Exploring the Use of Elastic Resource Federations for
Enabling Large-scale Scientific Workflows

Javier Diaz-Montes”, Yu Xie"", Ivan Rodero”, Jaroslaw Zola", Baskar Ganapathysubramanian**, and Manish Parashar”

*Rutgers Discovery Informatics Institute, Rutgers University

**Departmen‘c of Mechanical Engineering, Iowa State University

ABSTRACT

An important class of scientific and engineering workflows,
e.g. those used for uncertainty quantification, design op-
timization and parametric studies, naturally map onto the
Many-Task Computing (MTC) paradigm. However, what
distinguishes these workloads is a unique combination of
dynamically changing resource requirements and very large
computational and throughput demands. Such workflows
can benefit from an elastic execution infrastructure that is
based on the dynamic federation of resources. The overar-
ching goal of this paper is to explore the nature of such an
elastic, dynamically federated platform, and to experimen-
tally demonstrate that it can effectively support the targeted
class of scientific and engineering workflows. As a driving
application for our study we use the problem of constructing
a phase diagram in microfluidics, which is representative for
a broader class of parameter space interrogation techniques.
To satisfy its computational demands of 2.5 million core-
hours within reasonable time limits, we construct a dynamic
federation of ten HPC resources from six different computing
centers. This experiment delivers the most comprehensive
data on fluid flow in a microchannel with an obstacle. More-
over, it offers important insights that enable us to identify
key requirements and architectural components that a plat-
form based on federated resources must provide in order to
efficiently handle considered scientific MTC workloads.

1. INTRODUCTION

The rapid and sustained progress in computational mod-
eling, and the resulting computational and data complex-
ity, require new approaches to large-scale computing and
data management. The analysis of high-dimensional param-
eter spaces, uncertainty quantification by stochastic sam-
pling, or statistical significance assessment through resam-
pling, are just few examples of a broad class of problems
that are becoming increasingly important in a wide range of
application domains. These “ensemble” applications usually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

consist of a set of heterogeneous computationally intensive,
and independent or loosely coupled tasks, and can easily
consume millions of core-hours on any state-of-the-art HPC
resource. While many of these problems are conveniently
parallel, their collective complexity exceeds computational
time and throughput that average user can obtain from a
single computational center. At the same time, these ap-
plications can be generally described as MTC [18], and can
benefit from a federation of computational resources. How-
ever, they differ from traditional MTC applications as they
combine large computational and throughput demand with
dynamically changing resource requirements. Consequently,
such workloads are hard to efficiently support on classic fed-
eration models in which a user is presented with a fixed set of
resources. All this necessitates the exploration of new feder-
ation models that could be dynamically shaped to meet the
specific properties of scientific MTC applications.

In this paper, we investigate the use of a dynamic feder-
ation to support large-scale scientific and engineering work-
flows. To perform the study, we solve the actual problem
of constructing phase diagram of possible flow behaviors in
a microchannel. The problem is highly representative for a
broad spectrum of methods in which large search-spaces are
analyzed in a coordinated manner. Because the problem in-
volves executing over 12,000 highly heterogeneous and com-
pute intensive MPI tasks, we develop a federation which can
be elastically adapted to the changing requirements of the
application and the availability of the resources over time.
The federation spans ten different HPC resources from six
computational centers, and delivers 2.5 million core-hours
required to conclude the tasks. This experiment not only
delivers the most comprehensive data on fluid flow in a mi-
crochannel with an obstacle, but offers important insights
that enable us to identify key requirements and architec-
tural components that a federation must provide in order to
support large-scale scientific MTC workloads.

The reminder of this paper is organized as follows. In
Section 2 we introduce the fluid flow problem, our represen-
tative scientific application with dynamic resource require-
ments. In Section 3 we describe a model of elastic federation
on which we execute the test case. In Section 4 we explain
our test environment, and we present experimental results
followed by discussion in Sections 5 and 6. Finally, in Sec-
tion 7 we review related work, and then conclude the paper
in Section 8.

