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Introduction
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● The background of "ADAM: A Method for Stochastic Optimization" is rooted in the 
training of artificial neural networks, which is a crucial task in deep learning. 

● At the time of the paper's publication, the most widely used optimization algorithms 
for training deep learning models were gradient descent and its variants, such as 
momentum and Nesterov acceleration. 

● However, these algorithms had limitations, such as the need for careful tuning of the 
learning rate and difficulty in handling noisy gradients. 

● The background of the paper is to address these limitations and provide a new 
optimization algorithm that can improve the training of deep learning models.



Motivation

4

● The motivation behind this paper is to address the challenges faced by traditional 
optimization algorithms in training deep learning models. 

● These challenges include slow convergence, sensitivity to the choice of the learning 
rate, and difficulty in handling noisy gradients. 

● The authors aimed to develop a new optimization algorithm that can overcome these 
challenges and lead to faster and more reliable convergence. 

● The ADAM algorithm was introduced as a solution to these challenges by 
incorporating ideas from adaptive learning rate methods and second-order gradient 
information.



Problem Statement
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● The problem statement is to propose a new optimization algorithm for training deep 
neural networks. 

● ADAM combines the advantages of two popular optimization methods:
- Root Mean Square Propagation (RMSprop) 
- Adaptive Gradient Algorithm (AdaGrad)
and handles the challenges of adapting the learning rates for different parameters in a 
computationally efficient manner. 

● The authors aimed to demonstrate that ADAM can effectively optimize complex neural 
network models, achieve faster convergence and achieve better results compared to 
other existing optimization methods.



ALGORITHM
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ALGORITHM

7

● A new optimization algorithm called "Adam" (Adaptive Moment Estimation) 
for minimizing the expected value of a noisy, differentiable objective 
function (f(θ)). 

● The algorithm estimates the gradient (first moment) and the squared 
gradient (second raw moment) of the objective function at each timestep 
using exponential moving averages. 

● The hyper-parameters β1 and β2 control the exponential decay rates of these 
moving averages, which are initially set to 0s and can result in biased 
moment estimates. 
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● However, the paper outlines how to counteract this initialization bias and 
obtain bias-corrected estimates. 

● The algorithm updates the parameters using the bias-corrected moment 
estimates, with the learning rate αt being a function of the moving average 
parameters. 

● The authors note that the efficiency of the algorithm can be improved by 
changing the order of computation.



ADAM’S UPDATE RULE
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● Adam's update rule carefully chooses stepsizes for optimization

● In less sparse cases, effective step size will be smaller

● Ratio                 is referred to as the signal-to-noise ratio (SNR)

● With a smaller SNR, effective step size is closer to zero

● Smaller SNR means greater uncertainty about gradient direction

● SNR typically becomes smaller towards optimum, leading to smaller effective steps

● Effective step size is invariant to gradient scale



INITIALIZATION BIAS 
CORRECTION
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● Initialization bias correction is used to correct the discrepancy between 
- True second moment of gradient 
- Estimated second moment. 

● The exponential moving average of the squared gradient is used to estimate 
the second raw moment, with a decay rate of β2. 

● If the true second moment is not stationary, the exponential moving average 
can be kept small by choosing a small value of β2. 

● However, if the gradients are sparse, a reliable estimate of the second 
moment requires a small value of β2, which without correction would result 
in larger initial steps. 

● To correct this, the algorithm divides the estimate by (1 - βt
2), which corrects 

the initialization bias.



 CONVERGENCE ANALYSIS

▪ In the paper "Convergence Analysis of Adam", the convergence of Adam optimization 
algorithm is analyzed using the online learning framework proposed by Zinkevich, 2003.

▪  The goal is to predict the parameter θ at each time t and evaluate it on a previously 
unknown cost function ft. 

▪ The evaluation of the algorithm is done using regret, which is the sum of all previous 
differences between the online prediction ft(θt) and the best fixed point parameter ft(θ*).

 

▪ When the data features are sparse and bounded gradients, the summation term can be 
much smaller than its upper bound. Finally, the average regret of Adam converges to 
O(1/√T).
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Experiments
Let’s start experimenting
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 EXPERIMENT: Logistic 
Regression

▪ Evaluation of the proposed Adam algorithm on L2-regularized 
multi-class logistic regression using the MNIST dataset.

▪ Stepsizes alpha adjusted with 1/√t decay in the experiments.

▪ Comparison of Adam to accelerated SGD with Nesterov momentum 
and Adagrad, with a minibatch size of 128.

▪ Adam yields similar convergence as SGD with momentum and both 
converge faster than Adagrad.
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▪ Examination of the sparse feature problem using the IMDB movie review 
dataset.

▪ Adagrad outperforms SGD with Nesterov momentum both with and without 
dropout noise.

▪ Adam converges as fast as Adagrad and can take advantage of sparse features.
▪ Empirical performance of Adam is consistent with the theoretical findings in the 

paper.

