
ADAM: A Method For
Stochastic Optimization

Presentation By
KAJOL
UB ID: 50478691

Roadmap

2

1 3 5

642

Introduction
Problem

Statement
Related

work

Motivation Algorithm Experiments

7

Demo

Introduction

3

● The background of "ADAM: A Method for Stochastic Optimization" is rooted in the
training of artificial neural networks, which is a crucial task in deep learning.

● At the time of the paper's publication, the most widely used optimization algorithms
for training deep learning models were gradient descent and its variants, such as
momentum and Nesterov acceleration.

● However, these algorithms had limitations, such as the need for careful tuning of the
learning rate and difficulty in handling noisy gradients.

● The background of the paper is to address these limitations and provide a new
optimization algorithm that can improve the training of deep learning models.

Motivation

4

● The motivation behind this paper is to address the challenges faced by traditional
optimization algorithms in training deep learning models.

● These challenges include slow convergence, sensitivity to the choice of the learning
rate, and difficulty in handling noisy gradients.

● The authors aimed to develop a new optimization algorithm that can overcome these
challenges and lead to faster and more reliable convergence.

● The ADAM algorithm was introduced as a solution to these challenges by
incorporating ideas from adaptive learning rate methods and second-order gradient
information.

Problem Statement

5

● The problem statement is to propose a new optimization algorithm for training deep
neural networks.

● ADAM combines the advantages of two popular optimization methods:
- Root Mean Square Propagation (RMSprop)
- Adaptive Gradient Algorithm (AdaGrad)
and handles the challenges of adapting the learning rates for different parameters in a
computationally efficient manner.

● The authors aimed to demonstrate that ADAM can effectively optimize complex neural
network models, achieve faster convergence and achieve better results compared to
other existing optimization methods.

ALGORITHM

6

ALGORITHM

7

● A new optimization algorithm called "Adam" (Adaptive Moment Estimation)
for minimizing the expected value of a noisy, differentiable objective
function (f(θ)).

● The algorithm estimates the gradient (first moment) and the squared
gradient (second raw moment) of the objective function at each timestep
using exponential moving averages.

● The hyper-parameters β1 and β2 control the exponential decay rates of these
moving averages, which are initially set to 0s and can result in biased
moment estimates.

8

● However, the paper outlines how to counteract this initialization bias and
obtain bias-corrected estimates.

● The algorithm updates the parameters using the bias-corrected moment
estimates, with the learning rate αt being a function of the moving average
parameters.

● The authors note that the efficiency of the algorithm can be improved by
changing the order of computation.

ADAM’S UPDATE RULE

9

● Adam's update rule carefully chooses stepsizes for optimization

● In less sparse cases, effective step size will be smaller

● Ratio is referred to as the signal-to-noise ratio (SNR)

● With a smaller SNR, effective step size is closer to zero

● Smaller SNR means greater uncertainty about gradient direction

● SNR typically becomes smaller towards optimum, leading to smaller effective steps

● Effective step size is invariant to gradient scale

INITIALIZATION BIAS
CORRECTION

10

● Initialization bias correction is used to correct the discrepancy between
- True second moment of gradient
- Estimated second moment.

● The exponential moving average of the squared gradient is used to estimate
the second raw moment, with a decay rate of β2.

● If the true second moment is not stationary, the exponential moving average
can be kept small by choosing a small value of β2.

● However, if the gradients are sparse, a reliable estimate of the second
moment requires a small value of β2, which without correction would result
in larger initial steps.

● To correct this, the algorithm divides the estimate by (1 - βt
2), which corrects

the initialization bias.

 CONVERGENCE ANALYSIS

▪ In the paper "Convergence Analysis of Adam", the convergence of Adam optimization
algorithm is analyzed using the online learning framework proposed by Zinkevich, 2003.

▪ The goal is to predict the parameter θ at each time t and evaluate it on a previously
unknown cost function ft.

▪ The evaluation of the algorithm is done using regret, which is the sum of all previous
differences between the online prediction ft(θt) and the best fixed point parameter ft(θ*).

▪ When the data features are sparse and bounded gradients, the summation term can be
much smaller than its upper bound. Finally, the average regret of Adam converges to
O(1/√T).

11

Experiments
Let’s start experimenting

12

 EXPERIMENT: Logistic
Regression

▪ Evaluation of the proposed Adam algorithm on L2-regularized
multi-class logistic regression using the MNIST dataset.

▪ Stepsizes alpha adjusted with 1/√t decay in the experiments.

▪ Comparison of Adam to accelerated SGD with Nesterov momentum
and Adagrad, with a minibatch size of 128.

▪ Adam yields similar convergence as SGD with momentum and both
converge faster than Adagrad.

13

14

▪ Examination of the sparse feature problem using the IMDB movie review
dataset.

▪ Adagrad outperforms SGD with Nesterov momentum both with and without
dropout noise.