2. USE CASE

In order to perform our study we selected the question of
understanding fluid flow in microdevices. Our choice is mo-
tivated by the great practical importance of this problem.
The ability to control fluid streams at microscale has sig-
nificant applications in many domains, including biological
processing [23], guiding chemical reactions [9], and creating
structured materials [14]. Two of the authors, henceforth
referred to as the end-user, are part of a team that recently
discovered that placing pillars of different dimensions, and
at different offsets, allows “sculpting” the fluid flow in mi-
crochannels [2]. The design and placement of sequences of
pillars provides a phenomenal degree of flexibility to pro-
gram the flow for various bio-medical and manufacturing
applications. However, to achieve such a control it is nec-
essary to understand how flow is affected by different input
parameters.

The end-user has developed a parallel, finite element and
MPI-based Navier-Stokes equation solver, which can be used
to simulate flows in a microchannel with an embedded pil-
lar obstacle. Here, the microchannel with the pillar is a
building block that implements a fluid transformation. For
a given combination of microchannel height, pillar location
and diameter, and Reynolds number (4 variables), the solver
captures both qualitative and quantitative characteristics of
flow (see Figure 1). In order to reveal how the input param-
eters interplay, and how they impact flow, the end-user seeks
to construct a phase diagram of possible flow behaviors. In
addition, the end-user would like to create a library of single
pillar transformations to enable analysis of sequences of pil-
lars. This amounts to interrogating the resulting 4D param-
eter space, in which a single point is equivalent to a parallel
Navier-Stokes simulation with a specific configuration.

Figure 1: Example flow in a microchannel with a
pillar. Four variables characterize the simulation:
channel height, pillar location, pillar diameter, and
Reynolds number. Please view in color.

The problem is challenging for several reasons. Although
it clearly can be expressed as MTC, varying and non-trivial
computational requirements make it very dynamic. The
search space consists of tens of thousands of points, and an
individual simulation may take hundreds of core-hours, even
when executed using parallel computing on a state-of-the-art
HPC cluster. The individual tasks are highly heterogeneous
and their cost of execution is very difficult to estimate a pri-
ori, owing to varying resolution and mesh density required
for different configurations. In our case, the cost may range
from 100 core-hours to 100,000 core-hours per task executed
on the IBM Blue Gene/P. Consequently, scheduling and co-
ordination of the execution cannot be performed manually,
and a single system is insufficient to support it. Finally,
because the non-linear solver is iterative, it may fail to con-
verge for some combinations of input parameters, in which
case fault-tolerance mechanisms should be engaged. The
above properties make the problem practically impossible
for the end-user to solve using standard computational re-
sources (e.g. computational allocation from XSEDE).

App3

App2
Site 1
Federation Site 2
Management
Appl Space
Site 4 & °
Agent
Agent App3
App3
Aol 1\ Shared
Execution
Shared Agent Space
Execution App2 w
Space R M
w Shared
Mow-w Execution
Space P
W.Rr W
P w w
w
w) IW

Figure 2: Architecture of CometCloud-based fed-
eration model. Here, (M) denotes a master, (W)
is a worker, (IW) an isolated worker, (P) a proxy,
and (R) is a request handler. Arrows represent de-
ployment of a computational site, while lines show
communication.

It is important to note that the described problem is
highly representative for a broad category of parameter space
interrogation techniques, which are essential for understand-
ing how process variables affect behavior of the modeled sys-
tem, to quantify uncertainty of the model when input data
is incomplete or noisy, or to establish a ground on which in-
verse problems can be investigated. While these techniques
are very diverse, typically they involve a large collection of
computationally intensive tasks, with little or no synchro-
nization between the tasks. Collectively, different variants
of parameter space interrogation techniques constitute a sig-
nificant fraction of all computational workloads executed on
HPC resources these days.

3. FEDERATION ARCHITECTURE

To build a federation that could dynamically evolve in
terms of size and capabilities, and could serve as the ex-
ecution and test environment for our selected application,
we decided to use the CometCloud framework [25]. Here,
CometCloud provides a basic functionality on top of which a
federation can be achieved. For example, it offers autonomic
capabilities, fault tolerance mechanisms, and the transpar-
ent access to cloud, grid, and HPC infrastructures. More-
over, it defines a flexible API that supports several com-
mon programming paradigms such as, e.g. Master/Worker,
Map/Reduce and Bag-of-Tasks.

