

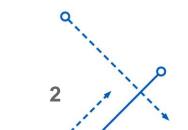
ZEROTH-ORDER OPTIMIZATION WITH TRAJECTORY INFORMED DERIVATIVE

ESTIMATION

Peiyao Xiao 02-15-2023

Content

- Introduction to Zeroth-order optimization
- Existing methods to solve the problems
- Creativeness of this paper
- Experiments results
- Pros and cons
- Conclusion



University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

INTRODUCTION

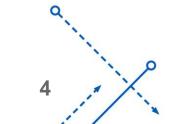
What is zeroth-order optimization

+ Existing methods

Zeroth-order (ZO) optimization

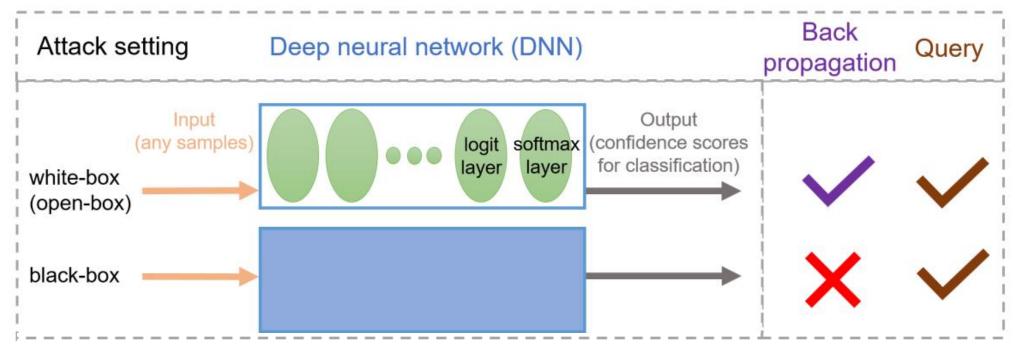
- Many machine learning (ML) and deep learning (DL) applications involve tackling complex optimization problems that are difficult to solve analytically.
- Often the objective function itself may not be in analytical closed form, only permitting function evaluations but not gradient evaluations.
- Optimization corresponding to these types of problems falls into the category of zeroth-order (ZO) optimization

 $\hat{\nabla}f(x) \approx \nabla f(x)$ $\hat{\nabla}f(x)$ is the estimated gradient $\nabla f(x)$ is the true gradient

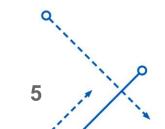


arXiv:1708.03999

Black-box attack



- Deep neural networks are vulnerable. Attack them to lead wrong result
- Assume we can only know (input, output) pairs, which is called queries



Existing methods to solve the problems

Finite difference (FD) unit length vector

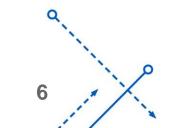
$$\hat{\nabla}f(x) = \frac{1}{d} \sum_{i=1}^{d} \frac{f(x+\beta \mathbf{u}_i) - f(x)}{\beta} \mathbf{u}_i$$
dimension smoothing parameter

$$\hat{\nabla}f_i(x) = \frac{f(x+h\mathbf{e}_i) - f(x-h\mathbf{e}_i)}{2h}$$

- Cropped ImageNet dataset: $d = 256 \times 256 \times 3 = 196, 608$
- Too many queries!!

Gaussian process (GP)

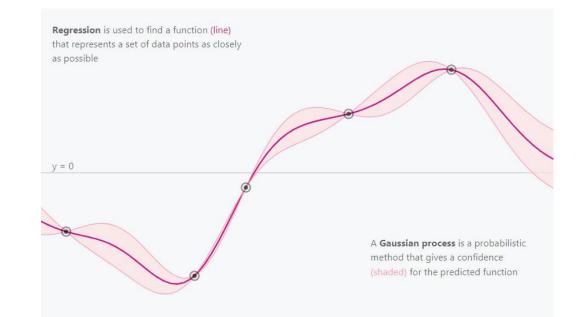
- Objective function is sampled from a GP
- The derivative at any input in the domain follows a Gaussian distribution

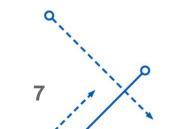


Brief GP introduction

GP collects infinite Gaussian distribution

- □ A GP provides a distribution, rather than a single point
- \Box GP projection on an input \rightarrow Gaussian distribution
- \square Derivatives of a Gaussian distribution \rightarrow Gaussian distribution
- Conditioning, still a Gaussian distribution
- Gaussian distribution depends on mean and variance





