AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks<sup>[1]</sup>

> Yan Ju Feb 15, 2023

#### Content

- Background
  - Black-box Adversarial Attack
  - ZO (Zeroth Order) Optimization
- Related Works
- Method
- Experiment Results
- Conclusions

• High Accuracy of DNN models



https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c



• However, what's wrong with this classification model?<sup>[3]</sup>



- What is adversarial attack?
  - Generating adversarial examples to deceive machine-learning models



- Why studying adversarial attack?
  - Test and debug ML system: discover vulnerability of ML models before real attackers do so.
  - Rethink current models and training models for the new objective: accuracy +adversarial robustness.

- Different Adversarial Attacks
  - White-box Attack: target model is transparent input gradients and BP can be used to attack the model

 Black-box Attack: target model is not transparent, only observe inputs and outputs (e.g., online APIs)

input gradients is infeasible and inaccessible







https://www.youtube.com/watch?v=17AL1mS3uxw&ab channel=TrustworthyAI

- What is ZO Optimization?
  - A value-based optimization mimicking first-order (FO) methods using gradient estimates<sup>[2]</sup>



- When should we use ZO Optimization?
  - Gradient information is infeasible to obtain

e.g., Finding adversarial examples for black-box models, Machine learning given only model outputs.

Gradient information is difficult/expensive to compute

e.g., gradient computation involves matrix inverse.

Black-box optimization involving high dimensions

#### **Related Works**

- [4] is an first attempt using ZO Optimization for black-box attack.
- In [4], gradient  $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i}$  of the *i*-th component is calculated by:

$$g_i = \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h} \approx \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i}$$

• Limitation of [4]: need enormous amount of queries and hence not query-efficient.

For example, the ImageNet dataset:  $d = 299 \times 299 \times 3 \approx 270$ , 000 input dimensions, each dimension needs two query counts, so it will be 540,000 query counts per iteration. Usually, it will take hundreds of iteration to generate a good sample, so this is unacceptable!!

AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method to improve the query efficiency for black-box attacks.

- Block 1: An adaptive random gradient estimation strategy to balance query counts and image distortion.
- Block 2: An auto-encoder/bilinear resizing to decrease dimension of attack space and accelerate attack.

- Block1: An adaptive random gradient estimation strategy
  - a scaled random full gradient estimator of  $\nabla f(x)$

$$\mathbf{g} = b \cdot \frac{f(\mathbf{x} + \beta \mathbf{u}) - f(\mathbf{x})}{\beta} \cdot \mathbf{u} \qquad (1)$$

 $\beta > 0$ : small smoothing parameter **u**:unit-length vector drawn randomly from a unit Euclidean sphere *b*:tunable parameter balancing bias and variance

• the final gradient estimate is averaged over q random directions  $\{\mathbf{u}_j\}_{j=1}^q$ .

$$\overline{\mathbf{g}} = \frac{1}{q} \sum_{j=1}^{q} \mathbf{g}_j \tag{2}$$

where  $g_i$  is a gradient estimate defined in (1) with **u** =  $\mathbf{u}_i$ 

• Block1: An adaptive random gradient estimation strategy

$$\mathbb{E}\|\overline{\mathbf{g}} - \nabla f(\mathbf{x})\|_{2}^{2} \leq 4\left(\frac{b^{2}}{d^{2}} + \frac{b^{2}}{dq} + \frac{(b-d)^{2}}{d^{2}}\right)\|\nabla f(\mathbf{x})\|_{2}^{2} + \frac{2q+1}{q}b^{2}\beta^{2}L^{2}$$
(3)  
when  $q, d$  is fixed, optimal  $b^{*} = \frac{dq}{2q+d}$  by minimizing this term  
if  $q$  is small (query-efficient),  $d$  is large,  $b^{*} \approx q$ ,  $\left(\frac{b^{2}}{d^{2}} + \frac{b^{2}}{dq} + \frac{(b-d)^{2}}{d^{2}}\right) \approx 1$ , larger estimation error  
if  $q$  is large (query-inefficient),  $b^{*} \approx \frac{d}{2}$ ,  $\left(\frac{b^{2}}{d^{2}} + \frac{b^{2}}{dq} + \frac{(b-d)^{2}}{d^{2}}\right) \approx \frac{1}{2}$ , smaller estimation error  
In AutoZOOM, we set  $q = b$ , and use an adaptive strategy for selecting  $q = 1$  query-inefficient but rough  
 $q > 1$  query-inefficient but more  
 $q > 1$  query-inefficient but more  
 $q < 1$  query-inefficient but more

 Block 2: An auto-encoder/bilinear resizing to decrease the dimension of attack space and accelerate attack.

the convergence rate is  $O\left(\sqrt{d/T}\right)$ , where T is the number of iterations, d is a dimension-

• motivations: dependent factor<sup>[5,6,7,8].</sup>

perform random gradient estimation from a reduced dimension d' < d to improve query efficiency.