The general overview of our CometCloud-based federation
is provided in Figure 2. The core element and the driving
mechanism used to coordinate different aspects of the fed-
eration are the Comet coordination spaces [15]. Specifically,
we define two types of spaces. First, we have a single fed-
erated management space for creating the actual federation
and orchestrating different resources. This space is respon-
sible for interchanging any operational messages to discover
resources, announcing changes in a site, routing users’ re-
quests to appropriate sites, and initiating negotiations to
create ad-hoc execution spaces. Then, we have multiple
shared execution spaces that are created on demand to sat-

Federation

Management Security Federated Site
p Autonomic Manager
ublish
2 Resource Manager
Federation subscribe o N
Management) Operational | |
Spgace notify | Coordinator | | Liicupation

Agent| |Agent LI Agent

(Master | (worker] [)
(Masterj (Horker) Workflow
Worker | | Worker IR

Figure 3: Main elements implementing a federated
site. Each agent is responsible for executing tasks
using one of the programming models.

isfy computational needs of the users. Execution spaces can
be created in the context of a single site to provision local
resources, and can cloudburst to public clouds or external
HPC systems. Moreover, they can be used to create a pri-
vate sub-federation across several sites. This case can be
useful when several sites have some common interest and
they decide to jointly target certain type of tasks as a spe-
cialized community.

Each shared execution space is controlled by an agent that
creates the space, and coordinates the resources that execute
a particular set of tasks. Agents can act as a master of the
execution, or delegate this duty to a dedicated master (M)
when some specific functionality is required. Additionally,
agents deploy workers to perform the actual execution of
tasks. These workers can be in a trusted network, be part
of the shared execution space and store data, or they can be
part of external resources such as public clouds, and there-
fore in a non-trusted network. The first type of workers is
called secure (W), and can pull tasks directly from the space.
The second type is called isolated (IW), and cannot directly
interact with the shared space. Instead, isolated workers de-
pend on a proxy (P), and a request handler (R), to obtain
tasks from the space. This distinction is important since
it allows us to define specific boundaries in the way data
is accessed. This in turn can be used to optimize the data
storage and exploit data locality. Moreover, this mechanism
can be used to define security policies and decide who can
access which data.

Users can access the federation and benefit from its ca-
pabilities from any participating site. Figure 3 presents the
architectural details of a federated site. Here, we distinguish
two main components, namely resource manager and auto-
nomic manager. The first one manages local resources, and
elastically deploys agents to meet the computational require-
ments of the users. It also includes a monitoring system that
collects status information of all federated resources. This
information system can be used to announce the capabilities
of the federation, to drive the execution of a user applica-
tion, etc. On the other hand, the autonomic manager pro-
vides users with on-site autonomic capabilities. This com-
ponent makes sure that user’s application is executed within
terms of the specified policies, and adapts the provisioned
resources accordingly.

Federation sites interact with the rest of the federation

though the federation management space in a publish/subscribe

fashion. Each site publishes information about the status of
its resources, the services they offer, or computational needs
of its users. Additionally, each site creates subscriptions to
be notified when there is some event of interest, such as for
example that a user requests one of the offered services. Al-
ternatively, the federation site is also able to work using a
push/pull model.

In our approach a federation is created dynamically in a
collaborative way, where CometCloud enables sites to talk to
each other to identify themselves, negotiate the terms of ad-
hesion, discover available resources, and advertise their own
resources and capabilities. The required federated manage-
ment space is created at runtime, while sites can join and
leave at any point. We note, that as a part of the adhesion
negotiation, sites may have to verify their identities using se-
curity mechanisms such as X.509 certificates, public/private
key authentication, or others.