Brief GP introduction

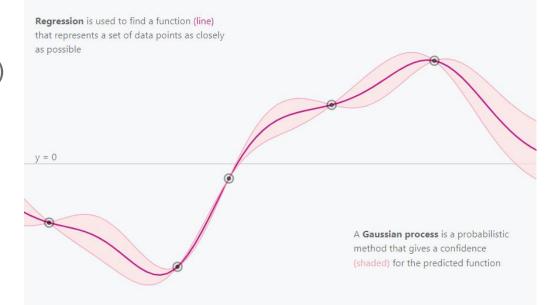
A common assumption: f is sampled from Gaussian process (GP)

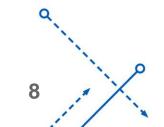
 $f \sim \mathcal{GP}\left(\mu(\cdot), \sigma^2(\cdot, \cdot)\right)$

$$y(x)=f(x)+\zeta,\ \zeta(0,\sigma^2)$$

In every iteration t, conditioning on all data before $\{(x_{\tau}, y_{\tau})\}_{\tau=1}^{t-1}$ *f* follows the posterior GP

 $f \sim \mathcal{GP}\left(\mu_{t-1}(\cdot), \sigma_{t-1}^2(\cdot, \cdot)\right)$





https://distill.pub/2019/visual-exploration-gaussian-processes/

Brief GP introduction

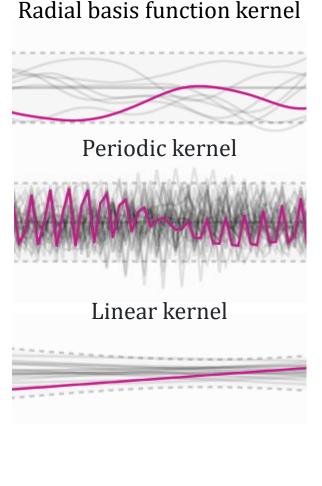
In every iteration t, conditioning on all data before f follows the posterior GP $f \sim \mathcal{GP}\left(\mu_{t-1}(\cdot), \sigma_{t-1}^2(\cdot, \cdot)\right)$ $\mu_{t-1}(\mathbf{x}) \triangleq \mathbf{k}_{t-1}(\mathbf{x})^{\top} \left(\mathbf{K}_{t-1} + \sigma^2 \mathbf{I}\right)^{-1} \mathbf{y}_{t-1}$

$$\sigma_{t-1}^{2}(\boldsymbol{x}, \boldsymbol{x}') \triangleq k(\boldsymbol{x}, \boldsymbol{x}') - \boldsymbol{k}_{t-1}(\boldsymbol{x})^{\top} \left(\mathbf{K}_{t-1} + \sigma^{2} \mathbf{I} \right)^{-1} \boldsymbol{k}_{t-1}(\boldsymbol{x}')$$

Posterior distribution at x is Gaussian with mean $\mu_{t-1}(x)$ and variance $\sigma_{t-1}^2(x)$

$$\sigma_{t-1}^2(\boldsymbol{x}) \triangleq \sigma_{t-1}^2(\boldsymbol{x}, \boldsymbol{x})$$

https://distill.pub/2019/visual-exploration-gaussian-processes/



Learning materials

Gaussian process lecture

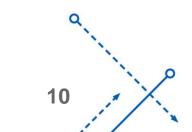
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.html

• A Visual Exploration of Gaussian Processes

https://distill.pub/2019/visual-exploration-gaussian-processes/

• Gaussian processes (3/3) - exploring kernels

https://peterroelants.github.io/posts/gaussian-process-kernels/



University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

KEY IDEAS

Trajectory-informed Derivative Estimation

Dynamic Virtual Updates

Trajectory-informed Derivative Estimation

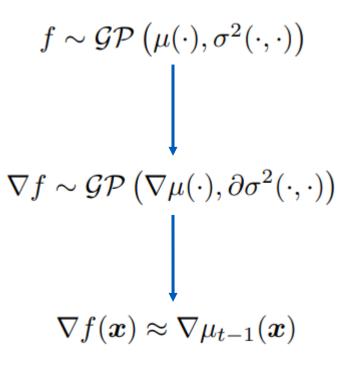
Algorithm 2: ZORD (Ours)

