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Introduction

SIGNSGD: Compressed Optimization for Non-Convex Problems
* Considers only the sign of the gradients.
* Compressed optimization technique: reduces the overall training time.

* For non-convex problems (typical in case of DNN).



.[é University at Buffalo The State University of New York

Background

Gradient Descent: A
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Incremental

Step 1: Calculate gradient at current point
Step 2: Move in the opposite direction of slope

increase by the computed amount

- Minimum Cost

Derivative of Cost
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Xp+1 = X — O * g
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Background

Distributed Learning -

* Optimization tasks are computationally resource intensive
* They are not very scalable.

* Can be accelerated by using distributed systems.
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Background

Distributed Learning /_-
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SignSGD

Algorithm 1 SIGNSGD

Input: learning rate o, current point
gk  stochasticGradient(zy)

Ty1 ¢ T — 0sign(gr)
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SignSGD

Convergence Rate

Assumptions: . Define

1. Obijective function has a lower bound f = Number of Iterations : K

2. Variance has a coordinate-wise bound ¢ Number of cumulative gradient calls: N
3. Assumes coordinate-wise gradient Lipschitz L Learning rate :

-l K
2|

SGD gets rate

2\ Lllofo =) + | ﬁ’llj:}

> | 1
. ™M
IA

o 1 o
\{«’I‘ HI”] (./tl_, +T) +2l|ﬁ”|]

2 <
1| =T

IA
<
Z]

signSGD gets rate | - Z \FAE
A. ON



.[é University at Buffalo The State University of New York

SignSGD in Distributed Setting
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Compression Savings
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SignSGD with Majority Voting

Algorithm 3 Distributed training by majority vote

Input: learning rate J, current point xy, # workers M
each with an independent gradient estimate g,,, (%)
on server

pull sign(g,,, ) from each worker

push sign [Zfrle sign(gm)] to each worker
on each worker .
Tgy1 Tk — dsign [Zm=1 sign(gm)]
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SignSGD with Majority Voting

Convergence Rate

Assumptions: . Define
1. Obijective function has a lower bound f = Number of Iterations : K
2. Variance has a coordinate-wise bound ¢ Number of gradient calls: N

3. Assumes coordinate-wise gradient Lipschitz L
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Sighum

* Momentum can be added to speed up the training

* Instead of taking single gradient, Momentum considers running
average of recent gradients

* Take sign of momentum to incorporate momentum into signSGD
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Sighum

Algorithm 2 SIGNUM

Input: learning rate 4, momentum constant 3 € (0, 1),
current point zj, current momentum my

gk < stochasticGradient(zy)

Mi41 < Pmy + (1 — B) g

Tk4+1 ¢ Tk — O sign(mp1)
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Experiments
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Figure A.1. A simple toy problem where SIGNSGD converges faster than SGD. The objective function is just a quadratic f(z) = %mz
for x € R'°°. The gradient of this function is just g(x) = z. We construct an artificial stochastic gradient by adding Gaussian noise
N (0,100?) to only the first component of the gradient. Therefore the noise is extremely sparse. The initial point is sampled from a unit
variance spherical Gaussian. For each algorithm we tune a separate, constant learning rate finding 0.001 best for SGD and 0.01 best for

SIGNSGD. SIGNSGD appears more robust to the sparse noise in this problem. Results are averaged over 50 repeats with &1 standard
deviation shaded.
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Experiments
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CIFAR-10 results using SIGNUM to train a Resnet-20 model.




.[é University at Buffalo The State University of New York

Conclusion

 Ageneral framework. for studying sign-based methods in stochastic non-convex optimization.
* Provides concrete proofs that these algorithms converge under certain assumptions
* Yet to be benchmarked for realistic scenarios on the distributed systems.
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