4. EXPERIMENTAL SETUP

In order to perform the experiment, the end-user feder-
ated 10 different resources, provided by six institutions from
three countries. We wish to stress that all elements of the
experiment, e.g. creation of the federation, deployment of
the CometCloud middleware and the simulation software,
as well as the execution of computations, were performed
completely by operating within limits imposed by the shell
account of the end-user. Only SSH access was utilized, and
no special privileges were required. This approach was also
employed to guarantee the security of the federation, i.e. we
leveraged only the existing SSH infrastructure. Table 1 pro-
vides a summary of resources used during the experiment.
As can be seen, aggregated resources span different hard-
ware architectures and queuing systems, ranging from the
high-end supercomputers to small-scale servers.

We integrated the MPI-based solver, described in Sec-
tion 2, with the CometCloud-based federation infrastructure
using the Master/Worker paradigm. The master component
takes care of generating tasks, collecting results, verifying
that all tasks executed properly, and keeping log of the exe-
cution. Here, each task is described by a simulation config-
uration (specific values of the input variables), and minimal
hardware requirements. All tasks are automatically placed
in the CometCloud-managed distributed task space for exe-
cution. In case of failed tasks the master recognizes the er-
ror and either directly resubmits task (in case of a hardware
error or a resource leaving the federation), or regenerates
it after first increasing the minimal hardware requirements
and/or modifying solver parameters (in case of an applica-
tion error and/or insufficient resources). In the proposed ap-
proach, workers’ sole responsibility is to execute tasks pulled
from the task space. To achieve this, each worker interacts
with the respective queuing system and the native MPI li-
brary via a set of dedicated drivers implemented as simple
shell scripts.

To interrogate the parameter space at the precision level
satisfactory to the end-user we identified 12,400 simulations
(tasks) as essential. The estimated collective cost of these
tasks is 1.5 million core-hours if executed on the Stampede
cluster. While this number is already challenging, we note
that approximately 300,000 tasks would be required to pro-
vide a fine-grained view of the parameter space. As we al-
ready mentioned, tasks are very heterogeneous in terms of
hardware requirements and computational complexity. This

Table 1: Computational resources used to execute the experiment and their capability.

Name Provider Type Corest Memory? Network Scheduler Cores/task Accepted tasks
Excalibur ~ RDI? IBM BG/P 8,192 512 MB BG/P LoadLeveler 1024 S/M/L
Snake RDI2 Linux SMP 64 2 GB N/A N/A 64 S/M
Stampede XSEDE iDataPlex 1,024 4 GB 1B SLURM 128 S/M/L
Lonestar ~ XSEDE iDataPlex 480 2GB 1B SGE 120 S/M/L
Hotel FutureGrid iDataPlex 256 4GB 1B Torque 128 S/M/L
India FutureGrid iDataPlex 256 3GB IB Torque 128 S/M/L
Sierra FutureGrid iDataPlex 256 4GB 1B Torque 128 S/M/L
Carver DOE/NERSC iDataPlex 512 4GB 1B Torque 256 S/M
Hermes UCLM, Spain Beowulf 256 4GB 10 GbE SGE 128 S/M/L
Libra IHPC, Singapore Beowulf 128 8 GB 1 GbE N/A 128 S/M

Note: 1 — peak number of cores available to the experiment. I — memory per core. S — small, M — medium, and L — large.

is because of varying mesh density and size, as well as con-
vergence rate of the solver. For instance, some tasks require
minimum 512 GB of total RAM, while many can execute
in 64 GB. To accommodate for this variability we classified
tasks into three groups (small, medium, large), based on
their estimated minimal hardware requirements. Depending
on the hardware characteristics different machines accepted
tasks from different classes (see Table 1). This was achieved
by providing a simple configuration file to the respective
worker. Although the task classification is necessarily error-
prone, due to non-trivial dependencies between mesh size,
and memory and time complexity, it serves as a good proxy
based on which computational sites can decide which tasks
to pull. At the same time, misclassified tasks can be handled
by fault-tolerance mechanisms of CometCloud.

5. EXPERIMENTAL RESULTS

The experiment lasted 16 days during which 10 differ-
ent HPC resources were federated, and total of 12,845 tasks
were executed. Together, all tasks consumed 2,897,390 core-
hours, and generated 398 GB of the output data. The
progress of the experiment is summarized in Figure 4.

