Federated Computing for the Masses - Aggregating Resources
to Tackle Large-scale Engineering Problems

Technical Report: TR-RDI2-20130515-0
May 15,2013

Javier Diaz-Montes
Rutgers Discovery Informatics Institute
Rutgers University

Baskar Ganapathysubramanian
Department of Mechanical Engineering
Iowa State University

Manish Parashar
Rutgers Discovery Informatics Institute
Rutgers University

Ivan Rodero
Rutgers Discovery Informatics Institute
Rutgers University

Yu Xie
Department of Mechanical Engineering
Iowa State University

Jaroslaw Zola
Rutgers Discovery Informatics Institute
Rutgers University

Rutgers Discovery Informatics Institute (RDI?)
Rutgers, The State University of New Jersey
96 Frelinghuysen Road, Piscataway, NJ 08854
http:/ /rdi2.rutgers.edu/

Abstract

The complexity of many problems in science and engineering requires computational
capacity greatly exceeding what average user can expect from a single computational
center. While many of these problems can be viewed as a set of independent tasks, their
collective complexity easily requires millions of core-hours on any state-of-the-art HPC
resource, and throughput that cannot be sustained by a single multi-user queuing sys-
tem. In this report we explore the use of aggregated heterogeneous HPC resources to
solve large-scale engineering problems. We show that it is possible to build a computa-
tional federation that is easy to use by end-users, and at the same time is elastic, resilient
and scalable. We argue that the fusion of federated computing and real-life engineering
problems can be brought to average user if relevant middleware infrastructure is pro-
vided. To support our claims, we report on the use of federation of 10 geographically
distributed heterogeneous HPC resources to perform a large-scale interrogation of the
parameter space in the microscale fluid flow problem.

(© 2013, Rutgers, The State University of New Jersey, All Rights Reserved.

1 Introduction

The ever-growing complexity of scientific and engineering problems continues to pose new re-
quirements and challenges for computing and data management. The analysis of high-dimensional
parameter spaces, uncertainty quantification by stochastic sampling, or statistical significance as-
sessment through resampling, are just few examples of a broad class of problems that are be-
coming increasingly important in a wide range of application domains. These “ensemble”, also
termed as many task computing, applications consist of a set of heterogeneous computationally
intensive, and independent or loosely coupled tasks, and can easily consume millions of core-
hours on any state-of-the-art HPC resource. While many of these problems are conveniently
parallel, their collective complexity exceeds computational time and throughput that average
user can obtain from a single computational center. For instance, the fluid flow problem we con-
sider comprises more than ten thousand MPI tasks, and would require approximately 1.5 million
core-hours to solve on the Stampede cluster at TACC — one of the most powerful machines within
XSEDE [12]. Although XSEDE allocations of that size are not uncommon, the heavy utilization of
Stampede, and its typical queue waiting times make it virtually impossible to execute that number
of tasks within an acceptable time limit. The problem becomes even more complex if we take
into account that individual tasks are heterogeneous, and add in the possibility of failures that
are not uncommon in large-scale multi-user systems.

The above constraints are not unique to one particular problem or a system. Rather, they
represent common obstacles that can limit the scale of problems that can be considered by an
ordinary researcher on a single, even very powerful, system. What is important, this trend con-
tinues and one can only expect that more and more users will require computational throughput
that cannot be delivered just by one resource. In order to overcome these limitations two im-
portant questions have to be addressed. First, how to empower a researcher with computational
capability that is compatible to what currently is reserved for the “elite” problems. Second, how
to deliver this capability in a user-centered way.

In this report, we argue that both questions can be answered by implementing a federation
model in which a user, without any special privileges, can seamlessly aggregate multiple, glob-
ally distributed and heterogeneous HPC resources exploiting their intrinsic capabilities. Then,
we show how federated computing can be used to solve in a user-centered way the actual large-
scale computational problem in engineering. Our work is motivated by the need to understand
flow behavior in microfluidic devices. Our focus is on empowering average user with aggregated
computational capabilities typically reserved for selected high-profile problems. To achieve this,
we aggregate heterogeneous HPC resources in the spirit of how volunteer computing assembles
desktop computers. Specifically, we introduce a model of computational federation that i) is
extremely easy to deploy and offers an intuitive API to meet expectations and needs of average
user; ii) encapsulates cloud-like capabilities, e.g. on-demand resource provisioning, elasticity and
resilience, to provide sustainable computational throughput; iii) provides strong fault-tolerance
guarantees through constant monitoring of tasks and resources; iv) bridges multiple, highly het-
erogeneous resources, e.g. servers, clusters, supercomputers and clouds, to effectively exploit
their intrinsic capabilities; and v) leverages existing hardware/software infrastructure.

