ADAM: A Method For
Stochastic Optimization

Presentation By
KAJOL
UB ID: 50478691

¢S Roadmap

Problem Related
Introduction Statement work

0 0 0 0

Motivation Algorithm Experiments

Introduction

e The background of "ADAM: A Method for Stochastic Optimization" is rooted in the
training of artificial neural networks, which is a crucial task in deep learning.

e At the time of the paper's publication, the most widely used optimization algorithms
for training deep learning models were gradient descent and its variants, such as
momentum and Nesterov acceleration.

e However, these algorithms had limitations, such as the need for careful tuning of the
learning rate and difficulty in handling noisy gradients.

e The background of the paper is to address these limitations and provide a new
optimization algorithm that can improve the training of deep learning models.

The motivation behind this paper is to address the challenges faced by traditional
optimization algorithms in training deep learning models.

These challenges include slow convergence, sensitivity to the choice of the learning
rate, and difficulty in handling noisy gradients.

The authors aimed to develop a new optimization algorithm that can overcome these
challenges and lead to faster and more reliable convergence.

The ADAM algorithm was introduced as a solution to these challenges by
incorporating ideas from adaptive learning rate methods and second-order gradient
information.

Problem Statement

The problem statement is to propose a new optimization algorithm for training deep
neural networks.

ADAM combines the advantages of two popular optimization methods:

- Root Mean Square Propagation (RMSprop)

- Adaptive Gradient Algorithm (AdaGrad)

and handles the challenges of adapting the learning rates for different parameters in a
computationally efficient manner.

The authors aimed to demonstrate that ADAM can effectively optimize complex neural
network models, achieve faster convergence and achieve better results compared to
other existing optimization methods.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; © g:. Good default settings for the tested machine learning problems are « = 0.001,
B1 = 0.9, B> = 0.999 and € = 10—8. All operations on vectors are element-wise. With 8% and 3}
we denote 31 and (> to the power t.
Require: «: Stepsize
Require: (1,35 € [0,1): Exponential decay rates for the moment estimates
Require: f(60): Stochastic objective function with parameters 6
Require: 6g: Initial parameter vector
mg < O (Initialize 15 moment vector)
vo <— 0 (Initialize 2™ moment vector)
t <— O (Initialize timestep)
while 6; not converged do
t<—t+1
gt < Vo fi(6+:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my¢ <— B1-mqi—1 + (1 — B1) - g« (Update biased first moment estimate)
v < B2 - vi—1 + (1 — B2) - g2 (Update biased second raw moment estimate)
me <— me/(1 — B%) (Compute bias-corrected first moment estimate)
U < v /(1 — B%) (Compute bias-corrected second raw moment estimate)
01 + 0:—1 — - M/ (v/0r + €) (Update parameters)
end while
return 6, (Resulting parameters)

A new optimization algorithm called "Adam" (Adaptive Moment Estimation)
for minimizing the expected value of a noisy, differentiable objective
function (f(8)).

The algorithm estimates the gradient (first moment) and the squared
gradient (second raw moment) of the objective function at each timestep
using exponential moving averages.

The hyper-parameters B and B, control the exponential decay rates of these
moving averages, which are initially set to Os and can result in biased
moment estimates.

However, the paper outlines how to counteract this initialization bias and
obtain bias-corrected estimates.

The algorithm updates the parameters using the bias-corrected moment
estimates, with the learning rate at being a function of the moving average
parameters.

The authors note that the efficiency of the algorithm can be improved by
changing the order of computation.

ADAM'S UPDATE RULE

e Adam's update rule carefully chooses stepsizes for optimization

e [n less sparse cases, effective step size will be smaller

e Ratio /vy is referred to as the signal-to-noise ratio (SNR)

e With a smaller SNR, effective step size is closer to zero

e Smaller SNR means greater uncertainty about gradient direction

e SNR typically becomes smaller towards optimum, leading to smaller effective steps

e [Lffective step size is invariant to gradient scale

INITIALIZATION BIAS

CORRECTION

e [nitialization bias correction is used to correct the discrepancy between
- True second moment of gradient
- BEstimated second moment.

e '[The exponential moving average of the squared gradient is used to estimate
the second raw moment, with a decay rate of 3.

e I[f the true second moment is not stationary, the exponential moving average
can be kept small by choosing a small value of B..

e However, if the gradients are sparse, a reliable estimate of the second
moment requires a small value of B, which without correction would result
in larger initial steps.

e To correct this, the algorithm divides the estimate by (1 - Btz), which corrects
the initialization bias.

