
1

Harichandana Vejendla

(50478049)

Unraveling Meta-Learning: 

Understanding Feature 

Representations for Few-Shot Tasks

1



• Meta-Learning: Meta-learning describes machine learning algorithms that acquire knowledge and 

understanding from the outcome of other machine learning algorithms. They learn how to best 

combine the predictions from other machine-learning algorithms.

• Few-shot Learning: Few-Shot Learning is a Machine Learning framework that enables a pre-trained 

model to generalize over new categories of data using only a few labeled samples per class.

• Feature Extraction: Feature extraction is a process of dimensionality reduction that involves 

transforming raw data into numerical features that can be processed.

• Feature clustering: Feature clustering aggregates point features into groups whose members are 

similar to each other and not similar to members of other groups.

• Feature Representation: Representation Learning or feature learning is the subdiscipline of the 

machine learning space that deals with extracting features or understanding the representation of a 

dataset.
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Definitions



• Transfer Learning: Pre-training a model on large auxiliary datasets and then fine-tuning the resulting models on 

the target task. This is used for few-shot learning since only a few data samples are available in the target 

domain.

• Transfer learning from classically trained models yields poor performance for few-shot learning.

Recently, few-shot learning has been rapidly improved using meta-learning methods.

• This suggests that the feature representations learned by meta-learning must be fundamentally different from 

feature representations learned through conventional training.

• This paper understands the differences between features learned by meta-learning and classical training. 

• Based on this, the paper proposes simple regularizers that boost few-shot performance appreciably.

3

Introduction



• In the context of few-shot learning, the objective of meta-learning algorithms is to produce a network that 

quickly adapts to new classes using little data.

• Meta-learning algorithms find parameters that can be fine-tuned in a few optimization steps and on a few data 

points in order to achieve good generalization.

• The task is characterized as n-way, k-shot if the meta-learning algorithm must adapt to classify data from Ti

after seeing k examples from each of the n classes in Ti.
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Meta-Learning Framework
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Algorithm



• Meta-learning schemes typically rely on bi-level optimization problems with an inner loop and an outer loop.

• An iteration of the outer loop involves first sampling a “task,” which comprises two sets of labeled data: the 

support data, 𝑇𝑖
𝑠, and the query data, 𝑇𝑖

𝑞
.

• In the inner loop, the model being trained is fine-tuned using the support data.

• Fine-tuning produces new parameters θ𝑖 , that are a function of the original parameters and support data.

• We evaluate the loss on the query data and compute the gradients w.r.t the original parameters θ. We need 

to unroll the fine-tuning steps and backpropagate through them to compute the gradients.

• Finally, the routine moves back to the outer loop, where the meta-learning algorithm minimizes loss on the 

query data with respect to the pre-fine-tuned weights. Base model parameters are updated using the 

gradients.
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Algorithm Description



Meta-Learning Algorithms

A variety of meta-learning algorithms exist, mostly differing in how they are fine-tuned using the 

support data during the inner loop:

• MAML: Updates all network parameters using gradient descent during fine-tuning.

• R2-D2  and MetaOptNet: Last-layer meta-learning methods (only train the last layer). They freeze 

the feature extraction layers (feature extractor’s parameters are frozen ) during the inner loop. Only 

the linear classifier layer is trained during fine-tuning. 

• ProtoNet: Last-layer meta-learning method. It classifies examples by the proximity of their features 

to those of class centroids. The extracted features are used to create class centroids which then 

determine the network’s class boundaries.
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Few-Shot Datasets

• Mini-ImageNet: It is a pruned and downsized version of the ImageNet classification dataset, 

consisting of 60,000, 84×84 RGB color images from 100. These 100 classes are split into 64, 16, 

and 20 classes for training, validation, and testing sets, respectively.

• CIFAR-FS dataset: samples images from CIFAR-100. CIFAR-FS is split in the same way as mini-

ImageNet with 60,000 32 × 32 RGB color images from 100 classes divided into 64, 16, and 20 

classes for training, validation, and testing sets, respectively.
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Comparison between Meta-Learning and Classical Training Models

• Dataset Used: 1-shot mini-ImageNet

• Classically trained models are trained using cross-entropy loss and SGD.

• Common fine-tuning procedures are used for both meta-learned and classically-trained models for a 

fair comparison

• Results show that meta-learning models perform better than classical training models on few-shot 

classification.

• This performance advantage across the board suggests that meta-learned features are qualitatively 

different from conventional features and fundamentally superior for few-shot learning.
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Class Clustering in Feature Space

Measuring Clustering in Feature Space:

To measure feature clustering (FC), we consider the intra-class to inter-class variance ratio:

ϕ𝑖,𝑗 - feature vector corresponding to data           

point in class i in training data

μ𝑖 - mean of feature vectors in class i

μ - mean across all feature vectors

C    - number of classes

N    - number of data points per class

Where, 𝑓θ (𝑥𝑖,𝑗) = ϕ𝑖,𝑗 𝑓θ - feature extractor

𝑥𝑖,𝑗 - training data in class i  

Low values of this fraction correspond to collections of features such that classes are well-separated 

and a hyperplane formed by choosing a point from each of two classes does not vary dramatically with 

the choice of samples. 
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• As features in a class become spread out and the classes are brought closer together, the classification 

boundaries formed by sampling one-shot data often misclassify large regions.

