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INTRODUCTION

What is zeroth-order optimization
+

Existing methods
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Zeroth-order (ZO) optimization

« Many machine learning (ML) and deep learning
(DL) applications involve tackling complex
optimization problems that are difficult to solve

analytically. Vf(x)~ Vf(x)
« Often the objective function itself may not be in V f(x) is the estimated gradient
analytical closed form, only permitting function V f(x) is the true gradient

evaluations but not gradient evaluations.

» Optimization corresponding to these types of
problems falls into the category of zeroth-order
(ZO) optimization

arXiv:2006.06224
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Black-box attack
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* Deep neural networks are vulnerable. Attack them to lead wrong result

« Assume we can only know (input, output) pairs, which is called queries

arXiv:1708.03999
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Existing methods to solve the problems

Finite difference (FD) Gaussian process (GP)

unit length vector

@f(f) _ 1 Zd fle+BW;)—f(x) u’_/ - Objective function is sampled from
' 0% i=1 ﬁ\ ! a GP
. . . « The derivative at any input in the
dimension smoothing parameter : :
domain follows a Gaussian
A cthe,)— méhei distribution
Vfi(zx) = f( )zhf( )

» Cropped ImageNet dataset: d = 256 X 256 X 3 = 196, 608
« Too many queries!!
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Brief GP introduction

GP collects infinite Gaussian distribution

O A GP provides a distribution, rather than a single point

L GP projection on an input = Gaussian distribution

O Derivatives of a Gaussian distribution-> Gaussian distribution
0 Conditioning, still a Gaussian distribution

0 Gaussian distribution depends on mean and variance

Regression is used to find a function (line)
that represents a set of data points as closely
as possible

A Gaussian process is a probabilistic
method that gives a confidence
for the predicted function
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Brief GP introduction

Regression is used to find a function (line)
that represents a set of data points as closely
as possible

A common assumption: f is sampled from Gaussian process (GP)
f~GP (u().0%("))
y(x) = flz) + ¢ (0,07

In every iteration t, conditioning on all data before {(x, y-)}

t—1

1 A Gaussian process is a probabilistic
T=

method that gives a confidence
for the predicted function

f follows the posterior GP

fr~GP (—1(),024(,))

https://distill.pub/2019/visual-exploration-gaussian-processes/ e .
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B ri ef G P | ntrOd UCti on Radial basis function kernel

In every iteration t, conditioning on all data before

f follows the posterior GP \/_\
f GP (Mt—l(')a 0'3—1('3 )) Periodic kernel
pi—1(xz) = kt—l(ﬂi)T (Kt—l + 021)_1 Yi—1 A8

o 1(z,x') 2 k(z, @) — ki—1(x) " (Kio1 + 021)_1 ki1 (x')

Posterior distribution at x is Gaussian with mean pt;—1 ()
and variance o2 ;(x)

oi 1(x) = 04 (x,T)

https://distill.pub/2019/visual-exploration-gaussian-processes/ e .
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Learning materials

» (Gaussian process lecture
https://mww.cs.cornell.edu/courses/cs4780/2018fal/lectures/lecturenote15.html
* AVisual Exploration of Gaussian Processes
https://distill. pub/2019/visual-exploration-gaussian-processes/
» (Gaussian processes (3/3) - exploring kernels

https://peterroelants.github.io/posts/gaussian-process-kernels/



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences ’

KEY IDEAS

Trajectory-informed Derivative Estimation
+

Dynamic Virtual Updates
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Trajectory-informed Derivative Estimation

Algorithm 2: ZORD (Ours) f~GP (ﬂ(_), o2 (-, ))
1: Imput: In addition to the parameters in Algo. 1, set
the steps of virtual updates {V;}/_,
2: for iterationt =1,....7 do
3 rip < Ti—1
4:  foriterationT = 1,....V; do Vf~GP (Vu( o (-.
3: Ty r — Px(xir—1 — -1 Ve—1(xe 7-1)) ( ) ( ))
6: end for
7 Query x; = x; ; to yield y(x;)
8:  Update (4) using optimization trajectory

9: end for v ~ U
10: Return argmin, _ y(x) f(zx) pre—1 ()

Px(x) L arg min . y | — zug /2 Projection finds the nearest point
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O
Trajectory-informed Derivative Estimation
Estimate the derivative at any input x using the posterior mean
o~ fay T 2 —1
V@)~ Vi-1(x)  Vieoi(z) 2 0:ker(2)" (Kot +0%0) " yea|
Employ the posterior covariance matrix to obtain a principled measure of uncertainty
2
doy_y(x)
Only makes use of the naturally available optimization trajectory D,_, and does not need any
additional query
Q\
13« X
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Dynamic Virtual Updates

Algorithm 2: ZORD (Ours)

1: Input: In addition to the parameters in Algo. 1, set
the steps of virtual updates {V;}1_,

2: for iterationt =1, ..., T do

3 Tt < Tt-1

4:  for iterationT = 1,...,V; do

5.

