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Introduction

 Bilevel optimization has received significant attention recently and become an influential framework in various
machine learning applications including meta learning hyperparameter and reinforcement learning.
A general bilevel optimization takes the following formulation

min &(x) := f(z,y" ())

T€ERP
s.t. y*(x) =argming(z,y),
yeRY
» Setting:
upper -level objective function in nonconvex
lower-level function g is strongly convex w.r.ty Q
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Introduction

The first focus of this paper is to develop a comprehensive and sharper theory, which covers a
broader class of bilevel optimizers via ITD and AlID techniques, and more importantly, improves
existing analysis with a more practical parameter selection and order wisely lower computational
complexity

The second focus of this paper is to design a more sample-efficient algorithm for bilevel
stochastic optimization, which achieves lower computational complexity by orders of magnitude
than BSAand TTSA



University at Buffalo

G5

School of Engineering and Applied Sciences

Algorithms

Algorithm 1 Bilevel algorithms via AID or ITD

1: Input: K, D, N, stepsizes «, (3, initializations x¢, yo, vo.
22 ork=041.2. ..k do
Set yy =y, if k > 0and yo otherwise
fort=1, ..., Dde
Update yj, =y~ ' — aVyg(zk, y; ')
end for
Hypergradient estimation via

AID: 1) set v = vp_, if k> 0 and vo otherwise

29, 4 )0 = Vy f (2, )
via N steps of CG starting from v}

3) get Jacobian-vector product V.V, g(zk, y& Jvi
via automatic differentiation

4) VO (2x) = Ve f (2, y) = Va Vyg(ar, y Jokd

ol S

2) solve vj from V

o~ - D
ITD: compute V®(x1) = L;:‘ckyb—) via backpropagation

8: Update xx4+1 = Tk — B%@(.’Ek)
9: end for

Algorithms for Deterministic Bilevel Optimization
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Algorithm 2 Stochastic bilevel optimizer (stocBiO)

I: Input: K, D, @, stepsizes « and (3, initializations z and yo. - -
2: fork=0,1,2,.... K do Algorithm 3 Construct v¢ given vg

3:  Setyp =yi_,if k> 0andyo otherwise 1: Input: Integer Q, samples Dy = {B;}<_, and constant 7).
4. fort=1,...,Ddo 2: forj=1,2,....Qdo ”

3¢ Draw a sample batch S; 4 3:  Sample B; and compute G (y) = y — nV,G(z, y;: B;)
6: Update ¥t = yi™' — aV,G(zk, ¥t '; Si-1) 4: end for

7:  end for 5: Setrg = vy

8 Draw sample batches Dr, Dy and Dg 6: fori =Q,...,1do

9:  Compute gradient vo = V, F(zy, yr ; DF) 7. rioy = 0(Gi(y)r:) /0y = 1 — -r)V'f/G(a:,y; B;)r; via

10:  Construct estimate vg via Algorithm 3 given vg automatic differentiation
11:  Compute V.V,G(zk,yr ; Dc)vo end for

12:  Compute gradient estimate ’V\’<I>(:1:k) via eq. (6) Return vg =7 Z?:o ri
13:  Update zx, = x5 — BVD(xs)
14: end for

o o

Algorithm for Stochastic Bilevel Optimization
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Inner-loop SGD updates

Draw sample batch B

)

y«y—nVyG(x,y; B)
l Output yp
Initializations

Q r « VyF(x,yp; B)
Quveo

x8
-
?\‘9

............................................................. -

EOuter—loop hypergradient estimation !

-

Draw sample batch B

[ By
Q G«y—aVyG(x,y;B)
Q r «torch.autograd.grad(<G,r >)overy
Qv «v+r

| Repeat Q times

veav/Q

1 Jacobian vector

f )
G « ViF (x,yp; B) = Vi VyG(x, yp; B)v |

1
’

lllustration of hyperparameter estimation in stocBiO algorithm
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Definitions and Assumptions

Assumption 1. The lower-level function g(x,y) is p-
strongly-convex w.r.t. y and the total objective function
®(x) = f(x,y*(x)) is nonconvex w.r.t. x. For the stochas-
tic setting, the same assumptions hold for G(z,y; () and
®(x), respectively.

Since ®(x) is nonconvex, algorithms are expected to find
an e-accurate stationary point defined as follows.

Definition 1. We say T is an e-accurate stationary point for
the objective function ®(z) in eq. (2) if E|[V®(2)||? < ¢,
where T is the output of an algorithm.
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Definition 2. For a function f(x,y) and a vector v, let
Gce( f, €) be the number of the partial gradient V . f or V, f,
and let JV (g, €) and HV (g, €) be the number of Jacobian-
vector products V ;V ,g(x,y)v. and Hessian-vector prod-
ucts Vgg(x, y)v. For the stochastic case, similar metrics
are adopted but w.r.t. the stochastic function F(x,y;§).