• Method: generate adversarial perturbation  $\delta'$  from a dimension-reduced space then use Decoder D to map reduced dimension to original dimension



Black-box targeted attacks Formulation

$$\min_{\mathbf{x}\in[0,1]^d} \operatorname{Dist}(\mathbf{x},\mathbf{x}_0) + \lambda \cdot \operatorname{Loss}(\mathbf{x},M(F(\mathbf{x})),t)$$
(4)

 $F: [0,1]^d \mapsto \mathbb{R}^K$  Classification function function output: a vector of prediction scores of all K image classes

- *M*: monotonic transformation: preserve the ranking of the predictions score and alleviate large score variation
- $\mathbf{x}_0$ : a natural image, class label is  $t_0$
- **x** : adversarial example, target class label is  $t \neq t_0$ ,  $\mathbf{x} \in [0,1]^d$ : confine it to the valid image space

 $\text{Dist}(\mathbf{x}, \mathbf{x}_0)$ : measures the distortion between  $\mathbf{x}_0$  and  $\mathbf{x}$ , using  $L_P$  norm  $\text{Dist}(\mathbf{x}, \mathbf{x}_0) = \|\mathbf{x} - \mathbf{x}_0\|_p = \|\boldsymbol{\delta}\|_p = \sum_{i=1}^d |\boldsymbol{\delta}_i|^{1/p}$  for  $p \ge 1$ 

Loss(·) is an attack objective reflecting the likelihood of predicting  $t = argmax_{k \in (1,...K)}M(F(X))_k$ , Can be the training loss of DNNs or some designed loss based on model predictions.  $\lambda$  is a regularization coefficient;

AutoZOOM Algorithm



Algorithm 1 AutoZOOM for black-box attacks on DNNs

**Input:** Black-box DNN model F, original example  $\mathbf{x}_0$ , distortion measure  $\text{Dist}(\cdot)$ , attack objective  $\text{Loss}(\cdot)$ , monotonic transformation  $M(\cdot)$ , decoder  $D(\cdot) \in \{\text{AE, BiLIN}\}$ , initial coefficient  $\lambda_{\text{ini}}$ , query budget Qwhile query count  $\leq Q$  do

**1. Exploration:** use  $\mathbf{x} = \mathbf{x}_0 + D(\boldsymbol{\delta}')$  and apply the random gradient estimator in (2) with q = 1 to the downstream optimizer (e.g., ADAM) for solving (4) until an initial attack is found.

**2. Exploitation (post-success stage):** continue to finetune the adversarial perturbation  $D(\delta')$  for solving (4) while setting  $q \ge 1$  in (2).

#### end while

Output: Least distorted successful adversarial example

 $Dist(\cdot)$ : the squared  $L_2$  norm objective for targeted black-box attack:

$$Loss = \max\{\max_{j \neq t} \log[F(\mathbf{x})]_j - \log[F(\mathbf{x})]_t, 0\}$$
$$M = \log(\cdot)$$

• query-inefficient but more accurate estimation

• query-efficient but rough estimation

Unsuccessful attacks (classified as "Bagel")

Successful attacks (classified as "Grand Piano")

- Datasets
  - MNIST (LeCun et al. 1998), CIFAR-10 (Krizhevsky 2009) and ImageNet (Russakovsky et al. 2015).
  - Reduction rate: MNIST: 28X28X1 -> 14X14X1(25%); CIFAR-10: 32X32X3 -> 8X8X3(6.25%); ImageNet: 299X299X3 -> 32X32X3(1.15%)
- Results