The initial configuration of the federation included only
five machines (Ezcalibur, Snake, Stampede, Lonestar, Ho-
tel) out of seven planned. Two other machines, India and
Sierra, joined with a delay caused by maintenance issues.
After the first day of execution it became apparent that more
computational resources were needed to finish the experi-
ment within assumed deadline. This is because some ma-
chines were experiencing problems, and more importantly,
our XSEDE allocation on Stampede was being exhausted
rapidly. At that point, the first significant feature of our
solution came into play — thanks to the extreme flexibility
of the CometCloud platform temporal failures of individual
resources did not interrupt the overall progress, and adding
new resources was possible within few minutes from the mo-
ment the access to a new resource was acquired, and the sim-
ulation software was deployed. Indeed, on the second day
Hermes from Spain was added to the execution pool, and
soon after NERSC’s Carver, and Libra from Singapore were
federated. Consequently, the federation was able to sustain
computational performance. Figure 4 shows that most of the
time anywhere between 5 and 25 simulations were running,
despite multiple idle periods scattered across the majority
of the machines. These idle periods were caused by com-
mon factors, such as for example, hardware failures and long
waiting times in system queues. All failures were handled by
the CometCloud fault-tolerance mechanism. During the ex-

periment 249 tasks had to be regenerated due to hardware
errors, and 167 due to inability of the solver to converge.
We note, that 29 additional tasks were run as a result of a
speculative execution. All this demonstrates great robust-
ness of the framework — depending on the requirements of
the application and the availability of resources, federation
can be scaled up or down accordingly.

Figure 5 outlines how the computational throughput, mea-
sured as the number of tasks completed per hour, was shaped
by different computational resources. Here, several interest-
ing observations can be made. First, no single resource dom-
inated the execution. Although Stampede, the most powerful
machine among all federated, provided a brief performance
burst during the first two days, it was unable to deliver a
sustained throughput. In fact, tasks on this machine were
submitted to the “development” queue that limits the num-
ber of processors used by a job, but offers relatively high
turnover rate. Yet, even this queue got saturated after the
first day of execution, which caused a sudden drop in the
throughput. This pattern can be observed on other systems
as well (e.g., see Lonestar and Carver), and it confirms our
earlier observation that no single system can offer a suffi-
cient throughput. Another observation is related to how the
throughput was distributed in time. The peak was achieved
close to the end of the experiment, even though after twelfth
day Fzcalibur was running at half its initial capacity (see
Figure 4). This can be explained by the fact that the ma-
jority of tasks executing towards the end were small tasks.
Consequently, all available resources were able to partici-
pate in execution, and short runtimes increased the overall
throughput.

The last important element of the experiment was data
management. In our case, the input data consisted of two
components: a finite element mesh database tightly inte-
grated with the simulation software, and hence deployed to-
gether with the software, and a 4-tuple describing simula-
tion parameters. As a result, no special mechanisms were
required to handle the input. The output data consisted of
simulation results and several small auxiliary files. The size
of the output varied between simulations. The data was
compressed in situ and on-the-fly during the experiment,
and then transferred using the RSYNC protocol to the central
repository for a subsequent analysis.

6. LESSONS LEARNED

The results presented in the previous section clearly demon-
strate feasibility and capability of an elastic, dynamically
federated platform. In our experiment a single user, with

o o U P T (A |

"

T T T T T T T T
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

Running tasks

Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

Figure 4: Summary of the experiment. Top: Uti-
lization of different computational resources. Line
thickness is proportional to the number of tasks be-
ing executed at given point of time. Gaps corre-
spond to idle time, e.g. due to machine mainte-
nance. Bottom: The total number of running tasks
at given point of time.

