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Introduction

SIGNSGD: Compressed Optimization for Non-Convex Problems

• Considers only the sign of the gradients.

• Compressed optimization technique: reduces the overall training time.

• For non-convex problems (typical in case of DNN).
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Background
Gradient Descent:

Step 1: Calculate gradient at current point

Step 2: Move in the opposite direction of slope 

increase by the computed amount

𝑥!"# = 𝑥! − δ ∗ %𝑔!
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Background

Distributed Learning
• Optimization tasks are computationally resource intensive

• They are not very scalable.

• Can be accelerated by using distributed systems.



6

Background
Distributed Learning

Parameter 
Server

Worker 4

Worker 3Worker 2

Worker 1
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SignSGD
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SignSGD

Assumptions:

1. Objective function has a lower bound  𝑓 ∗
2. Variance has a coordinate-wise bound �⃗�
3. Assumes coordinate-wise gradient Lipschitz 𝐿

Define

Number of Iterations : K
Number of cumulative gradient calls: N
Learning rate : #

→
!

%

Convergence Rate
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SignSGD in Distributed Setting
Majority Voting

Parameter 
Server

Worker 2Worker 1

Sign(g) Sign(g)
Sign( ∑𝑠𝑖𝑔𝑛 𝑔 )
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Compression Savings 
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SignSGD with Majority Voting



12

SignSGD with Majority Voting

Assumptions:

1. Objective function has a lower bound  𝑓 ∗
2. Variance has a coordinate-wise bound �⃗�
3. Assumes coordinate-wise gradient Lipschitz 𝐿

Define

Number of Iterations : K
Number of gradient calls: N

Convergence Rate
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Signum

• Momentum can be added to speed up the training

• Instead of taking single gradient, Momentum considers running 
average of recent gradients

• Take sign of momentum to incorporate momentum into signSGD
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Signum
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Experiments
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Experiments

CIFAR-10 results using SIGNUM to train a Resnet-20 model.
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Conclusion

• A general framework for studying sign-based methods in stochastic non-convex optimization.
• Provides concrete proofs that these algorithms converge under certain assumptions
• Yet to be benchmarked for realistic scenarios on the distributed systems.
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