Figure : Logistic regression training negative log likelihood on MNIST images and 
IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.



Experiment: Multi-layer 
Neural Networks

▪ Models are powerful but have non-convex objective functions
▪ Experiment used neural network with 2 fully connected hidden layers 

with 1000 hidden units each and ReLU activation with minibatch size of 
128

▪ Study of different optimizers with standard deterministic cross-entropy 
objective and L2 weight decay to prevent overfitting

▪ Comparison between Adam and sum-of-functions (SFO) method
▪ Results show that Adam is faster in terms of iterations and wall-clock 

time and SFO is slower with linear memory requirement
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▪ Stochastic regularization methods like dropout used to prevent 
over-fitting

▪ SFO fails to converge with cost functions with stochastic 
regularization

▪ Comparison between Adam and other stochastic first order 
methods on multi-layer neural networks trained with dropout 
noise

▪ Results show that Adam is better in terms of convergence than 
other methods
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Figure 2: Training of multilayer neural networks on MNIST images. 
(a) Neural networks using dropout stochastic regularization. 
(b) Neural networks with deterministic cost function. We compare 
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 
2014



EXPERIMENT: 
Convolutional Neural 
Networks

▪ Convolutional Neural Networks (CNNs) have demonstrated great 
success in computer vision tasks.

▪ Weight sharing in CNNs leads to vastly different gradients 
compared to fully connected neural networks.

▪ A smaller learning rate is often used for convolution layers in 
CNNs.

▪ The CNN architecture used in the experiment consists of 
alternating convolution and pooling layers, followed by a fully 
connected layer.
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● Input images are pre-processed by whitening and dropout noise is 
applied to the input and fully connected layers.

● Although Adam and Adagrad make rapid progress in the initial stage 
of training, Adam and SGD eventually converge faster.

● The second moment estimate in Adagrad is a poor approximation for 
the cost function in CNNs.

● Reducing minibatch variance through the first moment is more 
important in CNNs and contributes to the speed-up.

● Adagrad converges much slower compared to other methods.

● Adam shows marginal improvement over SGD with momentum and 
adapts the learning rate scale for different layers.
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Figure: Convolutional neural networks training cost. 
(left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with 
c64-c64-c128-1000 architecture.



EXPERIMENT: 
Bias-Correction Term

▪ The experiment evaluates the effect of the bias correction 
term on training a variational autoencoder.

▪ The results show that without the bias correction term, 
training becomes unstable when values of β2 are close to 1, 
especially in the early epochs of training.

▪ The best results were achieved with small values of (1−β2) 
and with the bias correction term present.

▪ Adam performed equal or better than RMSProp, regardless 
of the hyper-parameter setting.
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Figure : Effect of bias-correction terms (red line) versus no bias correction 
terms (green line) after 10 epochs (left) and 100 epochs (right) on the loss 
(y-axes) when learning a Variational AutoEncoder (VAE) (Kingma & 
Welling, 2013), for different settings of stepsize α (x-axes) and 
hyperparameters β1 and β2.



ADAMAX

▪ Adamax is a variant of Adam optimization algorithm that 
uses L-infinity norm based updates.

▪ In Adamax, the update rule for individual weights involves 
scaling their gradients inversely proportional to the 
L-infinity norm of their current and past gradients.

▪ The exponential weighted infinity norm is updated using a 
simple recursive formula:
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▪ Unlike standard Adam, there is no need to correct for 
initialization bias in Adamax.

▪ This helps to prevent the Adam optimizer from over-fitting and 
improving generalization.

▪ It is a popular choice for optimization due to its fast convergence 
and robustness to noisy gradients.

▪ Adamax is well suited for sparse data and high dimensional 
parameters.



TEMPORAL AVERAGING

▪ Averaging the last iterate can improve the generalization 
performance in stochastic approximation as it is noisy.

▪ Polyak-Ruppert averaging and exponential moving average 
can be used for averaging the parameters.

▪ The exponential moving average can be easily implemented 
by adding this line to the inner loop of algorithms.

▪ Initialization bias can be corrected by the estimator 
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DEMO

https://github.com/yacineMahdid/artificial-intelligence-and-machine-learning/blob/master/deep-learning-from-scratch-python/Gradient%20Descent%20Optimization%20Algorithms.ipynb


Conclusion -ADAM

1
Introduction of a simple 
and efficient algorithm 
for gradient-based 
optimization.

2
Aimed towards machine 
learning problems with 
large datasets and/or 
high-dimensional 
parameter spaces.

3
Combination of 
advantages of AdaGrad 
and RMSProp.

4
Easy implementation and 
low memory 
requirements.

5
Confirmation of rate of 
convergence in convex 
problems.

6
Robustness and 
suitability for 
non-convex optimization 
problems in machine 
learning.
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Thank you!

You have been a great 
audience!

Let’s rock this semester 
together!!
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