80

- . . \ .
3 Excalibur == Stampede == Hotel Sierra Hermes ==
< Snake == Lonestar India Carver Libra m=
< B L
8
= 404 r
5
(=}
=
] A -
2
E o= 4 e RV SYVVY)
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15
- 80
é Large -~ Medium - Small
T 604 L
"
pi]
= 40 A r
=3
Q
=
S 20 r
E]
I
£ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Day 1 Day 3 Day 5 Day 7 Day9 Dayll Day13 Dayl5
160
= [Stampede=— Lonestar Carver
‘€ 120 A ‘ r
o IIt
£ 804 Il r
S
o I
2 40 i L
=
© \

Day 1 Da‘y3 Da;/S Da;/7 Da‘y9 Da)l 11 Da)l 13 Da)l 15
Figure 5: Throughput and queue waiting time. Top:
Dissection of throughput measured as the number
of tasks completed per hour. Different colors rep-
resent component throughput of different machines.
Middle: Throughput contribution by different task
classes. Bottom: Queue waiting time on selected
resources. Please view in color.

basic SSH access to several globally distributed and hetero-
geneous resources, was able to solve a large-scale computa-
tional engineering problem, within just two weeks.
Currently, the majority of investigators with large com-
putational demands have access to multiple HPC systems.
In order to take the advantage of the collective power these
systems offer, we need a way to make these systems work
together. The classic idea of a federation is to deploy an
infrastructure that cannot be altered by a user. Our results
show that a user-oriented approach, where a user can ad-
just the federation on-demand and on-the-fly is a better fit

for the dynamic heterogeneous computational problems. In
our approach a user is empowered with a simple mechanism
to quickly federate resources as they become available, and
without a third-party intervention. As a result, the federa-
tion is much more robust in responding to the changing com-
putational demand (e.g. in our test we federated additional
resources after the second day of the experiment to meet the
assumed deadline). A natural extension of this concept, is to
offer resources as a service, hiding their actual location and
architecture. In this way, a user could interact with a fed-
eration via familiar and intuitive programming abstraction,
which ultimately would improve usability. Currently, our
solution provides a unified programming abstraction, e.g. in
the experiment we used the Master/Worker model, and we
continue to work on the Resource-as-a-Service capability.

One important element that contributed to the success of
the experiment, was the ability of the federation to scale
across institutional and geographic boundaries. Oftentimes,
a single resource is not sufficient to execute a given scientific
workload (e.g. because it is of limited scale, or it mismatches
application requirements). Moreover, in the majority of
cases predicting computational and storage requirements is
difficult or impossible. Therefore, scaling up/down or out
as needed becomes essential for dynamic workloads. Our re-
sults show that elasticity makes the infrastructure resilient
to changes in the federation. Consequently, the federation
is able to better sustain computational throughput.

The last remark regards the heterogeneity of the federa-
tion. Having highly heterogeneous resources as a part of the
federation, it is crucial to take advantage of their particu-
lar characteristics and optimize resources allocation. This is
synergistic with the concept of autonomic computing. In our
experiment different resources were assigned different types
of tasks depending on their computational power. This en-
abled us to use powerful supercomputers for large tasks, and
smaller systems for the remaining tasks. This significantly
contributed to the overall throughput of the experiment.

Based on the above observations, we believe that to tackle
large scale problems with very dynamic computational de-
mands a federation must ensure: i) extreme ease of deploy-
ment, ii) on-demand resource provisioning, elasticity and
resilience, iii) sustainability of computational throughput,
iv) strong fault-tolerance guarantees for tasks and resources,
v) efficient use of the existing infrastructure capabilities, and
vi) data security.

7. RELATED WORK

Federated computing has been explored in various con-
texts and has been demonstrated as an attractive and vi-
able model for effectively harnessing the power offered by
distributed resources [1, 3, 10, 17, 19]. For example, vol-
unteer computing systems (e.g. BOINC) enable end-user
resources provided by a crowd of volunteers to be aggre-
gated to provide non-trivial computing capabilities towards
an application. While this model is easy to configure and
use from a user perspective, it can support only a limited
class of applications, i.e. those with large numbers of small
and independent tasks. At the other end of the spectrum,
Grids (e.g. EGEE [26], Grid’5000 [27], OSG [28]) have tar-
geted more compute/data intensive applications by feder-
ating capacity and/or capabilities into secure and depend-
able virtual organizations. However, grids often have user-
perceived complexity, and configuring them involves com-

plex software-hardware infrastructure requiring significant
experience from the end-users.