- 1: **Input:** In addition to the parameters in Algo. 1, set the steps of virtual updates $\{V_t\}_{t=1}^T$
- 2: for iteration $t = 1, \ldots, T$ do
- 3: $x_{t,0} \leftarrow x_{t-1}$
- 4: for iteration $\tau = 1, \ldots, V_t$ do

5:
$$\boldsymbol{x}_{t,\tau} \leftarrow \mathcal{P}_{\mathcal{X}} \left(\boldsymbol{x}_{t,\tau-1} - \eta_{t,\tau-1} \nabla \mu_{t-1} (\boldsymbol{x}_{t,\tau-1}) \right)$$

- 6: end for
- 7: Query $\boldsymbol{x}_t = \boldsymbol{x}_{t,\tau}$ to yield $y(\boldsymbol{x}_t)$
- 8: Update (4) using optimization trajectory
- 9: end for
- 10: **Return** $\operatorname{arg\,min}_{\boldsymbol{x}_{1:T}} y(\boldsymbol{x})$

 $\mathcal{P}_{\mathcal{X}}(\boldsymbol{x}) \triangleq \arg\min_{\boldsymbol{z} \in \mathcal{X}} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 / 2$ Projection finds the nearest point



Trajectory-informed Derivative Estimation

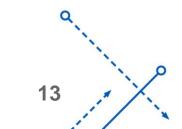
Estimate the derivative at any input x using the posterior mean

$$\nabla f(\boldsymbol{x}) \approx \nabla \mu_{t-1}(\boldsymbol{x}) \qquad \nabla \mu_{t-1}(\boldsymbol{x}) \triangleq \partial_{\boldsymbol{z}} \boldsymbol{k}_{t-1}(\boldsymbol{z})^{\top} \left(\mathbf{K}_{t-1} + \sigma^2 \mathbf{I} \right)^{-1} \boldsymbol{y}_{t-1} \big|_{\boldsymbol{z}=\boldsymbol{x}}$$

Employ the posterior covariance matrix to obtain a principled measure of uncertainty

$$\partial \sigma_{t-1}^2(\boldsymbol{x})$$

Only makes use of the naturally available optimization trajectory D_{t-1} and does not need any additional query



Dynamic Virtual Updates

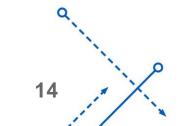
Algorithm 2: ZORD (Ours)

- 1: **Input:** In addition to the parameters in Algo. 1, set the steps of virtual updates $\{V_t\}_{t=1}^T$
- 2: for iteration $t = 1, \ldots, T$ do
- 3: $x_{t,0} \leftarrow x_{t-1}$
- 4: **for** iteration $\tau = 1, \ldots, V_t$ **do**

5:
$$\boldsymbol{x}_{t,\tau} \leftarrow \mathcal{P}_{\mathcal{X}} \left(\boldsymbol{x}_{t,\tau-1} - \eta_{t,\tau-1} \nabla \mu_{t-1} (\boldsymbol{x}_{t,\tau-1}) \right)$$

- 6: end for
- 7: Query $\boldsymbol{x}_t = \boldsymbol{x}_{t,\tau}$ to yield $y(\boldsymbol{x}_t)$
- 8: Update (4) using optimization trajectory
- 9: end for
- 10: Return $\operatorname{arg\,min}_{\boldsymbol{x}_{1:T}} y(\boldsymbol{x})$

$$\mathcal{P}_{\mathcal{X}}(\boldsymbol{x}) \triangleq \arg\min_{\boldsymbol{z} \in \mathcal{X}} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 / 2$$
 Projection finds the nearest point



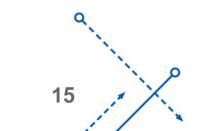
Dynamic Virtual Updates

Update V_t times without queries, more query efficient

$$\boldsymbol{x}_{t,\tau} = \mathcal{P}_{\mathcal{X}} \left(\boldsymbol{x}_{t,\tau-1} - \eta_{t,\tau-1} \nabla \mu_{t-1} (\boldsymbol{x}_{t,\tau-1}) \right) \quad \forall \tau = 1, \cdots, V_t$$

Trade off

- Large $V_t \rightarrow$ lead to usage of inaccurate derivative estimation
- Small $V_t \rightarrow$ may not fully exploit the benefit of derivative estimation