Table 1: Performance evaluation of black-box targeted attacks on MNIST

| Method         | $\lambda_{	ext{ini}}$ | Attack success rate (ASR) | Mean query count (initial success) | Mean query<br>count reduction<br>ratio (initial success) | Mean per-pixel $L_2$ distortion (initial success) | True positive<br>rate (TPR) | Mean query count<br>with per-pixel $L_2$<br>distortion $\leq 0.004$ |
|----------------|-----------------------|---------------------------|------------------------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------------------|
| ZOO            | 0.1                   | 99.44%                    | 35,737.60                          | 0.00%                                                    | $3.50 \times 10^{-3}$                             | 96.76%                      | 47,342.85                                                           |
|                | 1                     | 99.44%                    | 16,533.30                          | 53.74%                                                   | $3.74 \times 10^{-3}$                             | 97.09%                      | 31,322.44                                                           |
|                | 10                    | 99.44%                    | 13,324.60                          | 62.72%                                                   | $4.85 \times 10^{-3}$                             | 96.31%                      | 41,302.12                                                           |
| ZOO+AE         | 0.1                   | 99.67%                    | 34,093.95                          | 4.60%                                                    | $3.43 \times 10^{-3}$                             | 97.66%                      | 44,079.92                                                           |
|                | 1                     | 99.78%                    | 15,065.52                          | 57.84%                                                   | $3.72 \times 10^{-3}$                             | 98.00%                      | 29,213.95                                                           |
|                | 10                    | 99.67%                    | 12,102.20                          | 66.14%                                                   | $4.66 \times 10^{-3}$                             | 97.66%                      | 38,795.98                                                           |
| AutoZOOM-BiLIN | 0.1                   | 99.89%                    | 2,465.95                           | 93.10%                                                   | $4.51 \times 10^{-3}$                             | 96.55%                      | 3,941.88                                                            |
|                | 1                     | 99.89%                    | 879.98                             | 97.54%                                                   | $4.12 \times 10^{-3}$                             | 97.89%                      | 2,320.01                                                            |
|                | 10                    | 99.89%                    | 612.34                             | 98.29%                                                   | $4.67 \times 10^{-3}$                             | 97.11%                      | 4,729.12                                                            |
| AutoZOOM-AE    | 0.1                   | 100.00%                   | 2,428.24                           | 93.21%                                                   | $4.54 \times 10^{-3}$                             | 96.67%                      | 3,861.30                                                            |
|                | 1                     | 100.00%                   | 729.65                             | 97.96%                                                   | $4.13 \times 10^{-3}$                             | 96.89%                      | 1,971.26                                                            |
|                | 10                    | 100.00%                   | 510.38                             | <b>98.57%</b>                                            | $4.67 \times 10^{-3}$                             | 97.22%                      | 4,855.01                                                            |

#### • Overall performance

| Method         | $\lambda_{	ext{ini}}$ | Attack success rate (ASR) | Mean query count (initial success) | Mean query<br>count reduction<br>ratio (initial success) | Mean per-pixel $L_2$ distortion (initial success) | True positive<br>rate (TPR) | Mean query count<br>with per-pixel $L_2$<br>distortion $\leq 0.0015$ |
|----------------|-----------------------|---------------------------|------------------------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| ZOO            | 0.1                   | 97.00%                    | 25,538.43                          | 0.00%                                                    | $5.42 \times 10^{-4}$                             | 100.00%                     | 25,568.33                                                            |
|                | 1                     | 97.00%                    | 11,662.80                          | 54.33%                                                   | $6.37 \times 10^{-4}$                             | 100.00%                     | 11,777.18                                                            |
|                | 10                    | 97.00%                    | 10,015.08                          | 60.78%                                                   | $8.03 \times 10^{-4}$                             | 100.00%                     | 10,784.54                                                            |
| ZOO+AE         | 0.1                   | 99.33%                    | 19,670.96                          | 22.98%                                                   | $4.96 \times 10^{-4}$                             | 100.00%                     | 20,219.42                                                            |
|                | 1                     | 99.00%                    | 5,793.25                           | 77.32%                                                   | $6.83 \times 10^{-4}$                             | 99.89%                      | 5,773.24                                                             |
|                | 10                    | 99.00%                    | 4,892.80                           | 80.84%                                                   | $8.74 \times 10^{-4}$                             | 99.78%                      | 5,378.30                                                             |
| AutoZOOM-BiLIN | 0.1                   | 99.67%                    | 2,049.28                           | 91.98%                                                   | $1.01 \times 10^{-3}$                             | 98.77%                      | 2,112.52                                                             |
|                | 1                     | 99.67%                    | 813.01                             | 96.82%                                                   | $8.25 \times 10^{-4}$                             | 99.22%                      | 1,005.92                                                             |
|                | 10                    | 99.33%                    | 623.96                             | 97.56%                                                   | $9.09 \times 10^{-4}$                             | 98.99%                      | 835.27                                                               |
| AutoZOOM-AE    | 0.1                   | 100.00%                   | 1,523.91                           | 94.03%                                                   | $1.20 \times 10^{-3}$                             | 99.67%                      | 1,752.45                                                             |
|                | 1                     | 100.00%                   | 332.43                             | 98.70%                                                   | $1.01 \times 10^{-3}$                             | 99.56%                      | 345.62                                                               |
|                | 10                    | 100.00%                   | 259.34                             | <b>98.98%</b>                                            | $1.15 \times 10^{-3}$                             | 99.67%                      | 990.61                                                               |