6

7

T r +— Px (iﬂt,-r—l — m;r—lv,ut—l(mt,'r—l))
end for
. Query ; = x¢ ; to yield y(x+)
8:  Update (4) using optimization trajectory
9: end for
10: Return argmin,, _ y(x)

Px(x) L arg min . y | — zHg /2 Projection finds the nearest point



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Dynamic Virtual Updates

Update V, times without queries, more query efficient
Lt r+ = Px (mt;r—l - ?’)t,,-r—lvﬂt—l(ﬂ?t;r—l)) Vr=1,---,V;
Trade off

« Large V, = lead to usage of inaccurate derivative estimation
« Small V, = may not fully exploit the benefit of derivative estimation
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0
Theoretical analysis
Theorem 1 (Derivative Estimation Error). Let 6 € (0,1) and 3 = \fd +2(+v/d + 1) In(1/8). For
any x € X and any t = 1, the following holds with probability of at least 1 — 9,
IVf(z) = Vie(@)|l, < 8|00 (@), -
Gap between the true gradient and estimated gradient,
bounded by uncertainty
q\
16« X
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O
Theoretical analysis
Theorem 2 (Non-Increasing Error). For any @ € X and any t = 1, we have that
100? @)l < [|do7_1 ()], -
Let § € (0,1). Define r = maxgc v 1>1 ||3J§(:t:)||2 / ||(?Jf_1(:n) |2, given the 3 in Thm. 1, we then
have that r € [1/(1 + 1/0?2),1], and that with probability of at least 1 — 6,
IV (@) = V()] < 8003 ()|, < wbr

10202k(2, 2")| 2=z =2, < K ,Yx € X for some x > 0

Uncertainty is non-increasing

The gap can be exponential decay ifr< 1 Q

17 X
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o
Theoretical analysis
The convergence of our ZORD is formally guaranteed by Thm. 3 below (proof in Appx. B.4).
Theorem 3 (Convergence of ZORD). Let § € (0,1). Suppose our ZORD (Algo. 2) is run with
Vi=Vand n . = n < 1/L; for any t and 1. Then with probability of at least 1 — 8, when r < 1,
V-1 ;
1 o _ 2[f(zo) — flz*)]/n 20272 (2L. + 1/n)ar
— <
TV 2 1Ge.rllz < TV BT R Y TS
@ @
where o = rz\/d + 2(vd 4 1) In(VT/8). When r = 1, we instead have @) = 2a° + (2L, + 1/1)c.
Gt._‘r = (mt,'r - P.l’(:r'i.r - Tﬂt,rvf(mt,r))] ,'KTJIE...‘I" .
r<1, converge at a rate of O (1/T),r=1, O(1/T + C)
Query complexity O(T) instead of O(nT) "
18 .« A
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Experiment
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Figure 1: Our derived GP for derivative estimation (4) with different number n of queries. Green
curve and its confidence interval denote the mean V() and standard deviation of the derived GP.
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Figure 2: Comparison of the derivative estimation errors of our derived GP-based estimator (6) (GP)
and the FD estimator, measured by cosine similarity (larger is better) and Euclidean distance (smaller
is better). Each curve is the mean + standard error from five independent runs.

GD provides a good
estimation of true
gradient

GP is four times query
efficient than FD
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O
Experiment—Black box attack
Table 1: Comparison of the number of required queries to achieve a successful black-box adversarial
attack. Every entry represents mean =+ standard deviation from five independent runs.
Dataset Metric GLD RGF PRGF TuRBO-1 TuRBO-10 ZoRD
MNIST #Quertes 1780222 11924260 1236145 654470 747460 248-+50
Speedup 7.2 48 5.0 2.6x 3.0x% 1.0x
CIFAR-10 # Queries  964+175 362241155 413341525 638+108 708+105 38459
Speedup 2.9% 9.4x 10.8 % 1.7 1.8 1.0x
Queries efficient in both theoretical
and experimental levels a,
20 X
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Pros & Cons

Pros
« A good estimation of gradient, with proofs
* Query much more efficient
- Trajectory-informed Derivative Estimation
- Dynamic Virtual Updates

« Variance matrix inverse, high cost
* Did not discus the case whenr =1, justassumer<1
* In real experiments, the choice of kernel function needs experience

Vi1 () 2 Oeke1(2) T (Ker +0°T) |
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Conclusion

* Two methods for ZO optimization, but there are more
* Two important ideas
* Query efficient

* High cost in matrix inverse, not complete proofs
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Thank you!
Q&A
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