CONVERGENCE ANALYSIS

» In the paper "Convergence Analysis of Adam', the convergence of Adam optimization
algorithm is analyzed using the online learning framework proposed by Zinkevich, 2003.

= The goal is to predict the parameter 0 at each time t and evaluate it on a previously
unknown cost function f..

= The evaluation of the algorithm is done using regret, which is the sum of all previous
differences between the online prediction f,(8,) and the best fixed point parameter f (8*).

= When the data features are sparse and bounded gradients, the summation term can be
much smaller than its upper bound. Finally, the average regret of Adam converges to
O(I/NT).

TRAINING
DATASE
@ L) D
>
Y NER S
0ATA
8
s NG S
DATA
TRAINING
' CovE ‘E

4 STAND Back !l

I'M RUNNIN G
MACHINE LEARNING
ExPERIMENTS ///

Experiments

f EXPERIMENT: Logistic

Regression

= Evaluation of the proposed Adam algorithm on L, -regularized
multi-class logistic regression using the MNIST dataset.

» Stepsizes alpha adjusted with 1/vt decay in the experiments.

= Comparison of Adam to accelerated sSGD with Nesterov momentum
and Adagrad, with a minibatch size of 128&.

= Adam yields similar convergence as SGD with momentum and both
converge faster than Adagrad.

= Examination of the sparse feature problem using the IMDB movie review
dataset.

= Adagrad outperforms SGD with Nesterov momentum both with and without
dropout noise.

= Adam converges as fast as Adagrad and can take advantage of sparse features.

= Empirical performance of Adam is consistent with the theoretical findings in the

paper.

IMDB ,BOW f,eat“fe Loglstlc Begrgssnoq MNIST Logistic Regression

— AdaGrad

— SGDNesterov
— Adam

— Adagrad+dropout
— RMSProp+dropout
—— SGDNesterov+dropout|]
Adam+dropout

0.45

0.6

)
0

training cost

I
IS
T

0.30h-

0.25 03r

0.20) i i ; ; :] ; ; ; ; i i i ; i
0 20 40 60 80 100 120 140 160 o 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure : Logistic regression training negative log likelihood on MNIST images and
IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

Experiment: Multi-layer

Neural Networks

Models are powerful but have non-convex objective functions
Experiment used neural network with 2 fully connected hidden layers
with 1000 hidden units each and RelLU activation with minibatch size of
128

Study of different optimizers with standard deterministic cross-entropy
objective and L, weight decay to prevent overfitting

Comparison between Adam and sum-of-functions (SFO) method

Results show that Adam is faster in terms of iterations and wall-clock
time and SFO is slower with linear memory requirement

Stochastic regularization methods like dropout used to prevent
over-fitting

SFO fails to converge with cost functions with stochastic
regularization

Comparison between Adam and other stochastic first order
methods on multi-layer neural networks trained with dropout
noise

Results show that Adam is better in terms of convergence than
other methods

MNIST Multilayer Neural Networks

1
10 MNIST N!ultilayer Neulv'al Network +' dropout " ‘ :

AdaGrad
RMSProp

SGDNesterov
- AdabDelta
Adam

training cost

ET | B /

i i i
o 50 100 150 200
iterations over entire dataset

normalized walltime

(@ (b)

Figure 2: Training of multilayer neural networks on MNIST images.
(a) Neural networks using dropout stochastic regularization.
(b) Neural networks with deterministic cost function. We compare

with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al.,
2014

EXPERIMENT:

Convolutional Neural
Networks

= Convolutional Neural Networks (CNNs) have demonstrated great
success in computer vigion tasks.

= Weight sharing in CNNsg leads to vastly different gradients
compared to fully connected neural networks.

= A smaller learning rate is often used for convolution layers in
CNNs.

= The CNN architecture used in the experiment consists of
alternating convolution and pooling layers, followed by a fully
connected layer.

Input images are pre-processed by whitening and dropout noise is
applied to the input and fully connected layers.

Although Adam and Adagrad make rapid progress in the initial stage
of training, Adam and SGD eventually converge faster.

The second moment estimate in Adagrad is a poor approximation for
the cost function in CNNs.

Reducing minibatch variance through the first moment is more
important in CNNs and contributes to the speed-up.

Adagrad converges much slower compared to other methods.