Table 2: Performance evaluation of black-box targeted attacks on CIFAR-10

Table 3: Performance evaluation of black-box targeted attacks on ImageNet

| Method         | Attack success rate (ASR) | Mean query count<br>(initial success) | Mean query<br>count reduction<br>ratio (initial success) | Mean per-pixel $L_2$ distortion (initial success) | True positive<br>rate (TPR) | Mean query count<br>with per-pixel $L_2$<br>distortion $\leq 0.0002$ |
|----------------|---------------------------|---------------------------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| ZOO            | 76.00%                    | 2,226,405.04 (2.22M)                  | 0.00%                                                    | $4.25 \times 10^{-5}$                             | 100.00%                     | 2,296,293.73                                                         |
| ZOO+AE         | 92.00%                    | 1,588,919.65 (1.58M)                  | 28.63%                                                   | $1.72 \times 10^{-4}$                             | 100.00%                     | 1,613,078.27                                                         |
| AutoZOOM-BiLIN | 100.00%                   | 14,228.88                             | 99.36%                                                   | $1.26 \times 10^{-4}$                             | 100.00%                     | 15,064.00                                                            |
| AutoZOOM-AE    | 100.00%                   | 13,525.00                             | <b>99.39%</b>                                            | $1.36 \times 10^{-4}$                             | 100.00%                     | 14,914.92                                                            |

• Others



#### • Visual performance

ID:39 Original class:246



#### Adv class:921, dist:3.8847



#### (a) "French bulldog" to "traffic light"

ID:25 Original class:932



#### Adv class:580, dist:2.7932



(c) "bagel" to " grand piano"

#### ID:3 Original class:749



Adv class:932, dist:2.6329



#### (b) "purse" to "bagel"

ID:37 Original class:921



Adv class:606, dist:2.3053



(d) "traffic light" to " iPod"

#### Conclusions

- AutoZOOM: a generic attack acceleration framework that uses ZO Optimization for black-box attack.
- It adopts a new and adaptive random full gradient estimation strategy to strike a balance between query counts and estimation errors.
- A decoder (AE or BiLIN) is used for attack dimension reduction and convergence acceleration.

#### References

[1] Tu, Chun-Chen, et al. "Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

[2] Liu, Sijia, et al. "A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications." *IEEE Signal Processing Magazine* 37.5 (2020): 43-54.

[3] Chen, Pin-Yu, et al. "Ead: elastic-net attacks to deep neural networks via adversarial examples." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

[4] Chen, Pin-Yu, et al. "Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models." Proceedings of the 10th ACM workshop on artificial intelligence and security. 2017.

[5] Nesterov, Yurii, and Vladimir Spokoiny. "Random gradient-free minimization of convex functions." Foundations of Computational Mathematics 17 (2017): 527-566.

[6] Liu, Sijia, et al. "Zeroth-order online alternating direction method of multipliers: Convergence analysis and applications." International Conference on Artificial Intelligence and Statistics. PMLR, 2018.

[7] Gao, Xiang, Bo Jiang, and Shuzhong Zhang. "On the information-adaptive variants of the ADMM: an iteration complexity perspective." Journal of Scientific Computing 76 (2018): 327-363.

Thank You! Q & A