4.3 Concurrent VEST (VEST-[S+T])

Setup. We proposed to evaluate concurrent video extrapolation in space and
time on the KITTI dataset [9], referred to as VEST-[S+T]. We use train-test
splits from [19] with an image resolution of 256× 832.
Baselines. While VEST-MPI [55] provides a promising baseline for comparison,
the unavailability of pre-trained models and challenges in reproducibility have
limited its application in our study. Instead, we use alternate strong baselines:
WALDO [19] → 3D Photo [35]: Combining video prediction and single-image
novel view synthesis methods, we first use WALDO [19], to generate a future
frame. Then, we employ 3D Photo [35] to convert the future frame into a layered
depth image (LDI), rendering it from a desired viewpoint through a constructed
mesh. Additionally, we enhance 3D Photo [45] with the state-of-the-art monoc-
ular depth estimator ZoeDepth [2].
DMVFN [13] → 3D Photo [35]: Following the same procedure, we use DMVFN
instead of WALDO.
Results. Quantitative results in Table 1 show that our approach consistently
outperforms prior SOTA methods in error metrics. Notably, our method consis-
tently improves SSIM and LPIPS over long-term forecasts. As depicted in Fig. 5,
DMVFN exhibits stretch artifacts due to backward warping and inconsistent oc-
clusion handling resulting from computing flow in the 2D domain. WALDO faces
challenges with inaccuracies in layered decomposition, especially for objects mov-
ing in different directions but merged into the same layer, creating inconsistent
artifacts. Our method effectively addresses these issues through the incorporation
of 3D scene geometry and 3D motion modeling using a disentangled approach.

4.4 Video Prediction (VP)

In Table 4, we present a quantitative comparison with state-of-the-art (SOTA)
video prediction approaches, using train/test splits from [1, 47]. Our approach
surpasses SOTA methods across all error metrics.
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(a)	DMVFN	->	3D	Photo (b)	WALDO	->	3D	Photo (c)	Ours (d)	Ground	Truth

Fig. 5: Qualitative Results for concurrent video extrapolation in space and
time (VEST-[S+T]). (a) The DMVFN [13] → 3D Photo [35] baseline produces
stretching artifacts around the car due to disocclusions caused by the use of 2D flow-
based backward warping. (b) In WALDO [19] → 3D Photo [35], indicates the incon-
sistent motion of the road. This occurs due to the layered approach of WALDO [19],
where the road and car are mistakenly assigned to the same layer and have similar
motion. (c) Our approach mitigates these issues, achieving high-fidelity motion fore-
casting (indicated by ).

4.5 Ablation Study

We conduct an ablation study on the KITTI dataset for the VEST-[S+T] task
to validate the effectiveness of various proposed system components. Table 3
presents comparisons between our full system and variants: A) Using a fixed
depth for both input images, determined by the optimal distance for 3D-2D
splatting. Using a fixed depth transforms 3D motion forecasting task into 2D
optical flow forecasting task; B) Omitting the ego-motion forecasting (EMF)
module and using only the object motion forecasting (OMF) module for fore-
casting 3D motion; C) using only ego-motion forecasting (EMF) module without
object motion forecasting (OMF) module. Without OMF module, synthesized
future frame quality degrades as shown in Table 3. In the absence of EMF mod-
ule, OMF module can partially compensate for it. However, having an explicit
EMF module improves visual quality.

5 Discussion and Conclusion

Limitations. Our approach relies on physical depth estimates and faces chal-
lenges with inaccuracy in depth, particularly with thin structures and incon-
sistencies in depths across frames. These inaccuracies can lead the forecasted
results that feature unnatural distortions of thin structures, impacting overall
realism of the forecasted frames. Utilizing RGB-D video can be a solution.

Conclusion. We present a novel approach for video extrapolation in space and
time. By leveraging 3D scene geometry, our method disentangles 3D scene ge-
ometry from scene motion. It further disentangles the forecasting of ego-motion
from the motion of specific objects, overcoming limitations found in recent ap-
proaches. Our approach shows significant improvements over prior state-of-the-
art methods in forecasting future videos from novel views.
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