To solve the computational problem we federate 10 machines from 3 countries and execute

12,845 MPI-based simulations, that collectively consume 2.5 million core-hours.

2 Problem Description

The ability to control fluid streams at microscale has significant applications in many domains,
including biological processing [9], guiding chemical reactions [3], and creating structured mate-
rials [4], to name just a few. Two of the authors, henceforth referred to as the end-user, are part
of a team that recently discovered that placing pillars of different dimensions, and at different
offsets, allows “sculpting” the fluid flow in microchannels [1]. The design and placement of
sequences of pillars allows a phenomenal degree of flexibility to program the flow for various
bio-medical and manufacturing applications. However, to achieve such a control it is necessary
to understand how flow is affected by different input parameters. This problem is highly repre-
sentative for a broad category of parameter space interrogation techniques, which are essential
for understanding how process variables affect behavior of the modeled system, to quantify un-
certainty of the model when input data is incomplete or noisy, or to establish a ground on which
inverse problems can be investigated. While these techniques are very diverse, typically they
involve a large collection of computationally intensive tasks, with little or no synchronization
between the tasks.

The end-user developed a parallel, MPI-based Navier-Stokes equation solver, which can be
used to simulate flows in a microchannel with an embedded pillar obstacle. Here, the microchan-
nel with the pillar is a building block that implements a fluid transformation (see Fig. 1). For a
given combination of microchannel height, pillar location, pillar diameter, and Reynolds number
(four variables), the solver captures both qualitative and quantitative characteristics of flow. In
order to reveal how the input parameters interplay, and how they impact flow, the end-user seeks
to construct a phase diagram of possible flow behaviors. In addition, the end-user would like to
create a library of single pillar transformations to enable analysis of sequences of pillars. This
amounts to interrogating the resulting 4D parameter space, in which a single point is equivalent
to a parallel Navier-Stokes simulation with a specific configuration.

The problem is challenging for several reasons. The search space consists of tens of thousands
of points, and an individual simulation may take hundreds of core-hours, even when executed
on a state-of-the-art HPC cluster. For example, the specific instance we consider requires 12,400
simulations. The individual tasks, although independent, are highly heterogeneous and their

Figure 1: Example flow in a microchannel with a pillar. Four variables characterize the sim-
ulation: channel height, pillar location, pillar diameter, and Reynolds number. Please view in
color.

cost of execution is very difficult to estimate a priori, owing to varying resolution and mesh
density required for different configurations. In our case, the cost may range from 100 core-
hours to 100,000 core-hours per task executed on the IBM Blue Gene/P. Consequently, scheduling
and coordination of the execution cannot be performed manually, and a single system cannot
support it. Finally, because the non-linear solver is iterative, it may fail to converge for some
combinations of input parameters, in which case fault-tolerance mechanisms should be engaged.
The above properties make the problem impossible for the end-user to solve using the standard
computational resources (e.g. computational allocation from XSEDE).

3 Federation for the Masses

As we already mentioned, the presented problem is representative for a much broader class
of parameter space interrogation techniques. Here, classic examples are Monte Carlo methods,
stochastic sampling strategies (e.g. sparse grid collocation), or soft computing approaches (e.g.
simulated annealing). These techniques constitute a significant fraction of all scientific codes in
use today, and hence are of great practical importance to average user. Our goal is to develop a
federation model that would be able to support resulting large-scale workloads, but at the same
time would be user-centered. To build such a model it is imperative to understand two key
elements. First, which specific properties of large-scale scientific and engineering applications
must be taken into consideration to enable efficient execution in a large federated environment?
Second, what kind of expectations must be addressed in order to achieve a user-centered design?

We start our considerations with answering the first question. A typical approach to investi-
gate large search-spaces combines two elements: a master module that encapsulates a problem
logic, e.g., to decide how the search-space should be navigated through, and a science-driver that
implements the actual computational core. Usually, both elements are contained within separate
software components, and problem logic can be implemented indirectly in the execution environ-
ment (e.g. as a script interacting with a queuing system). Individual instances of a science-driver
are either independent or involve asynchronous communication. Naturally, complexity of both
modules may vary drastically. However, in the vast majority of cases it is the science-driver that
is represented by a complex parallel code, and requires HPC resources to execute. For instance,
in our fluid flow challenge, the problem logic amounts to a simple enumeration of selected points
in the search space, while the science-driver is a complex MPI-based fluid flow simulation. Al-
though a science-driver is computationally challenging on its own, the actual complexity comes
from the fact that the usual investigation involves large number of tasks (e.g. millions in any
Monte Carlo analysis). Oftentimes a single resource is insufficient to execute the resulting work-
load either because of insufficient throughput or limited computational capability. Additionally,
tasks might be heterogeneous and have diverse hardware requirements, or can be optimized for
specific architectures. Moreover, except of simple scenarios, tasks are generated dynamically,
based on partial or complete results delivered by previously completed tasks.

