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Introduction
* A key aspect of intelligence is versatility — the capability of doing many different things.

e Current Al systems excel at mastering a single skill, such as Go, Jeopardy, or even
helicopter aerobatics.

* But, when you instead ask an Al system to do a variety of seemingly simple problems, it
will struggle.

* For example, a champion Jeopardy program cannot hold a conversation, and an expert
helicopter controller for aerobatics cannot navigate in new, simple situations such as
locating, navigating to, and hovering over a fire to put it out.

 In contrast, a human can act and adapt intelligently to a wide variety of new, unseen
situations.

* The reason humans are successful at being so versatile and learning quickly is that they
leverage knowledge acquired from prior experience to solve novel tasks. 3
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Learning Algorithm Meta Learning Algorithm
* Learn from the output of learning
* Learn from historical data and make algorithms and make a prediction given
predictions given new examples of data. predictions made by other models.
* For example, supervised learning e This means that meta-learning requires
algorithms learn how to map examples the presence of other learning algorithms
of input patterns to examples of output that have already been trained on data.

patterns to address classification and
regression predictive modeling
problems.

* For example, supervised meta-learning
algorithms learn how to map examples of
output from other learning algorithms
(such as predicted numbers or class
labels) onto examples of target values for
classification and regression problems.

If machine learning learns how to best use information in data to make predictions, then
meta-learning or meta machine learning learns how to best use the predictions from
machine learning algorithms to make predictions. 4
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Why do we need Meta-Learning ?

* Our current Al systems can master a complex skill from scratch, but its challenging because
* It need large datasets for training.
* High operational costs due to many trials/experiments during the training phase.

* Experiments/trials take a long time to find the best model which performs the best for a
certain dataset.

 But if we want our agents to be able to acquire many skills and adapt to many environments,
we cannot afford to train each skill in each setting from scratch.

* Instead, we need our agents to learn how to learn new tasks faster by reusing previous
experience, rather than considering each new task in isolation.

* This approach of learning to learn, or meta-learning, is a key steppingstone towards versatile
agents that can continually learn a wide variety of tasks throughout their lifetimes. 5
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Why do we need Meta-Learning ?

* To sum up ,from a deep learning perspective, meta-learning is particularly exciting and
adoptable for three reasons:

* the ability to learn from a handful of examples.
* learning or adapting to novel tasks quickly.

* The capability to build more generalizable systems.
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What is MAMIL.?

MAML (Model-Agnostic Meta Learning) provides a meta-optimization objective
that creates a pre-trained model that can easily fine-tune to unseen tasks!

— meta-learning

0 ---- learning/adaptation
o Z Lr(fo) = Z Lrfo-avacs, o) o
4 £ VL,
Ti~p(T) Tirp(T) VL, ,,,%""63
1‘./ d \\. O*
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MAML Problem Setup

Model f; trained on parameters
0, denotes parameters updated for i"" task through gradient update steps.
T is a random variable whose state space is a set of tasks.

p(T) represents the distribution of tasks on T,
Fach task T; has an associated loss function Ly,
Model f is the model fine-tuned on task T
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MAML Algorithm

Algﬂl‘ith]’ﬂ 1 MUdEl-AgﬂﬂS[iC ME[ﬂ-LEﬂming « Step 1: Randomly initialize the learner
« 5Step 2: Repeat the entire process from Step 2.a to Step 3 for all the
Require: p(T}' dlStI’ibuti{}ﬂ over [HSkS episodes of the meta-training dataset (or for a certain number of
LI . . epochs) until the learner converges to a good set of “meta-
Require: o, fj’ 'st'ep. size hyperparameters rameters”
l: rﬂﬂdﬂml}’ initialize ¢ o Step 2.a: Sample a batch of episodes from the meta-training

2: Whilﬂ not d{}HE dﬂ :?tasjtb Initialize the adapt ith the | t
o Step 2.b: Initialize the adapter wi e learner’s parameters
3 Sample bﬂtﬂh Df [ﬂSkS 7; ~ p(T) o Step 2.c: While number of inner training steps is not equal to zero
4: for all 7; do = Step 2.c.1: Train the adapter based on the support set(s) of the
. batch, compute the loss and the gradients, and update the
5 Evaluate VL7 ( fg) with respect to K examples
6

