





Introduction

Supervised ML models are data-hungry. If you give
large datasets to train large models, you learn a brilliant
decision boundary. Traditional ML algorithms start to fall when
situations tend to change fast and your model runs out of the
training data. The motivation of meta-learning comes from
being able to learn from small data. Meta parameters are
learned in the outer loop while task-specific models are
learned in the inner-loop. By drawing upon implicit
differentiation, we develop the implicit MAML algorithm
which depends only on the solution to the inner level
optimization and not the path taken by the inner loop
optimizer
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Transfer Learning

Transfer learning is a technique in machine learning and
artificial intelligence where knowledge gained from one task
or domain is applied to a different but related task or
domain. In transfer learning, a pre-trained model is used as a
starting point for a new learning task, rather than starting the
learning process from scratch. The pre-trained model has
learned features or representations that can be transferred
to the new task, reducing the amount of training data
required and improving the performance of the new model.

Disadvantage : It can be computationally expensive and
time-consuming to train large models
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Multi-Transfer
Learning

Task A

) AL,

Multi-Transfer Learning is a type of transfer learning that

involves transferring knowledge from multiple source

domains to a target domain. In traditional transfer learning, a

pre-trained model is used to extract features from a single |f‘>
source domain, which are then used to train a new model for

a target domain. However, in multi-transfer learning, the pre-
trained model is trained on multiple source domains, each
with different but related features.
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Issue: limit top out accuracy because it is fully not dedicated
to one task




WHAT IS META-
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Meta-Learning

* Itis referred ‘Learning to Learn’

* It is a subfield of machine learning and cognitive science that focuses on developing algorithms
and models that can learn how to learn.

e The goal is to enable machines to quickly adapt to new tasks or environments by acquiring new
skills and knowledge from past experiences.

It uses bi-level optimization criteria. The meta-learning can be divided into 2 parts, inner loop, and

outer loop. Inner loop may optimize some cost function however, outer loop optimizes
environment.

* One popular method for meta-learning with implicit gradients is MAML



IMAML

 iMAML uses a second-order optimization
method. It depends only on the solution to
the inner level optimization and not the
path taken by the inner loop optimizer

MAMIL uses a first-order optimization
method

implicit MAML
(this work)
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Formulation

Outer and Inner Level

outer—level * OML-Best Meta Learning parameter

,OKIL st aé;min F(B;, ‘ « F - average validation loss function
0cO « Alg - training algorithm performed on the training
set of the particular task while starting from 6
| M rin“m‘Zlevel\ | « M - Number of tasks
where F'(0) = A Z L(AIg(O.D}r). D?m) ' T Task
T « Di- Dataset
* Ditr-Train set
¢; = Alg(0,D!") = 0 —aVeL(0,D!). (inner-level of MAML) « Ditest - Test set

* Alpha - Learning Rate

* @i- model parameters



Section 2.2 Proximal Regularization in the Inner
Level

To have sufficient learning in the inner level while also avoiding over-fitting, .Alg needs to incorpo-
rate some form of regularization. Since MAML uses a small number of gradient steps, this corre-
sponds to early stopping and can be interpreted as a form of regularization and Bayesian prior [20].
In cases like ill-conditioned optimization landscapes and medium-shot learning, we may want to
take many gradient steps, which poses two challenges for MAML. First, we need to store and differ-
entiate through the long optimization path of Alg, which imposes a considerable computation and
memory burden. Second, the dependence of the model-parameters {¢; } on the meta-parameters (6)

chrinle and yranichac ac tha niimhar Af aradiant ctanc in Ala arauvre malbina mata laarmina diffanls

The old method has this constraint because of back propagation. New method don’t have this
issue and stays close to the actual parameter chosen by using A which is a regularization parameter
can be scalars, vectors or full matrices. But, in this paper they consider as scalar

Alg*(0,D}") = argmin L(¢', D}*) + A |¢’ — 6]|>.
P ED 2

The proximal regularization term in Eq. 3 encourages ¢; to remain close to 6, thereby retaining a
strong dependence throughout. The regularization strength () plays a role similar to the learning
rate (o) in MAML, controlling the strength of the prior (@) relative to the data (D). Like a, the
regularization strength A may also be learned. Furthermore, both v and A can be scalars, vectors, or
full matrices. For simplicity, we treat A as a scalar hyperparameter. In Eq. 3, we use * to denote that



Formulation

Bi-level meta learning

problem
outer — level
rGf‘\IL ;= argmin F(B;, ‘
f0co

. F(0) = \i[ Z Li(Alg;(0)).

1=1

Alg:(0) := argmin G;(¢’, 0), where G;(¢'.0) = L
@'ed

A ‘
(@) +5 Nl — 61

OML - Best Meta Learning parameter
F - average validation loss function

Alg - training algorithm performed on the training
set of the particular task while starting from 6

M — Number of tasks
Ti — Task

Di - Dataset

Ditr — Train set

Di test — Test set
Alpha - Learning Rate

A - regularization parameter

@i — model parameters



How does it lead to gradient Descent

« We have to calculate Df/DO. The conventional approach involved blindly inverting

the matrix, which is a computationally expensive process. So, the author suggests
not to do that instead multiply the gradient with the invertible matrix.
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Algorithm

Algorithm 1 Implicit Model-Agnostic Meta-Learning (iMAML)

1: Require: Distribution over tasks P(7), outer step size 7, regularization strength \,
2: while not converged do

3: _ Sample mini-batch of tasks {7;}2 , ~ P(T)

4: | for Each task 7; do

5 Compute task meta-gradient g; = Implicit-Meta-Gradient(7;,6, \)

6: end for . =

7: Average above gradients to get VF(0) = (1/B) ., gi

8: Update meta-parameters with gradient descent: 8 < 6 — nV F (8) /I (or Adam)
9: end while

Algorithm 2 Implicit Meta-Gradient Computation

Input: Task 7;, meta-parameters @, regularization strength \

Hyperparameters: Optimization accuracy thresholds ¢ and ¢’

Obtain task parameters ¢, using iterative optimization solver such that: ||¢; — Alg*(0)|| <6
Compute partial outer-level gradient v; = V4 L7 (¢;)

Use an iterative solver (e.g. CG) along with reverse mode differentiation (to compute Hessian
vector products) to compute g; such that: ||g; — (I + %VL’EAi(d)i))_lviH <¢

6: Return: g;
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Summary

In summary, meta-learning with
implicit gradients is a promising
approach for learning how to learn
in  scenarios where  explicit
gradients may not be available.
These methods can enable models
to quickly adapt to new tasks with
minimal data, improving their
efficiency and generalization. Also,
this has the potential to improve
the performance and versatility of
autonomous systems, such as self-
driving cars or robots
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