To answer the second question, we have to keep in mind that our focus is on a regular user
with a need for large computational capacity. Such a user typically has access to several HPC
resources which most likely are highly heterogeneous in terms of computational power, as well
as underlying architecture, and are geographically distributed. The access is provided via a

standard environment, for example, a shell account. As a result, end-user is presented with a
substantial computational power that nevertheless is scattered, highly diversified, lacks a unified
exposition, and requires non-trivial coordination, ultimately hindering potential applicability.

Based on the above characteristic we can identify a several key features that a successful fed-
eration model must account for. If we consider workloads” properties then the federation must
be elastic and scalable — the ability to scale up/out and down becomes essential to handle vary-
ing over time number of tasks. Additionally, the federation must be able to adapt to the diverse
task requirements, and make optimal use of distinct features contributed by the heterogeneous
federated resources. Consequently, capability, which we define as the ability of a federation to
take advantage of particular hardware characteristics, must be the first-class citizen in the model.
This requirement is synergistic with the concept of autonomic computing. To address user expec-
tations, the federation must aggregate heterogeneous resources while operating completely in a
user-space. After all, it is unrealistic to expect that a user will have an administrative privileges
on any HPC resource. At the same time, the federation should hide low-level details, such as
geographic location or hardware architecture, while offering a familiar programming interface,
for example, supporting common parallel programming idioms like master/worker or MapRe-
duce, which could be used directly by a user. Finally, a user must be able to deploy existing
applications, i.e. science-drivers and sometimes a problem logic module, within the federation
and without modifications.

3.1 A User-centered Approach to Federation

To deliver a federation model with properties highlighted in the previous section we focused
on usability, elasticity and resilience as primary objectives. In our model, the underlying in-
frastructure is presented as a single pool of resources regardless of their physical location. The
design is based on four layers, where the lowest layer is responsible for the interaction with phys-
ical resources, and the highest one is the actual user application. The appropriate provisioning
of resources in accordance with user provided policies is realized by the cross-layer autonomic
manager. The schematic representation of the design is presented in Figure 2.

The federation overlay is a self-organizing structure that provides a uniform view on top
of physical resources. It allows users to add and remove resources dynamically as needed, and
handles network and resource failures. It is also able to interact with heterogeneous resources
ensuring interoperability. The layer provides a scalable content-based routing and messaging
system that is based on Chord [8]. The routing engine addresses resources using attributes rather
than of specific addresses, and supports flexible content-aware routing, and complex querying
using partial keywords, wildcards, or ranges. It also guarantees that all peer nodes with data
elements that match a query/message are located [6, 7]. The messaging system guarantees
that messages, specified via flexible content descriptors, are served with bounded cost across
resources [6, 7].

The service layer provides a range of services to support autonomics at the programming
and application level. It includes a coordination service that handles the execution of applica-
tions, a discovery service to find resources based on their properties, and an associative object
store service to manage tasks and data. This layer supports a Linda-like [2] tuple space coordi-
nation model, and provides a virtual shared-space abstraction that can be associatively accessed

by all system entities without knowledge of the physical locations of the hosts over which the
space is distributed. In addition, the layer provides dynamically constructed transient spaces to
allow applications to explicitly exploit context locality to improve system performance. Finally, it
equips the programming layer with asynchronous (publish/subscribe or push/pull) messaging
and event services to simplify communication between peer nodes.

The programming layer provides the basic framework for application development and man-
agement. As such, this layer acts as an interface between the federation and a user. The layer
supports several common distributed programming paradigms, including the master/worker,
workflow and MapReduce. These programming abstractions ease the development of applica-
tions by decoupling the application from the particularities of the infrastructure. Using the API
offered by the layer, user can generate tasks and their associated properties, which next are man-
aged by the service layer and autonomic manager. The task consistency service, included in the
layer, handles lost and failed tasks. Different components of the application, for instance master
and worker, or mapper and reducer, can communicate via virtual shared space, or using a direct
connection.