Compute adapted parameters with gradient de-

adapter’s parameters

o Step 2.d: Use the updated parameters of the adapter to compute

scent: H: = — {IVQ J.(.:‘;r; (fg) the “meta-loss” based on the query set(s) of the batch
7. end for « Step 3: Compute the “meta-gradients”, followed by the “meta-
Q- Updﬂte 9 — 9 _ ,BV.E! Z"E MP(T) ‘ETI (f&: ) parameters” based on the “meta-loss,” and update the learner’s
parameters

0: end while
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MAML Gradient Update Steps

* If we’re given our MAML-optimized parameters 0, we fine-tune on task Ti by doing the
following gradient update rule: — meta-learning

---- learning/adaptation

0, =0 — aVyLr(fp) 0 _ve,
TN

* So, our MAML optimization meta-objective is the following: o N
1* Yo
minimises 3 Lr(f)= 3 Lr(fo-asienso)
Ti~p(T) Ti~p(T)

e And our meta-optimization (through stochastic gradient descent) is:

0+ 0-B8Ve > Lr.(fo)

Ti~p(T) 10
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What do we minimize with respect to?

Why can’t we create a unified set of parameters and do the following optimization
problem, as opposed to the MAML one?

minimizeg Z Ly, (fg) minimizey Z L7 (fo)
Tesp(T) Ti~p(T)
MAML objective New objective

In the MAML objective, we have a pre-trained model and then fine-tune to specific
tasks. So, we minimize w.r.t. parameters that we update a few times.

The new objective is harder to fine-tune, in that the fine-tuning is not accounted
for in the optimization problem. So, we get worse performance.

11
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Beneftits of MAML

o Effective for few-shot learning (only needs a few training examples per task)

e Fast (only needs 1 or a few gradient update steps)
e No extra parameters!
o Similar algorithms that have been implemented before (e.g., RL2 by
Sutskever and Abbeel) uses an entire extra RNN
e MAML optimization objective is very general and makes no assumption about
structure of model (NN, CNN, RNN, etc.)
o Only requirement is a model that optimizes on gradient descent
o Adaptable to different ML paradigms (supervised learning, reinforcement
learning, etc.)

12
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MAML for Few-Shot Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «, (3: step size hyperparameters

Goal: Using few data points per class,
perform supervision or classification on

new, unseern tasks. 1: randomly initialize 0
2: while not done do
Regression Ob] ective 3:  Sample batch of tasks 7; ~ p(7T)
4:  for all 7; do G )
: : 5: Sample K datapoints D = {x"/,y"’} from T;
Lt (qu) = Z ||f¢ (X(J)) — Y(J) ||§ 6: Evaluate Vg L7, (fp) using D and L7, in Equation (2)
x() .y () ~T; or (3)
7: Compute adapted parameters with gradient descent:
. go . . . 0! =60 —aVeLlr (fs)
n 1 § ‘ , :
Classificatio Ob] ective 8: Sample datapoints D, = {x), y} from 7; for the
Z ) ) meta-update
L7(fe) = y 7 log fs(xV) 9:  end for
(3 3D T, 10:  Update 6 < 0 — {BVQ > 7 ~p(ry £7: (for) using each D;
) ) and L7, in Equation 2 or 3
+ (1 —yY’)log(l — f(xV’)) 11: end while

13
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MAML Regression Experiment Results :

* Sine wave experiments

O Meta Learning(7000000)
W Amplitude [0.1,5.0]
dPhase[0,Pi]
LK points sampled from [-5.0,5.0]

2 fully connected layers(40 neurons) with ReLU
O Baselines
dPretrained Model

* Train on all samples

* Finetune on given sine wave during test
* Evaluated on 600 data points

14
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MAML Regression Experiment Results :

MAML, K=5 MAML, K=10 pretrained, K=5, step size=0.01 pretrained, K=10, step size=0.02

-0 -4 -2 0 2 4 -6 4 2 0 2 4 6 -6 -4 -2 0 2 N -6 -4 -2 0 2 4 6

pre-update -+ 1lgradstep ==+ 10gradsteps - groundtruth A A usedforgrad - pre-update ++ 1gradstep ==+ 10 grad steps