Projects like XSEDE [30], PRACE [29] and Grid’5000 [27]
developed successful means of sharing large-scale HPC re-
sources. However, these projects are focused on deliver-
ing loosely coupled computational and storage capability,
and do not implement any specific solution to enable seam-
less access to the federated resources. Among grid feder-
ation efforts we can find InterGrid [7] and LAGrid meta-
scheduling [4] that promote interlinking of different grid sys-
tems through peering agreements [20]. Other examples are
GridWay [21] Koala [16] with the use of delegated match-
making and grid meta-brokering, which is based on high
level abstractions to describe the broker’s capabilities and
properties [13]. Although grid technology significantly con-
tributed to scientific projects, for example ALMA or LHC,
it has intrinsic issues such as usability and relatively static
pool of resources. In that sense, cloud computing leaps for-
ward by offering resources on-demand, and creating the illu-
sion of a unique unlimited pool of resources. Current cloud
platforms can provide effective solution for certain classes of
applications, as reported by several projects [6, 8, 12]. There
are also efforts exploring how to compose providers as a fed-
erated cloud environment [22], how to combine clouds with
integrated computing infrastructures [5, 19], and testbeds
such as FutureGrid and Open Cirrus that support research
on cloud federation and resource management. Neverthe-
less, many HPC applications, for example tightly coupled
MPI-codes, cannot effectively take advantage of cloud infras-
tructures, due to the high network latency, which translates
in the low performance and reliability [11]. Moreover, even
for suitable applications, the cost and relative performance
of cloud becomes a concern [6]. According to the Magellan
report [24], cloud services were found to be 7 to 13 times
more expensive.

8. CONCLUSIONS

In this paper, we focused on a class of MTC problems
with dynamic and non-trivial computational requirements.
Using a representative application of constructing phase di-
agram of possible flow behaviors in microscale devices, we
performed a large-scale experiment to understand which fea-
tures must be provided by a federation in order to efficiently
support large scientific workloads. We developed a feder-
ation that enabled us to dynamically aggregate HPC re-
sources, to solve the selected problem within acceptable time
limits. Our results demonstrate great potential of elastic fed-
eration to tackle large-scale problems, that otherwise would
require dedicated leadership-class systems.

9. ACKNOWLEDGMENTS
This work is supported in part by the NSF under grants

11P-0758566, ACI-1339036, DMS-0835436, CAREER-1149365

and PHY-0941576. This project used resources provided
by: XSEDE supported by NSF OCI-1053575, FutureGrid
supported in part by NSF OCI-0910812, and NERSC Cen-
ter supported by DOE DE-AC02-05CH11231. The authors
would like to thank the research groups at UCLM, IHPC for
providing access to their resources. The authors would also
like to thank Dr. O. Wodo, Dr. D. DiCarlo and M. Abdel-
baky for their discussion and helpful comments, and P. Bis-
bal and K. Tanaka for their support.

References

(1

(2]
(3]
4]

5]

6]

(7]

8]

19l

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]
[26]
[27]
[28]
[29]
30]

G. Allen and D. Katz. Computational science, infrastructure
and interdisciplinary research on university campuses: Experi-
ences and lessons from the center for computation & technology.
Technical Report CCT-TR-2010-1, Center for Computation &
Technology, Louisiana State University, 2010.

H. Amini, E. Sollier, M. Masaeli, et al. Engineering fluid flow us-
ing sequenced microstructures. Nature Communications, 2013.
F. Berman, G. Fox, and A. Hey. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons, 2003.

N. Bobroff, L. Fong, S. Kalayci, et al. Enabling interoperability
among meta-schedulers. In Proc. IEEE Int. Symp. on Cluster,
Cloud, and Grid Computing (CCGrid), pages 306-315, 2008.
A. Celesti, F. Tusa, M. Villari, et al. How to enhance cloud ar-
chitectures to enable cross-federation. In Proc. IEEE Int. Conf.
on Cloud Computing (Cloud), pages 337-345, 2010.