The application layer technically represents the final application developed by a user on top
of the programming layer. However, in many cases a user might be interested in benefiting from
the federation to execute third-party, perhaps closed-source, software. In such cases the target
software cannot or should not be modified, for example due to efficiency considerations. To
accommodate for this, the programming layer can still be used in the standard way, however, the
resulting application becomes a mere container that acts as a facade for the target software. This
tremendously simplifies migration from traditional environments to our federation model. We
should keep in mind however, that in this scenario the target application must be deployed on
the federated resources beforehand.

Autonomic manager in the final and key ingredient of the federation. The manager enables
the autonomic management and multi-objective optimization (including performance, energy,
cost, and reliability criteria) of application execution through cross-layer application/infrastructure

User Data Objectives &
Policies

User Application Autonomic
Manager

Programming Abstraction
Service Layer
Federation Overlay

o= [TI11]

=TT =
— =

=]
1l I

(111}

Figure 2: Multi-layer design of the proposed federation model. Here, the autonomic manager is
a cross-layer component that based on user data and policies provisions appropriate resources.

adaptations. This component offers QoS by adapting the provisioned resources to the applica-
tion’s behavior as well as system configuration, which can change at run time, using the notion
of elasticity at the application level. As a result, the federated infrastructure increases the op-
portunities to provision appropriate resources for given application based on user objectives or
policies, and different resource classes can be mixed to achieve the user objectives. The manager
can scale federation up/down/out based on the dynamic workload and provided user policies.
For example, a user objective can be to accelerate the application execution within a given bud-
get constraints, to complete the application within assumed deadline, or to use resources best
matching to the application type (e.g computation vs. data intensive). Because application re-
quirements and resource status may change, for example, due to workload surges, system failures
or emergency system maintenance, the manager provisions resources adaptively to accommodate
for these changes. Note, that the adaption ensures implicitly resilience of the federation.

3.2 Federation Architecture

The presented model allows the federation to dynamically evolve in terms of size and capabilities.
In particular, the federation is created in a collaborative way, where sites talk with each other to
identify themselves, negotiate the terms of adhesion, discover available resources, and advertise
their own resources and capabilities. Therefore, a federated management space is created at
runtime, while sites can join and leave at any point. As a part of the adhesion negotiation,
sites may have to verify their identities using security mechanisms such as X.509 certificates,
public/private key authentication, or others. The federation architecture is presented in Figure 3.

The federation is based on the Comet coordination spaces concept [5], which is supported by

App3
App2
Site 1
Federation Site 2
Management
Appl Space
Site 4 83
Agent
ige%t App3
/:\A%?)T {P Shared
Execution
Shared Agent Space
Execution App2 w
Space R - M
w Shared
M-ow-w Execution
Space P
W.R-W
P w W
W
w) [IW

Figure 3: Architecture of the proposed federation model. Here, (M) denotes a master, (W) is
a worker, (IW) an isolated worker, (P) a proxy, and (R) is a request handler. Arrows represent
deployment of a computational site, while lines show communication channels.

the previously described model. The Comet spaces are used to coordinate different aspects of the
federation. In particular, we decided to use two types of spaces. First, we have a single federated
management space used to create the actual federation and orchestrate different resources. This
space is used to interchange any operational message for discovering resources, announcing
changes in a site, routing users’ requests to appropriate sites, or initiating negotiations to create
ad-hoc execution spaces. On the other hand, we can have multiple shared execution spaces
that are created on demand to satisfy computational needs of the users. Execution spaces can
be created in the context of a single site to provision local resources, and cloudburst to public
clouds or external HPC systems. Moreover, they can be used to create a private sub-federation
across several sites. This case can be useful when several sites have some common interest and
they decide to jointly target certain type of tasks as a specialized community.

As shown in Figure 3, each shared execution space is controlled by an agent that creates the
space, and coordinates the resources that execute a particular set of tasks. Agents can act as
a master of the execution, or delegate this duty to a dedicated master (M) when some specific
functionality is required. Moreover, agents deploy workers to perform the actual execution of
tasks. These workers can be in a trusted network, be part of the shared execution space and
store data, or they can be part of external resources such as public clouds, and therefore in a
non-trusted network. The first type of workers is called secure (W) and can pull tasks directly
from the space. Meanwhile, the second type is called isolated (IW) and cannot interact directly
with the shared space. Instead, isolated workers have to interact with a proxy (P), and a request
handler (R), to be able to pull tasks from the space. This distinction is important since it allows us
to define specific boundaries in the way data is accessed. This fact in turn can be used to optimize
the data storage and exploit data locality. Moreover, it also can be used to define security policies
and decide who can access which data.