15
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MAML Classification Experiment Results :

* N- way classification * Few Shots learning benchmarks
oUse N class during test with K-shot o Omniglot
learningK shot learning " 1623 characters from 50 alphabets
* Network Architecture * 20 instances each drawn by different
04 modules person
= 3 * 3 convolutions and 64 filters ® Training with 1200 characters
= ReLU nonlinearity = Testing with 423 characters
= 2 * 2 max pooling o MinilmageNet
* No convolution = 80 training classes
0256, 128,64,64 with ReLU = 20 test classes

16
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MAML Classification Experiment Results :

Table 1. Few-shot classification on held-out Omniglot characters (top) and the Minilmagenet test set (bottom). MAML achieves results
that are comparable to or outperform state-of-the-art convolutional and recurrent models. Siamese nets, matching nets, and the memory
module approaches are all specific to classification, and are not directly applicable to regression or RL scenarios. The &+ shows 95%
confidence intervals over tasks. Note that the Omniglot results may not be strictly comparable since the train/test splits used in the prior
work were not available. The Minilmagenet evaluation of baseline methods and matching networks is from Ravi & Larochelle (2017).

S-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% — —
MAML, no conv (ours) 89.7+1.1% | 97.5 +0.6% — —
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7 + 0.4% 99.9 +- 0.1% 95.8 + 0.3% 98.9 +-0.2%

S5-way Accuracy

Minilmagenet (Ravi & Larochelle, 2017) 1-shot S-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £ 0.70%

51.04 £+ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £ 0.84%

55.31 &+ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 + 0.77%

60.60 &= 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 = 1.84%

63.11 + 0.92%
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MAML for Reinforcement Learning

Goal: Using K trajectories/rollouts, be able Algorithm 3 MAML for Reinforcement Learning
to determine a policy that adapts to a new Require: p(7): distribution over tasks
task environment. Require: o, 3: step size hyperparameters

1: randomly initialize 0

2: while not done do

3:  Sample batch of tasks 7; ~ p(T)
4. forall 7; do

5

. . : Sample K trajectories D = , a1, ... sin
RL Objective T J {0ar, )} using fo
6: Evaluate Vo L7, (fs) using D and L7, in Equation 4
} _ 7 Compute adapted parameters with gradient descent:
H 0; =0 — aVoLr,(fo)
_ . 8: Sample trajectories D; = {(x1,a1,...Xxg)} using f
L, (f¢) = ]Ext,at’”fmqn ZR@(X“at) in 7T; 1
| t=1 1 9:  endfor

10:  Update 0 <— 0 — BV > 1) £7:(fo;) using each D;
and L7; in Equation 4
11: end while

18
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MAML on RL Experimental Results:

half-cheetah, goal velocity half-cheetah, forward/backward ant, goal velocity ant, forward/backward
............................... 120 P ISR TSI,
g T—— - - - N . o - e - Em
60 100
g -80 400
® 50 — MAMF (ours)
L --a-- pretrained
g 120 200 ~-a fANdom
& -140 1 B 100 -~ oracle
160 * B |
0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
number of gradient steps number of gradient steps number of gradient steps number of gradient steps

Figure 5. Reinforcement learning results for the half-cheetah and ant locomotion tasks, with the tasks shown on the far right. Each
gradient step requires additional samples from the environment, unlike the supervised learning tasks. The results show that MAML can
adapt to new goal velocities and directions substantially faster than conventional pretraining or random initialization, achieving good

performs in just two or three gradient steps. We exclude the goal velocity, random baseline curves, since the returns are much worse
(< —200 for cheetah and < —25 for ant).

19



tﬁ University at Buffalo The state University of New York

Conclusion

e Multi-task learning
e Fewshot learning
e MAML is an algorithm that allows us to make a pre-trained model that can quickly adapt to
new tasks with a few gradient update steps
o NoO new parameters
o Operates with few training examples
e Optimization meta-objective includes the fact that we fine-tune to tasks, instead of creating
an averaged-parameter model

20
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