E. Deelman, G. Singh, M. Livny, et al. The cost of doing science
on the cloud: the Montage example. In Proc. Supercomputing
(SC), 2008.

M. Dias de Assuncao, R. Buyya, and S. Venugopal. InterGrid:
a case for internetworking islands of grids. Concurrency and
Computation:Practice and Ezperience, 20(8):997-1024, 2008.
G. Fox and D. Gannon. Cloud programming paradigms for tech-
nical computing applications. In Proc. Cloud Futures Workshop,
2012.

Y. Gambin, V. VanDelinder, F. A., et al. Visualizing a one-way
protein encounter complex by ultrafast single-molecule mixing.
Nature Methods, 8:239-241, 2011.

G. Garzoglio, T. Levshina, M. Rynge, et al. Supporting shared
resource usage for a diverse user community: the OSG experience
and lessons learned. Journal of Physics: Conference Series,
396, 2012.

A. Tosup, S. Ostermann, M. Yigitbasi, et al. Performance analy-
sis of cloud computing services for many-tasks scientific comput-
ing. IEEE Transactions on Parallel and Distributed Systems,
22(6):931-945, 2011.

K. Keahey and T. Freeman. Science clouds: Early experiences
in cloud computing for scientific applications. In Proc. Cloud
Computing and Its Applications (CCA), 2008.

A. Kertesz, I. Rodero, and F. Guim. BPDL: A data model for
grid resource broker capabilities. Technical Report TR-0074,
CoreGRID Inst. on Resource Management and Scheduling, 2007.
H. Lee, J. Kim, H. Kim, et al. Colour-barcoded magnetic mi-
croparticles for multiplexed bioassays. Nature Materials, 9:745—
749, 2010.

Z. Li and M. Parashar. A computational infrastructure for grid-
based asynchronous parallel applications. In Proc. Int. Symp.
on High Performance Distributed Computing (HPDC), pages
229-230, 2007.

H. Mohamed and D. Epema. KOALA: a co-allocating grid sched-
uler. Concurrency and Computation: Practice € Ezxperience,
20:1851-1876, 2008.

M. Parashar and C. Lee. Special issue on grid computing. Pro-
ceedings of the IEEE, 93(3), 2005.

I. Raicu, I. Foster, and Y. Zhao. Many-task computing for grids
and supercomputers. In Proc. Workshop on Many-Task Com-
puting on Grids and Supercomputers, pages 1-11, 2008.

P. Riteau, M. Tsugawa, A. Matsunaga, et al. Large-scale
cloud computing research: Sky computing on FutureGrid and
Grid’5000. In ERCIM News, 2010.

I. Rodero, D. Villegas, N. Bobroff, Y. Liu, L. Fong, and S. M.
Sadjadi. Enabling interoperability among grid meta-schedulers.
J. Grid Comput., 11(2):311-336, 2013.

T. Vazquez, E. Huedo, R. Montero, et al. Evaluation of a utility
computing model based on the federation of grid infrastructures.
In Proc. Euro-Par Conf. on Parallel Processing, pages 372-381,
2007.

D. Villegas, N. Bobroff, I. Rodero, et al. Cloud federation in a
layered service model. Journal of Computer and System Sci-
ences, 78(5):1330-1344, 2012.

J. Wang, Y. Zhan, V. Ugaz, et al. Vortex-assisted DNA delivery.
Lab on a Chip, 10:2057-2061, 2010.

K. Yelick, S. Coghlan, B. Draney, et al. The Magellan report
on cloud computing for science. Technical report, U.S. Depart-
ment of Energy Office of Advanced Scientific Computing Re-
search (ASCR), 2011.

CometCloud Project. http://www.cometcloud.org/.

EGEE — Enabling Grids for E-sciencE. http://www.eu-egee.org/.
Grid’5000 Project. https://www.grid5000.fr/.

Open Science Grid. https://www.opensciencegrid.org/.

PRACE Project. http://www.prace-project.eu/.

XSEDE Project. https://www.xsede.org/.