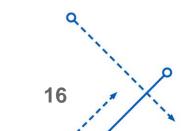


Theoretical analysis

Theorem 1 (Derivative Estimation Error). Let $\delta \in (0, 1)$ and $\beta \triangleq \sqrt{d + 2(\sqrt{d} + 1) \ln(1/\delta)}$. For any $x \in \mathcal{X}$ and any $t \ge 1$, the following holds with probability of at least $1 - \delta$,

 $\left\|\nabla f(\boldsymbol{x}) - \nabla \mu_t(\boldsymbol{x})\right\|_2 \le \beta \left\|\partial \sigma_t^2(\boldsymbol{x})\right\|_2.$

Gap between the true gradient and estimated gradient, bounded by uncertainty



Theoretical analysis

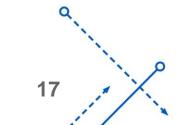
Theorem 2 (Non-Increasing Error). For any $x \in \mathcal{X}$ and any $t \ge 1$, we have that $\|\partial \sigma_t^2(x)\|_2 \le \|\partial \sigma_{t-1}^2(x)\|_2$.

Let $\delta \in (0, 1)$. Define $r \triangleq \max_{\boldsymbol{x} \in \mathcal{X}, t \ge 1} \left\| \partial \sigma_t^2(\boldsymbol{x}) \right\|_2 / \left\| \partial \sigma_{t-1}^2(\boldsymbol{x}) \right\|_2$, given the β in Thm. 1, we then have that $r \in [1/(1+1/\sigma^2), 1]$, and that with probability of at least $1 - \delta$,

 $\|\nabla f(\boldsymbol{x}) - \nabla \mu_t(\boldsymbol{x})\|_2 \le \beta \|\partial \sigma_t^2(\boldsymbol{x})\|_2 \le \kappa \beta r^t.$ $\|\partial_{\boldsymbol{z}} \partial_{\boldsymbol{z}'} \dot{k}(\boldsymbol{z}, \boldsymbol{z}')\|_{\boldsymbol{z}=\boldsymbol{z}'=\boldsymbol{x}}\|_2 \le \kappa, \forall \boldsymbol{x} \in \mathcal{X} \text{ for some } \kappa > 0$

Uncertainty is non-increasing

The gap can be exponential decay if r < 1

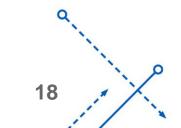


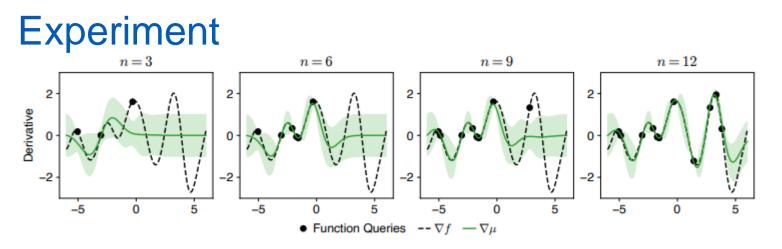
Theoretical analysis

The convergence of our ZORD is formally guaranteed by Thm. 3 below (proof in Appx. B.4). **Theorem 3** (Convergence of ZORD). Let $\delta \in (0, 1)$. Suppose our ZORD (Algo. 2) is run with $V_t = V$ and $\eta_{t,\tau} = \eta \leq 1/L_s$ for any t and τ . Then with probability of at least $1 - \delta$, when r < 1,

$$\begin{split} \min_{t \leq T} \frac{1}{V} \sum_{\tau=0}^{V-1} \|G_{t,\tau}\|_2^2 \leq \underbrace{\frac{2[f(\boldsymbol{x}_0) - f(\boldsymbol{x}^*)]/\eta}{TV}}_{\textcircled{I}} + \underbrace{\frac{2\alpha^2 r^2}{T(1-r^2)} + \frac{(2L_c + 1/\eta)\alpha r}{T(1-r)}}_{\textcircled{I}} \\ \end{split}$$
where $\alpha \triangleq \kappa \sqrt{d + 2(\sqrt{d} + 1) \ln(VT/\delta)}$. When $r = 1$, we instead have $\textcircled{Q} = 2\alpha^2 + (2L_c + 1/\eta)\alpha$.
 $G_{t,\tau} \triangleq (\boldsymbol{x}_{t,\tau} - \mathcal{P}_{\mathcal{X}}(\boldsymbol{x}_{t,\tau} - \eta_{t,\tau} \nabla f(\boldsymbol{x}_{t,\tau}))) / \eta_{t,\tau}$.