Users can access the federation and benefit from its capabilities from any participating site.
Figure 4 presents the architectural details of a federated site. Here, we see two main components,
namely resource manager and autonomic manager. The first one manages local resources, and

Federation

Management Security Federated Site
Autonomic Manager
publish
Resource Manager
Federation subscribe
Management) Operational]
Spgace notify Coordinator | | nformation

Agent| |Agent LU Agent

Worker
Master orke Workflow

M
Worker | | Worker clEEr

Figure 4: Main elements implementing a federated site. Each agent is responsible for executing
tasks using one of the programming models (e.g. mater/worker, workflow).

elastically deploys agents to meet the computational requirements of the users. It also includes
a monitoring system that collects status information of all federated resources. This information
system can be used to announce the capabilities of the federation, to drive the execution of
a user application, etc. On the other hand, the autonomic manager provides users with on-
site autonomic capabilities. As we mentioned in Section 3.1, this component makes sure that
user’s application is executed within terms of the specified policies, and adapts the provisioned
resources accordingly.

Federation sites interact with the rest of the federation though the federation management
space in a publish/subscribe fashion. Each site publishes information about the status of its
resources, the services they offer, or computational needs of its users. Additionally, each site
creates subscriptions to be notified when there is some event of interest, such as for example that
a user requests one of the offered services. Alternatively, the federation site is also able to work
using a push/pull model.

4 Fluid Flow Analysis

To solve our fluid flow challenge we implemented the proposed federation model using the
CometCloud framework [10]. CometCloud is an autonomic framework that enables dynamic,
and on-demand federation of advanced cyberinfrastructures (ACI). It also provides a flexible
programming platform, and AP], to easily develop applications that can take advantage of feder-
ated AClIs. Furthermore, it enables dynamicity and fault-tolerance in the resulting infrastructure.
As a result, sites can join and leave the federation at any moment without interrupting the exe-
cution.

We started the solving process by analyzing the simulation software, to decide how it should
be integrated with the CometCloud infrastructure. Here, we concentrated on the following issues:

o Input/output requirements — What are the data formats used by the software? What is the
scale of the data? Which output data has to be retained for a downstream analysis, and
which can be discarded?

o Error and exception handling — How soft and hard errors are reported and handled in the
software? What actions should be triggered by each error?

o Scalability — What is the minimal per-core memory requirement? In what core range the
software exhibits malleable characteristics?

o Software dependencies — What third party packages are required by the software? How sen-
sitive is the software to the choice of a compiler, and compiler options?

Based on the analysis we summarized the software requirements: The input data, that is finite
element meshes, are stored in a custom format text files, with size varying from 1 MB to 5 MB.
The main output is stored in the standard PLT format, with size varying from 25 MB to 100 MB.
The software maintains weak scalability up to 2,048 cores across different interconnects, and
scales linearly up to 256 cores. Furthermore, for many simulations the minimal configuration
requires total 512 GB of RAM to execute. All errors in the software are reported through the

10

standard error output channel. Finally, the software is based on the PETSc library from the
Argonne National Laboratory. This library is notoriously difficult to deploy properly, owing to a
significant variability between different versions, and large battery of options.

We combined the MPI-based solver with the CometCloud infrastructure using the mas-
ter/worker paradigm. In this scenario, the simulation software serves as a computational en-
gine, while CometCloud is responsible for orchestrating the entire execution. The master/worker
model is among several directly supported by CometCloud, and it perfectly matches problems
with a large pool of independent tasks. The master component takes care of generating tasks,
collecting results, verifying that all tasks executed properly, and keeping log of the execution.
Here, each task is described by a simulation configuration (specific values of the input variables),
and minimal hardware requirements. All tasks are automatically placed in the CometCloud-
managed distributed task space for execution. In case of failed tasks the master recognizes the
error and either directly resubmits task (in case of a hardware error or a resource leaving the
federation), or regenerates it after first increasing the minimal hardware requirements and/or
modifying solver parameters (in case of an application error and/or insufficient resources). In
the proposed approach, a workers sole responsibility is to execute tasks pulled from the task
space. To achieve this, each worker interacts with the respective queuing system and the native
MPI library via a set of dedicated drivers implemented as simple shell scripts.

At this point, we should note that thanks to the space-based nature of CometCloud infrastruc-
ture, master /worker applications display a pull-based mechanism rather than the more prevalent
push-based model. Each worker identifies tasks that best match its capabilities based on task
properties (e.g. hardware requirements). Consequently, the heterogeneity of tasks and computa-
tional resources can be efficiently managed. Moreover, the entire platform becomes very flexible,
for example, speculative execution and fault-tolerance can be naturally expressed.