▪ Adam converges as fast as Adagrad and can take advantage of sparse features.
▪ Empirical performance of Adam is consistent with the theoretical findings in the

paper.

Figure : Logistic regression training negative log likelihood on MNIST images and
IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

Experiment: Multi-layer
Neural Networks

▪ Models are powerful but have non-convex objective functions
▪ Experiment used neural network with 2 fully connected hidden layers

with 1000 hidden units each and ReLU activation with minibatch size of
128

▪ Study of different optimizers with standard deterministic cross-entropy
objective and L2 weight decay to prevent overfitting

▪ Comparison between Adam and sum-of-functions (SFO) method
▪ Results show that Adam is faster in terms of iterations and wall-clock

time and SFO is slower with linear memory requirement

15

16

▪ Stochastic regularization methods like dropout used to prevent
over-fitting

▪ SFO fails to converge with cost functions with stochastic
regularization

▪ Comparison between Adam and other stochastic first order
methods on multi-layer neural networks trained with dropout
noise

▪ Results show that Adam is better in terms of convergence than
other methods

17

Figure 2: Training of multilayer neural networks on MNIST images.
(a) Neural networks using dropout stochastic regularization.
(b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al.,
2014

EXPERIMENT:
Convolutional Neural
Networks

▪ Convolutional Neural Networks (CNNs) have demonstrated great
success in computer vision tasks.

▪ Weight sharing in CNNs leads to vastly different gradients
compared to fully connected neural networks.

▪ A smaller learning rate is often used for convolution layers in
CNNs.

▪ The CNN architecture used in the experiment consists of
alternating convolution and pooling layers, followed by a fully
connected layer.

18

19

● Input images are pre-processed by whitening and dropout noise is
applied to the input and fully connected layers.

● Although Adam and Adagrad make rapid progress in the initial stage
of training, Adam and SGD eventually converge faster.

● The second moment estimate in Adagrad is a poor approximation for
the cost function in CNNs.

● Reducing minibatch variance through the first moment is more
important in CNNs and contributes to the speed-up.

● Adagrad converges much slower compared to other methods.

● Adam shows marginal improvement over SGD with momentum and
adapts the learning rate scale for different layers.

20

Figure: Convolutional neural networks training cost.
(left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with
c64-c64-c128-1000 architecture.

EXPERIMENT:
Bias-Correction Term

▪ The experiment evaluates the effect of the bias correction
term on training a variational autoencoder.

▪ The results show that without the bias correction term,
training becomes unstable when values of β2 are close to 1,
especially in the early epochs of training.

▪ The best results were achieved with small values of (1−β2)
and with the bias correction term present.

▪ Adam performed equal or better than RMSProp, regardless
of the hyper-parameter setting.

21

22

Figure : Effect of bias-correction terms (red line) versus no bias correction
terms (green line) after 10 epochs (left) and 100 epochs (right) on the loss
(y-axes) when learning a Variational AutoEncoder (VAE) (Kingma &
Welling, 2013), for different settings of stepsize α (x-axes) and
hyperparameters β1 and β2.

ADAMAX

▪ Adamax is a variant of Adam optimization algorithm that
uses L-infinity norm based updates.

▪ In Adamax, the update rule for individual weights involves
scaling their gradients inversely proportional to the
L-infinity norm of their current and past gradients.

▪ The exponential weighted infinity norm is updated using a
simple recursive formula:

23

24

▪ Unlike standard Adam, there is no need to correct for
initialization bias in Adamax.

▪ This helps to prevent the Adam optimizer from over-fitting and
improving generalization.

▪ It is a popular choice for optimization due to its fast convergence
and robustness to noisy gradients.

▪ Adamax is well suited for sparse data and high dimensional
parameters.

TEMPORAL AVERAGING

▪ Averaging the last iterate can improve the generalization
performance in stochastic approximation as it is noisy.

▪ Polyak-Ruppert averaging and exponential moving average
can be used for averaging the parameters.

▪ The exponential moving average can be easily implemented
by adding this line to the inner loop of algorithms.

▪ Initialization bias can be corrected by the estimator

25

26

DEMO

https://github.com/yacineMahdid/artificial-intelligence-and-machine-learning/blob/master/deep-learning-from-scratch-python/Gradient%20Descent%20Optimization%20Algorithms.ipynb

Conclusion -ADAM

1
Introduction of a simple
and efficient algorithm
for gradient-based
optimization.

2
Aimed towards machine
learning problems with
large datasets and/or
high-dimensional
parameter spaces.

3
Combination of
advantages of AdaGrad
and RMSProp.

4
Easy implementation and
low memory
requirements.

5
Confirmation of rate of
convergence in convex
problems.

6
Robustness and
suitability for
non-convex optimization
problems in machine
learning.

27

Thank you!

You have been a great
audience!

Let’s rock this semester
together!!

28