Assumption 2. The loss function f(z) and g(z) satisfy
e The function f(z) is M-Lipschitz, i.e., for any z, 2/,
£(2) = () < Mz — 2],
e Vf(z)and Vg(z) are L-Lipschitz, i.e., for any z, ',
IVf(2) = Vf()| <L||z — 2|,
IVg(2) — V()| <L||z - 2'|I.

For the stochastic case, the same assumptions hold for
F(z;€) and G(z;() for any given & and (.
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Assumption 3. Suppose the derivatives V.V ,g(z) and
Vgg(z) are T- and p- Lipschitz, i.e.,

e Foranyz, 2,

VaVyg(2) =V Vyg(2')|| < 7l|lz—2|.
o Forany z,?', ||[Vig(z) — Vig(2')|| < pllz — /|-

For the stochastic case, the same assumptions hold for

V.VyG(2;¢) and ViG(z; () for any (.

Assumption 4. Gradient VG(z; () has a bounded variance,
ie., E¢||[VG(z;¢) — Vg(2)||? < o2 for some o.
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Main Results
Comparison of bilevel deterministic optimization algorithms.
Algorithm Ge(f,e€) Ge(g, €) IV(g,€) HV(g, €)
AID-BiO (Ghadimi & Wang, 2018) | O(k%e!) | O(k®e /%) | O (k') | O (k'€ 1)
AID-BiO (this paper) Olrte ) OFE )0 e ) h o 2et)
ITD-BiO (this paper) O(slcay) RO (cici ) ML Ol(stait) [ Ol(sica)
Gce(f, €) and Ge(g, €): number of gradient evaluations w.r.t. f and g. & : condition number.
JV (g, €): number of Jacobian-vector products V.V, g(z, y)v. Notation O: omit log * terms.
HV(g. €): number of Hessian-vector products V? 29z, y)v.
Comparison of bilevel stochastic optimization algorithms.
Algorithm Gce(Fe) Ge(Ge) JIV(G,¢) HV(G.e€)
TTSA (Hong et al., 2020) O(poly(k)e=2)*| O(poty(k)e~2) | O(poty(k)e~2) | O(poly(k)e3)
BSA (Ghadimi & Wang, 2018) Ofx’c*) O(x%c2) O (k%2) O (x%c*) Q
stocBiO (this paper) O(k%2) O(k%2) O (sc?) O (k%¢2) Sy
1 X
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Applications to meta learning
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(a) dataset: minilmageNet (b) dataset: FC100

Comparison of various bilevel algorithms on meta-learning. For each dataset, left plot: training accuracy v.s. running time; right
plot: test accuracy v.s. running time.
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Applications to meta learning
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(b) T' = 20, FC100 dataset

Comparison of ITD-BiO and ANIL with a relatively large inner-loop iteration number 7'.
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Applications to Hyperparameter Optimization
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(a) Test loss and test accuracy v.s. running time (b) Convergence rate with different batch sizes

Comparison of various stochastic bilevel algorithms on logistic regression on 20 Newsgroup dataset.
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Applications to Hyperparameter Optimization
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(a) Corruption rate p = 0.1 (b) Corruption rate p = 0.4

Comparison of various stochastic bilevel algorithms on hyperparameter optimization at different corruption rates. For each
corruption rate p, left plot: training loss v.s. running time; right plot: test loss v.s. running time.
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Applications to Hyperparameter Optimization

~— stocBiO ~— stocBiO
= —— HOAG o —— HOAG
g — TTSA T 3 — TTSA T
= BSA . 82 BSA
= —— reverse z — reverse
B — AD-FP  F " — AID-FP
o
; — AID-CG . - AID-CG
0 20 40 60 B0 100 120 140 0 20 40 60 80 100 120 140
running time /s running time /s

Convergence of algorithms at corruption rate p = 0.2.



University at Buffalo
School of Engineering and Applied Sciences

G5

Conclusion

 In this paper, a general and enhanced convergence rate analysis for the nonconvex-strongly-convex
bilevel deterministic optimization is developed, a novel algorithm for the stochastic setting is proposed
and it is showed that its computational complexity outperforms the best-known results order wisely.

» The results also provide the theoretical guarantee for various bilevel optimizers in meta-learning and
hyperparameter optimization. The experiments validate theoretical results and demonstrate the superior
performance of the proposed algorithm.



