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Problem Statement

Bayesian Optimization(BO) has emerged as a popular optimization method for black
box techniques

Applying bayesian optimization to high-dimensional problems with thousands of
observations is challenging.

BO not competitive with other paradigms for difficult problems

Introducing TurBO algorithm

TurBO uses the design of a local probabilistic approach for global optimization of
large-scale high-dimensional problems.

TurBO uses implicit bandit approach.
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What is a Black-box function?

* Only input and output are known to the user.

(1) Training data
Used by ML algorithm to
configure output function

Prediction
(different types

"Black box"

with output function

exist)
based on ML algorithm

(2) New data
Exposed to output function
to get prediction
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How to optimize?

* We need to optimize f(x) (which is unknown)
* Cannot use convex optimization
* Cannot compute f’(x) because f(x) is unknown

* We use Bayesian optimization
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What is Bayesian Optimization?

* Objective function f is not known and needs to 4

be evaluated in minimum number of functi =R ancing

aluated in minimum number of function GP model

evaluations.. 2
* We model function f(x) using Gaussian % 0\

Process (GP). \/
* GP acts as a surrogate to the model. -2f % - =

5 0 5
0
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What is Bayesian Optimization?

* |teratively sample points in the search space. 4r
—True objective
* GP learns more about the function as we evaluate it. GP model
2-
* Acquisition function uses GP to sample next pointas | __
D
a potential optimal point. o 0O
* Update the surrogate function.
-2
* Continue the loop until: .
-5 0 5
- Surrogate function maximum does not change. 0

- variance is below threshold.

- f is exhausted.
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What is Bayesian Optimization?

lteratively sample points in the search space.
GP learns more about the function as we
evaluate it.
Acquisition function uses GP to sample next
point as a potential optimal point.
Update the surrogate function.
Continue the loop until:
- Surrogate function maximum does not
change.
- variance is below threshold.

- gis exhausted.

P—Tru
GP

P objective
model

DO+
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What is Multi-armed bandit approach?

* Maximize the total reward in the long run.

* Cannot access true bandit probability distributions
* Learned via trial and error

* Exploration

* Exploitation
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Introduction

* Global optimization of high-dimensional black-box
functions - important task in
- Hyperparameter tuning
- Searching for optimal parameterized policy in
reinforcement learning
* BO is good for such problems, but scales poorly for high

dimensions and large samples

10
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Introduction

* Optimization of high-dimensional problems is hard:
- Search space grows exponentially with dimension.

- Faster search space growth due to the curse of
dimensionality -> inherent presence of regions with
large posterior uncertainty -> results in over
exploration and fails to exploit promising areas.

11
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Introduction

* To overcome these challenges:
- Introducing TurBO - Trust Region Bayesian Optimization.
- Simultaneous local optimization runs using independent
probabilistic models.
- Each local surrogate model does not suffer from over

exploration problem.

12
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TuRBO

* Trust region Bayesian Optimization algorithm. Find x* € Q such that f(x*) < f(x), Vx € Q
* For optimizing high-dimensional black-box functions

: - d
* maintain multiple local models simultaneously f Q2 g R and ©2 = [0,1]

* allocate samples via implicit multi-armed bandit y(x) = f(x) +¢

approach. & 7 ./\7(0,02)

* Trust region — sphere or a polytope — centered at the
best solution,

13
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TuRBO

* Use Gaussian Process surrogate model within a Trust
Region(TR)

* TR be hyperrectangle

* best solution be x*

* Absence of noise -> set x* to best observation so far.

* Presence of noise -> x* to observation with smallest

posterior mean.

14
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TuRBO

* [Initialize base side length of the TR to L « Linit.

e Side length for each dimension is given by:
d
Li = ML/ a0 A0 Ye

* Total volume is given by LAd.

15
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TuRBO - TR rules for each local region

* single local optimization run, acquisition function at each iteration t to select a batch
q candidates within TR. {x:(lt), x99}
* Lis large enough for all points = global BO. So, L’s evolution is critical.
* After sampling ->
- “Success” -> x* improves
- “Failure” -> no improvement in x*
*  After Tsucc consecutive success — double the size of TR, L < min{ Ly, 2L}
* After Tfail consecutive failures — halve the size of TR, L « L/2.
* Reset success and failure counters to zero after size of TR change.

 |f L falls below Lmin, discard the TR and initialize a new one.
16
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TuRBO

* Making this algorithm global using Random restarts — inefficient

* So, TuURBO maintains m trust regions simultaneously.

* Each TR{with{ € {1,...,m}is a hyperrectangle of base side length L{ <= Lmax,
uses independent local GP model.

* |In each iteration, select a batch of q candidates drawn from the union of all trust
regions.

* Thompson sampling to select candidates within a TR and across the set of TRs

simultaneously.

@ 0 GPY (pe(x), ko (x,x"))

17
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TuRBO

@GP (pg(x), ko(x,x"))

xgt) € argmin argmin fe(i) where fe(i) ~ ngt) (pe(x), ke(x,x"))
4 xETRy

18
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Branin Function

TuRBO
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Numerical Experiments

Evaluate TURBO on wide range of problems:

14D robot pushing problem, 60D rover trajectory planning
problem, 12D cosmological constant estimation problem,
12D lunar landing reinforcement problem, 200D synthetic
problem.