Adam shows marginal improvement over SGD with momentum and
adapts the learning rate scale for different layers.

310 CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet

— AdaGrad >4 [. — AdaGrad
—— AdaGrad+dropout 10 —— AdaGrad+dropout
; : — SGDNesterov —— SGDNesterov
bl R S freciazies —— SGDNesterov+dropout TCi —— SGDNesterov+dropout| |
— Adam — Adam
Adam+dropout Adam+dropout

10° P\

N
(=}

10! b

training cost
training cost

=
5}
T

10 prsssrinnng

1.0 i . :

0 i H H i i 10 H H H H H H i i
'3.0 0.5 1.0 145 2.0 2:5 3.0 0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure: Convolutional neural networks training cost.
(left) Training cost for the first three epochs.

(right) Training cost over 45 epochs. CIFAR-10 with
c64-c64-c128-1000 architecture.

EXPERIMENT:

Bias-Correction Term

= The experiment evaluates the effect of the bias correction
term on training a variational autoencoder.

= The results show that without the bias correction term,
training becomes unstable when values of B, are close to 1,
especially in the early epochs of training.

= The best results were achieved with emall values of (1—62)
and with the bias correction term present.

= Adam performed equal or better than RMSProp, regardless
of the hyper-parameter setting.

B2=0.99 B2=0.999 B2=0.9999 B2=0.99 B2=0.999 B2=0.9999

- S VR - N PR
ﬁ 0 120 w 4 120 U 1204 U 4 1201 1201 4 120}
1 p—]
100 4 100 100 100 100 4 100f
5 =4 =3 22 o1 a8 4 23 =2 =1 o8 24 =3 =2 A 5 a4 93 =2 -1 -5 w2 3 =2 a1 5 -2 -3
=0.9 o 120 120 120 120 { 120
—
1001 4 100 4 100 1 100 4 100 4 100
-5 —l4 —.3 -2 -1 =5 —.4 —‘3 —KZ -1 -5 —‘4 —‘3 —.Z -1 =5 —.4 —.3 —‘2 -1 -5 —l4 —‘3 —‘2 -1 -5 —‘4 —‘3 —l2 -1
logio(«)
(a) after 10 epochs (b) after 100 epochs

Figure : Effect of bias-correction terms (red line) versus no bias correction
terms (green line) after 10 epochs (left) and 100 epochs (right) on the loss
(y-axes) when learning a Variational AutoEncoder (VAE) (Kingma &
Welling, 2013), for different settings of stepsize a (x-axes) and
hyperparameters g, and B,

= Adamax is a variant of Adam optimization algorithm that
uses L-infinity norm based updates.

» [n Adamagx, the update rule for individual weights involves
scaling their gradients inversely proportional to the
L-infinity norm of their current and past gradients.

= The exponential weighted infinity norm is updated using a
simple recursive formula:

Ut = max(ﬁg *Ut—1, Igtl)

» Unlike standard Adam, there is no need to correct for
initialization bias in Adamax.

= This helps to prevent the Adam optimizer from over-fitting and
improving generalization.

= [tis a popular choice for optimization due to its fast convergence
and robustness to noisy gradients.

= Adamax is well suited for sparse data and high dimensional
parameters.

TEMPORAL AVERAGING

= Averaging the last iterate can improve the generalization
performance in stochastic approximation as it is noisy.

= Polyak-Ruppert averaging and exponential moving average
can be used for averaging the parameters.

= The exponential moving average can be eagily implemented
by adding this line to the inner loop of algorithms.

0; < Bo-0;—1+ (1—B2)0;

= [nitialization bias can be corrected by the estimator

0 = 6/ (1 — B5)

https://github.com/yacineMahdid/artificial-intelligence-and-machine-learning/blob/master/deep-learning-from-scratch-python/Gradient%20Descent%20Optimization%20Algorithms.ipynb

Conclusion -ADAM

1

Introduction of a simple
and efficient algorithm
for gradient-based
optimization.

A

Easy implementation and
low memory
requirements.

2

Aimed towards machine
learning problems with
large datasets and/or
high-dimensional
parameter spaces.

5

Confirmation of rate of
convergence in convex
problems.

3

Combination of
advantages of AdaGrad
and RMSProp.

6

Robustness and
suitability for
non-convex optimization
problems in machine
learning.

Thank youl

You have been a great
audiencel

Let’s rock this semester
together!!