The selected realization of computational federation has several important, and highly de-
sired properties. The integration of the existing software with the CometCloud platform does
not require any adjustments on the application side. The implementation of the master and
worker components amounts to approximately 500 lines of a simple Java code, including the task
generation logic, that would have to be implemented irrespective of the selected approach. The
interaction with specific computational resources is based on drivers, that are actual shell scripts
submitted to the queuing system. Finally, the entire infrastructure operates within shell accounts,
without any special privileges. All this demonstrates the extreme ease of use and flexibility of
the CometCloud-based solution, in tune with our goal of providing a user-centered solution.

4.1 Execution Environment

To interrogate the parameter space at the satisfactory precision level we identified 12,400 simula-
tions (tasks) as essential. The estimated collective cost of these tasks is 1.5 million core-hours if
executed on the Stampede cluster. While this number is already challenging, we note that approx-
imately 300,000 tasks would be required to provide a fine-grained view of the parameter space.
As we already mentioned, tasks are very heterogeneous in terms of hardware requirements and
computational complexity. This is because of varying mesh density and size, as well as con-
vergence rate of the solver. For instance, some tasks require minimum 512 GB of total RAM,
while many can execute in 64 GB. To accommodate for this variability we classified tasks into

11

three groups (small, medium, large), based on their estimated minimal hardware requirements.
Although this classification is necessarily error-prone, due to non-trivial dependencies between
mesh size, and memory and time complexity, it serves as a good proxy based on which computa-
tional sites can decide which tasks to pull. At the same time, misclassified tasks can be handled
by fault-tolerance mechanisms of CometCloud.

To execute the experiment we federated 10 different resources, provided by six institutions
from three countries. The characteristics of the selected machines are outlined in Tables 1 and 2.
As can be seen, utilized resources span different hardware architectures and queuing systems,
ranging from the high-end supercomputers to small-scale servers. Depending on the hardware
characteristics different machines accepted tasks from different classes (see Table 2). This was
achieved by providing a simple configuration file to respective CometCloud worker. Our ini-
tial rough estimates indicated that the first seven machines (Excalibur, Snake, Stampede, Lonestar,
Hotel, India, Sierra) would be sufficient to carry out the experiment, and conclude it within two
weeks. However, during the experiment, as we explain later, we decided to integrate additional
resources (Carver, Hermes, Libra). Because all machines were used within limits set by the host-
ing institutions no special arrangements were made with their system administrators, and both
the-end users’ software and CometCloud components were deployed using a basic SSH account.

4.2 Experimental Results

The experiment lasted 16 days during which 10 different HPC resources were federated, and total
of 12,845 tasks were executed. Together, all tasks consumed 2,897,390 core-hours, and generated
398 GB of the output data. The progress of the experiment is summarized in Figure 5.

The initial configuration of the federation included only five machines (Excalibur, Snake, Stam-
pede, Lonestar, Hotel) out of seven planned. Two other machines, India and Sierra, joined with
a delay caused by maintenance issues. After the first day of execution it became apparent that
more computational resources were needed to finish the experiment within assumed deadline.
This is because some machines were experiencing problems, and more importantly, our XSEDE
allocation on Stampede was being exhausted rapidly. At that point, the first significant feature
of our solution came into play — thanks to the extreme flexibility of the CometCloud platform
temporal failures of individual resources did not interrupt the overall progress, and adding new
resources was possible within few minutes from the moment the access to a new resource was ac-
quired, and the simulation software was deployed. Indeed, on the second day Hermes from Spain
was added to the execution pool, and soon after NERSC’s Carver, and Libra from Singapore were
federated. Consequently, the federation was able to sustain computational performance. Figure 5
shows that most of the time anywhere between 5 and 25 simulations were running, despite mul-
tiple idle periods scattered across the majority of the machines. These idle periods were caused
by common factors, such as for example, hardware failures and long waiting times in system
queues. All failures were handled by the CometCloud fault-tolerance mechanism. During the
experiment 249 tasks had to be regenerated due to hardware errors, and 167 due to inability of
the solver to converge. We note, that 29 additional tasks were run as a result of a speculative ex-
ecution. All this demonstrates great robustness of the framework — depending on the availability
of resources, and the rate of the execution, federation can be scaled up or down accordingly.