Compare TUuRBO with:

BFGS, BOCK, BOHAMIANN, CMA-ES, BOBYQA, EBO,
GP-TS, HeSBO-TS, Nelder-Mead(NM), random
search(RS)

20
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Robot pushing

14D Robot pushing

* Noisy 14D control problem 11

* 10K evaluations batch size q=50 10

e  TuRBO-m — maintains m local models in parallel @ (7™

+  TURBO-1 and other models initialized with 100 points £ i o i

* TuRBO-20 initialized with 50 points for each TR. 6 al ety et TR
* TuRBO-1 and TuRBO-20 perform well after few 5

thousand evaluations. 4 S HOE 00 8
Number of evaluations
® TuRBO-20 *  EBO *  BOCK Y HeSBO - BOBYQA = BFGS
¢ TuRBO-1 »  Thompson < Bohamiann <« CMA-ES A  Nelder-Mead  —-- Random search

21
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Rover Trajectory planning

60D Rover trajectory planning

* Optimize the locations of 30 points in the 2D-plane 4
that determine the trajectory of a rover. g
* 200 steps with a batch size of g-100, total 20K L
g 0
evaluations. g T
* TuRBO-1 and other models initialized with 200 points = ::2;
*  TuRBO-20 initialized with 100 points for each TR. ~4
* TuRBO-1 and TuRBO-20 achieve close optimal :6 y
objective values after 10K evaluations. 7 5000 10000 15000 20000
Number of evaluations
® TuRBO-20 *  EBO *  BOCK Y HeSBO e BOBYQA = BFGS
¢ TuRBO-1 »  Thompson % Bohamiann 4 CMA-ES A Nelder-Mead —-= Random search

22
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Cosmological constant learning

* Calibrate a physics simulator to observed data

12D Cosmological constant learning

-20

* 2K evaluations o5
* Batch size g=50

* 50 initial points for all models except TURBO-5
*  TuRBO-5 — 20 initial points in each TR.

Log Likelihood
&

* TuRBO-1 — converges sometimes to bad local

optimum — deteriorates mean performance — shows B S 1000 1500 2000

Number of evaluations

multiple TR sampling is important

® TuRBO-5 ’ EBO * BOCK YV Hesbo ~ - BOBYQA = BFGS
¢ TuRBO-1 »  Thompson *  Bohamiann < CMA-ES A Nelder-Mead == Random search
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Lunar landing reinforcement learning

°
¢

Learn a controller for lunar lander

Possible actions — left, right, up, nothing
Maximize average final reward

1500 function evaluations, batch size q=50

50 initial points for all models except TURBO-5
TuRBO-5 — 20 initial points in each TR.
TuRBO-5 and TuURBO-1 — learn best controllers

TuRBO-5 ' EBO ¢ BOCK v
TuRBO-1 »  Thompson * Bohamiann <

12D Lunar landing reinforcement learning

300

o
= 200
:
o~
150
100
50 —
0 250 500 750 1000 1250 1500
Number of evaluations
Hesbo ~ ===r- BOBYQA = BFGS
CMA-ES A Nelder-Mead ==+= Random search
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200-dimensional Ackley function

e Domain [-5,10]20°

* Has too many local minima
* Total 10K evaluations ' i‘:‘B"'l
> ompson
* Batch size q=100, o8 i
* 200 initial points for all algos M8 o
....... B(BY A
*  TuRBO-1 performs well i
= BFGS
—-:=— Random
4
0 2000 4000 6000 8000 10000

Number of evaluations
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Advantage of local models over global models

Performance evaluation of local and global GP models on the
14D robot pushing problem

Global GP — all 4000 points

Local GP — 20 hypercubes, each of side length 0.4 and 200
uniformly distributed training points.

Global GP — can access all the data points

Local GPs — can learn different hyperparameter in each
region.

Global GP — average log loss 1.284

local model — average log loss 1.174 for 50 trails.

Proves local approach improves predictive power and reduces

computational overhead

e o
o &o

Local log loss improvement
=

S

0 10 20 30 40 50
Trial
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Why high-dimensional spaces are challenging

* TuRBO-1 for 50 restarts on the 60D rover trajectory planning.

* Within a TR, optimization is local, volume of any TR decreases rapidly
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Efficiency of large batches

Large batches obtain better results for the same number of iterations.

* Speed up is nearly linear.

11

10

Reward

Reward

i

4
0 50 100 150 200 0 1000 2000 3000 4000 5000 6000
Number of batches Number of evaluations
%  Batch size 1 A Batch size 2 < Batch size 4 »  Batch size 8

¢ Batch size 16 ®  Batch size 32 % Batch size 64
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Conclusion

* TuRBO uses novel local approach to global optimization.
* Multiple local models discover better objective values

* TuRBO outperform state-of-the-art techniques on a

variety of real-world complex tasks.
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Thank you!



