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Problem Statement
• Bayesian Optimization(BO) has emerged as a popular optimization method for black 

box techniques

• Applying bayesian optimization to high-dimensional problems with thousands of 
observations is challenging.

• BO not competitive with other paradigms for difficult problems

• Introducing TurBO algorithm 

• TurBO uses the design of a local probabilistic approach for global optimization of 
large-scale high-dimensional problems.

• TurBO uses implicit bandit approach.
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What is a Black-box function?
• Only input and output are known to the user. 
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How to optimize?
• We need to optimize ƒ(𝑥) (which is unknown)

• Cannot use convex optimization

• Cannot compute ƒ’(𝑥) because ƒ(𝑥) is unknown

• We use Bayesian optimization
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What is Bayesian Optimization?
• Objective function ƒ is not known and needs to 

be evaluated in minimum number of function 
evaluations..

• We model function ƒ(𝑥) using Gaussian 
Process (GP).

• GP acts as a surrogate to the model.
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What is Bayesian Optimization?
• Iteratively sample points in the search space.

• GP learns more about the function as we evaluate it.

• Acquisition function uses GP to sample next point as 
a potential optimal point.

• Update the surrogate function.

• Continue the loop until:

- Surrogate function maximum does not change.

- variance is below threshold.

- ƒ is exhausted.
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What is Multi-armed bandit approach?
• Maximize the total reward in the long run.

• Cannot access true bandit probability distributions

• Learned via trial and error

• Exploration

• Exploitation
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Introduction
• Global optimization of high-dimensional black-box 

functions - important task in

- Hyperparameter tuning

- Searching for optimal parameterized policy in 
reinforcement learning

• BO is good for such problems, but scales poorly for high 
dimensions and large samples
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Introduction
• Optimization of high-dimensional problems is hard:

- Search space grows exponentially with dimension.

- Faster search space growth due to the curse of 
dimensionality -> inherent presence of regions with 
large posterior uncertainty -> results in over 
exploration and fails to exploit promising areas.
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Introduction
• To overcome these challenges:

- Introducing TurBO - Trust Region Bayesian Optimization.

- Simultaneous local optimization runs using independent 
probabilistic models.

- Each local surrogate model does not suffer from over 
exploration problem.
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TuRBO
• Trust region Bayesian Optimization algorithm.

• For optimizing high-dimensional black-box functions

• maintain multiple local models simultaneously 

• allocate samples via implicit multi-armed bandit 
approach.

• Trust region → sphere or a polytope → centered at the 
best solution,
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TuRBO
• Use Gaussian Process surrogate model within a Trust 

Region(TR)

• TR be hyperrectangle

• best solution be x*

• Absence of noise -> set x* to best observation so far.

• Presence of noise -> x* to observation with smallest 
posterior mean.
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TuRBO
• Initialize base side length of the TR to L ← Linit.

• Side length for each dimension is given by:

• Total volume is given by L^d.
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TuRBO - TR rules for each local region
• single local optimization run, acquisition function at each iteration t to select a batch 

q candidates within TR. 

• L is large enough for all points = global BO. So, L’s evolution is critical.

• After sampling -> 

- “Success” -> x* improves

- “Failure” -> no improvement in x*

• After Tsucc consecutive success → double the size of TR, 

• After Tfail consecutive failures → halve the size of TR, L ← L/2.

• Reset success and failure counters to zero after size of TR change.

• If L falls below Lmin, discard the TR and initialize a new one.
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TuRBO 
• Making this algorithm global using Random restarts → inefficient

• So, TuRBO maintains m trust regions simultaneously.

• Each TR ℓ with ℓ ∈ {1,…,m} is a hyperrectangle of base side length Lℓ <= Lmax, 
uses independent local GP model.

• In each iteration, select a batch of q candidates drawn from the union of all trust 
regions.

• Thompson sampling to select candidates within a TR and across the set of TRs 
simultaneously.

•

17



TuRBO 

18



TuRBO 
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Numerical Experiments
• Evaluate TuRBO on wide range of problems: 

14D robot pushing problem, 60D rover trajectory planning 
problem, 12D cosmological constant estimation problem, 
12D lunar landing reinforcement problem, 200D synthetic 
problem.

• Compare TuRBO with: 
BFGS, BOCK, BOHAMIANN, CMA-ES, BOBYQA, EBO, 
GP-TS, HeSBO-TS, Nelder-Mead(NM), random 
search(RS)
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Robot pushing
• Noisy 14D control problem

• 10K evaluations batch size q=50

• TuRBO-m → maintains m local models in parallel 

• TuRBO-1 and other models initialized with 100 points

• TuRBO-20 initialized with 50 points for each TR.

• TuRBO-1 and TuRBO-20 perform well after few 
thousand evaluations.
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Rover Trajectory planning
• Optimize the locations of 30 points in the 2D-plane 

that determine the trajectory of a rover.

• 200 steps with a batch size of q-100, total 20K 
evaluations.

• TuRBO-1 and other models initialized with 200 points

• TuRBO-20 initialized with 100 points for each TR.

• TuRBO-1 and TuRBO-20 achieve close optimal 
objective values after 10K evaluations.

•
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Cosmological constant learning
• Calibrate a physics simulator to observed data

• 2K evaluations

• Batch size q=50

• 50 initial points for all models except TuRBO-5

• TuRBO-5 → 20 initial points in each TR.

• TuRBO-1 → converges sometimes to bad local 
optimum → deteriorates mean performance → shows 
multiple TR sampling is important
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Lunar landing reinforcement learning
• Learn a controller for lunar lander

• Possible actions → left, right, up, nothing

• Maximize average final reward 

• 1500 function evaluations, batch size q=50

• 50 initial points for all models except TuRBO-5

• TuRBO-5 → 20 initial points in each TR.

• TuRBO-5 and TuRBO-1 → learn best controllers
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200-dimensional Ackley function
• Domain

• Has too many local minima

• Total 10K evaluations

• Batch size q=100,

• 200 initial points for all algos

• TuRBO-1 performs well
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Advantage of local models over global models
• Performance evaluation of local and global GP models on the 

14D robot pushing problem

• Global GP → all 4000 points
Local GP → 20 hypercubes, each of side length 0.4 and 200 
uniformly distributed training points.

• Global GP → can access all the data points
Local GPs → can learn different hyperparameter in each 
region.

• Global GP → average log loss 1.284 
local model → average log loss 1.174 for 50 trails.

• Proves local approach improves predictive power and reduces 
computational overhead 26



Why high-dimensional spaces are challenging
• TuRBO-1 for 50 restarts on the 60D rover trajectory planning.

• Within a TR, optimization is local, volume of any TR decreases rapidly
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Efficiency of large batches
• Large batches obtain better results for the same number of iterations.

• Speed up is nearly linear.
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Conclusion
• TuRBO uses novel local approach to global optimization.

• Multiple local models discover better objective values

• TuRBO outperform state-of-the-art techniques on a 
variety of real-world complex tasks.
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