12

Excalibur

Snake
Stampede
Lonestar

Hotel
India
Sierra
Carver
Hermes
Libra

25

Running tasks

Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15
Figure 5: Summary of the experiment.
_ 80
—
>
2
S 60
9]
S
= 40 A
>
Q
<
S 20 -
2
£
0
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15
80 | | | | | | | |
-
>
o
$ 60 A =
9]
S
= 40 - -
>
Q.
<
S 20 A -
2
£
0 T T T T T T T T
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15
160 | | | | | | | |
c
£ 120 r
()
E 80 - -
=
[
3
g 40] =
i} AL P
0 . T = T T T T T T T
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

Figure 6: Throughput and queue waiting time. Please view in color.

13

Excalibur
Snake
Stampede
Lonestar
Hotel
India
Sierra
Carver
Hermes
Libra

Large
Medium
Small

Stampede 1
Lonestar
Carver 1

Table 1: Computational resources used to execute the experiment.

Name Provider Type Cores’ Memoryt Network Scheduler
Excalibur RDI? IBM BG/P 8,192 512 MB BG/P LoadLeveler
Snake RDI? Linux SMP 64 2GB N/A N/A
Stampede XSEDE iDataPlex 1,024 4GB IB SLURM
Lonestar XSEDE iDataPlex 480 2GB IB SGE
Hotel FutureGrid iDataPlex 256 4GB IB Torque
India FutureGrid iDataPlex 256 3 GB IB Torque
Sierra FutureGrid iDataPlex 256 4 GB IB Torque
Carver DOE/NERSC iDataPlex 512 4GB IB Torque
Hermes UCLM, Spain Beowulf 256 4 GB 10 GbE SGE
Libra IHPC, Singapore Beowulf 128 8 GB 1 GbE N/A

Note: t — peak number of cores available to the experiment. § — memory per core.

Table 2: Capability of each resource.

Name Cores per task Accepted tasks
Excalibur 1024 small/medium/large
Snake 64 small/medium
Stampede 128 small/medium/large
Lonestar 120 small/medium/large
Hotel 128 small/medium/large
India 128 small/medium/large
Sierra 128 small/medium/large
Carver 256 small/medium
Hermes 128 small/medium/large
Libra 128 small/medium

Figure 5: Summary of the experiment. Top: Utilization of different computational resources.
Line thickness is proportional to the number of tasks being executed at given point of time. Gaps
correspond to idle time, e.g. due to machine maintenance. Bottom: The total number of running
tasks at given point of time.

Figure 6: Throughput and queue waiting time. Top: Dissection of throughput measured as
the number of tasks completed per hour. Different colors represent component throughput of
different machines. Middle: Throughput contribution by different task classes. Bottom: Queue
waiting time on selected resources. Please view in color.

Figure 6 outlines how the computational throughput, measured as the number of tasks com-
pleted per hour, was shaped by different computational resources. Here, several interesting
observations can be made. First, no single resource dominated the execution. Although Stam-

14

pede, the most powerful machine among all federated, provided a brief performance burst during
the first two days, it was unable to deliver a sustained throughput. In fact, tasks on this machine
were submitted to the “development” queue that limits the number of processors used by a job,
but offers relatively high turnover rate. Yet, even this queue got saturated after the first day
of execution, which caused a sudden drop in the throughput. This pattern can be observed on
other systems as well (e.g., see Lonestar and Carver), and it confirms our earlier observation that
no single system can offer a sufficient throughput. Another observation is related to how the
throughput was distributed in time. The peak was achieved close to the end of the experiment,
even though after twelfth day Excalibur was running at half its initial capacity (see Figure 5). This
can be explained by the fact that the majority of tasks executing towards the end were small tasks.
Consequently, all available resources were able to participate in execution, and short runtimes
increased the overall throughput.

The last important element of the experiment was data management. Technically, the input
data consisted of two components: already mentioned finite element mesh database, and a 4-
tuple describing simulation parameters. The database was tightly integrated with the simulation
software, and hence deployed together with the software. As a result, no special mechanisms
were required to handle the input. The output data consisted of simulation results and several
small auxiliary files. The size of the output varied between simulations. The data was compressed
in situ and on-the-fly during the experiment, and then transferred using the RSYNC protocol to
the central repository for a subsequent analysis.

The presented results clearly demonstrate feasibility and capability of our federation model.
In our experiment, using just basic SSH access to several globally distributed and heterogeneous
resources, we were able to solve a large-scale computational engineering problem, within just two
weeks. What is important, this result was achieved in a few simple steps executed completely
in a user-space. By providing a simple master/worker code we gained access to a unified and
fault-tolerant platform able to sustain computational throughput.

® mode1
® mode 2
® mode3
® mode 4

Figure 7: The phase diagram showing how different flow modes are distributed in the parameter
space. Here, pillar offset is 0, D is a pillar diameter, / is a channel height, w is channel width,
and Re is Reynolds number. Please view in color.