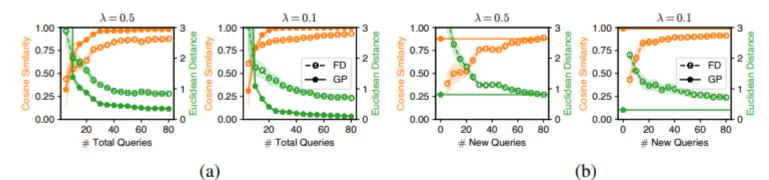
r < 1, converge at a rate of O (1/T), r = 1, O(1/T + C) Query complexity O(T) instead of O(nT)





GD provides a good estimation of true gradient

Figure 1: Our derived GP for derivative estimation (4) with different number n of queries. Green curve and its confidence interval denote the mean $\nabla \mu(\mathbf{x})$ and standard deviation of the derived GP.



GP is four times query efficient than FD

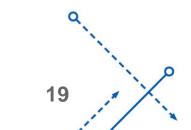


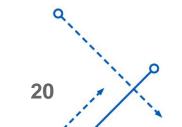
Figure 2: Comparison of the derivative estimation errors of our derived GP-based estimator (6) (GP) and the FD estimator, measured by cosine similarity (larger is better) and Euclidean distance (smaller is better). Each curve is the mean \pm standard error from five independent runs.

Experiment—Black box attack

Table 1: Comparison of the number of required queries to achieve a successful black-box adversarial attack. Every entry represents mean \pm standard deviation from five independent runs.

Dataset	Metric	GLD	RGF	PRGF	TuRBO-1	TuRBO-10	ZoRD
MNIST	# Queries Speedup	1780±222 7.2×	$1192{\pm}260 \\ 4.8{\times}$	1236±145 5.0×	$\begin{array}{c} 654{\pm}70 \\ 2.6{ imes} \end{array}$	$747{\pm}60$ $3.0{\times}$	248±50 1.0×
CIFAR-10	# Queries Speedup	964±175 2.5×	3622±1155 9.4×	4133±1525 10.8×	638±108 1.7×	$708{\pm}105$ $1.8{ imes}$	384±59 1.0×

Queries efficient in both theoretical and experimental levels



Pros & Cons

Pros

- A good estimation of gradient, with proofs
- Query much more efficient
 - Trajectory-informed Derivative Estimation
 - Dynamic Virtual Updates

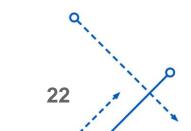
Cons

- Variance matrix inverse, high cost
- Did not discus the case when r = 1, just assume r < 1
- In real experiments, the choice of kernel function needs experience

$$\nabla \mu_{t-1}(\boldsymbol{x}) \triangleq \partial_{\boldsymbol{z}} \boldsymbol{k}_{t-1}(\boldsymbol{z})^{\top} \left(\mathbf{K}_{t-1} + \sigma^2 \mathbf{I} \right)^{-1} \boldsymbol{y}_{t-1} \big|_{\boldsymbol{z}=\boldsymbol{x}}$$

Conclusion

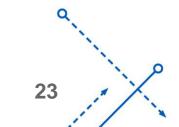
- Two methods for ZO optimization, but there are more
- Two important ideas
- Query efficient
- High cost in matrix inverse, not complete proofs



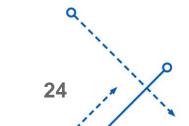
 \cap

Main References

- Liu, Sijia, et al. "A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications." *IEEE Signal Processing Magazine* 37.5 (2020): 43-54.
- Chen, Pin-Yu, et al. "Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models." *Proceedings of the 10th ACM workshop on artificial intelligence and security*. 2017.
- Nesterov, Yurii, and Vladimir Spokoiny. "Random gradient-free minimization of convex functions." *Foundations of Computational Mathematics* 17 (2017): 527-566.
- https://distill.pub/2019/visual-exploration-gaussian-processes/
- https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.html
- https://peterroelants.github.io/posts/gaussian-process-kernels/



Thank you! Q&A



-0