15

4.3 Science Outcomes

Thanks to the above experiment we obtained the most comprehensive data on the effect of pillars
on microfluid channel flow. Although we are still in the process of analyzing this massive out-
put, we already gained several interesting insights regarding fundamental features of the flow.
Figure 7 shows how different flow modes are distributed in the parameter space. Here, each
mode corresponds to one or two vortices generated, as proposed in [1]. When describing the
problem we hinted that by arranging pillars into a specific sequence it is possible to perform
basic flow transformations. Thanks to the library of flow configurations that we generated in this
experiment, we can now investigate the inverse problem and, for example, ask questions about
the optimal pillar arrangement to achieve a desired flow output. The implications of such ca-
pability are far-reaching, with potential applications in medical diagnostics and smart materials
engineering.

5 Final Remarks

Providing an easy access to large-scale computational resources is one of the most important
challenges facing the entire HPC community. In this report we described a federation model that
addresses this challenge by empowering average user with computational capabilities typically
reserved for high-profile computational problems. Using the federation we were able to solve
the actual problem of constructing phase diagram of possible flow behaviors in the microscale
devices.

Research work presented in this report was facilitated by the UberCloud experiment [11]. More
information about this work can be found at http://nsfcac.rutgers.edu/CometCloud/uff/.

Acknowledgment

This work is supported in part by the National Science Foundation (NSF) via grants number
11P-0758566 and DMS-0835436 (RDI? group), and CAREER-1149365 and PHY-0941576 (Iowa State
group). This project used resources provided by: the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by the NSF grant number OCI-1053575, FutureGrid,
which is supported in part by the NSF grant number OCI- 0910812, and the National Energy
Research Scientific Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy (DOE) under the contract number DE-AC02-05CH11231. The authors
would like to thank the SciCom research group at the Universidad de Castillala Mancha, Spain
(UCLM) for providing access to Hermes, and Distributed Computing research group at the In-
stitute of High Performance Computing, Singapore (IHPC) for providing access to Libra. The
authors would like to acknowledge the Consorzio Interuniversitario del Nord est Italiano Per il
Calcolo Automatico, Italy (CINECA), Leibniz-Rechenzentrum, Germany (LRZ), Centro de Super-
computacion de Galicia, Spain (CESGA), and the National Institute for Computational Sciences
(NICS) for willing to share their computational resources. The authors would like to thank Dr.
Olga Wodo for discussion and help with development of the simulation software, and Dr. Dino

16

DiCarlo for discussions about the problem definition. The authors express gratitude to all ad-
ministrators of systems used in this experiment, especially to Prentice Bisbal from RDI? and Koji
Tanaka from FutureGrid, for their efforts to minimize downtime of computational resources, and
a general support. The authors are grateful to Wolfgang Gentzsch and Burak Yenier for their
overall support.

References

[1] H. Amini, E. Sollier, M. Masaeli, et al. Engineering fluid flow using sequenced microstruc-
tures. Nature Communications, 2013.

[2] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444-458,
1989.

[3] Y. Gambin, V. VanDelinder, F. A, et al. Visualizing a one-way protein encounter complex by
ultrafast single-molecule mixing. Nature Methods, 8:239-241, 2011.

[4] H. Lee,]J. Kim, H. Kim, et al. Colour-barcoded magnetic microparticles for multiplexed
bioassays. Nature Materials, 9:745-749, 2010.

[5] Z. Li and M. Parashar. A computational infrastructure for grid-based asynchronous parallel
applications. In Proc. Int. Symp. on High Performance Distributed Computing (HPDC), pages
229-230, 2007.

[6] C. Schmidt. Flexible information discovery in decentralized distributed systems. In Proc.
Int. Symp. on High Performance Distributed Computing (HPDC), 2003.

[7] C. Schmidt and M. Parashar. Squid: Enabling search in DHT-based systems. Journal of
Parallel and Distributed Computing, (7):962-975, 2008.

[8] I Stoica, R. Morris, D. Liben-Nowell, et al. Chord: A scalable peer-to-peer lookup protocol
for internet applications. In ACM Special Interest Group on Data Communication (SIGCOMM),
pages 149-160, 2001.

[9] J. Wang, Y. Zhan, V. Ugaz, et al. Vortex-assisted DNA delivery. Lab on a Chip, 10:2057-2061,
2010.

[10] CometCloud Project. http://www.cometcloud.org/.
[11] The Uber-Cloud Experiment. http://www.hpcexperiment.com/.

[12] XSEDE Project. https:/ /www.xsede.org/.

17