• As features in a class are compacted and classes move far apart from each other, the intra-class to inter-

class variance ratio drops, and the dependence of the class boundary on the choice of one-shot samples 

becomes weaker. 

Why Clustering is important?
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• Three classes are randomly chosen from the test set, and 100 samples are taken from each class. The samples are 

then passed through the feature extractor, and the resulting vectors are plotted.

• Because feature space is high-dimensional, we perform a linear projection onto the first two component vectors 

determined by LDA.

• Linear discriminant analysis (LDA) projects data onto directions that minimize the intra-class to inter-class variance 

ratio.

• The classically trained model mashes features together, while the meta-learned models draw the classes farther apart. 

Comparing Feature Representations of Meta-Learning and Classically Trained Models
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Hyperplane Invariance

This regularizer with one that penalizes variations in the maximum-margin hyperplane separating feature vectors in 

opposite classes

Hyperplane Variation Regularizer:

Dat points in class A : x1, x2

Data points in class B: y1, y2

𝑓θ - feature extractor

𝑓θ (x1) - 𝑓θ (y1) : determines the direction of the maximum  

margin hyperplane separating the two points in the feature space

• This function measures the distance between distance vectors x1 − y1 and x2 − y2 relative to their size.

• In practice, during a batch of training, we sample many pairs of classes and two samples from each class. Then, 

we compute RHV on all class pairs and add these terms to the cross-entropy loss.

• We find that this regularizer performs almost as well as Feature Clustering Regularizer and conclusively 

outperforms non-regularized classical training.
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Experiments

• Feature clustering and Hyperplane variation values are computed.

• These two quantities measure the intra-class to inter-class variance ratio and invariance of 

separating hyperplanes.

• Lower values of each measurement correspond to better class separation.

• On both CIFAR-FS and mini-ImageNet, the meta-learned models attain lower values, indicating 

that feature space clustering plays a role in the effectiveness of meta-learning.
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Experiments

• We incorporate these regularizers into a standard training routine of the classical training model.

• In all experiments, feature clustering improves the performance of transfer learning and 

sometimes even achieves higher performance than meta-learning

15



Weight Clustering: Finding Clusters of Local Minima for Task Losses in 

Parameter Space
• Since Reptile does not fix the feature extractor during fine-tuning, it must find parameters that adapt easily to 

new tasks.

• We hypothesize that Reptile finds parameters that lie very close to good minima for many tasks and is, 

therefore, able to perform well on these tasks after very little fine-tuning.

• This hypothesis is further motivated by the close relationship between Reptile and consensus optimization.

• In a consensus method, a number of models are independently optimized with their own task-specific 

parameters, and the tasks communicate via a penalty that encourages all the individual solutions to 

converge around a common value.
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• Reptile can be interpreted as approximately minimizing the consensus formulation

• Reptile diverges from a traditional consensus optimizer only in that it does not explicitly consider 

the quadratic penalty term when minimizing for ˜θp.
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Consensus Formulation:



• We modify Reptile to explicitly enforce parameter clustering around a consensus value.

• We find that directly optimizing the consensus formulation leads to improved performance.

• during each inner loop update step in Reptile, we penalize the squared distance from the parameters for the current 

task to the average of the parameters across all tasks in the current batch.

• This is equivalent to the original Reptile when α = 0. We call this method “Weight-Clustering.
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Consensus Optimization Improves Reptile
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Reptile with Weight Clustering Regularizer

n - number of meta-training steps

k - number of iterations or steps to perform 

within each meta-training step



• We compare the performance of our regularized Reptile algorithm to that of the original Reptile method 

as well as first-order MAML (FOMAML) and a classically trained model of the same architecture. We 

test these methods on a sample of 100,000 5-way 1-shot and 5-shot mini-ImageNet tasks

• Reptile with Weight-Clustering achieves higher performance.
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Results of weight clustering



• Parameters of networks trained using our regularized version of Reptile do not travel as far during fine-tuning at 

inference as those trained using vanilla Reptile

• From these, we conclude that our regularizer does indeed move model parameters toward a consensus which is 

near good minima for many tasks
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Results of weight clustering



• We find evidence that meta-learning algorithms minimize the variation between feature vectors within a 

class relative to the variation between classes.

• Moreover, we design two regularizers for transfer learning inspired by this principle, and our 

regularizers consistently improve few-shot performance.

• The success of this method helps to confirm the hypothesis that minimizing within-class feature 

variation is critical for few-shot performance.
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Conclusion



Meta-Learning:

• https://machinelearningmastery.com/meta-learning-in-machine-learning/

• https://www.analyticsvidhya.com/blog/2022/09/meta-learning-structure-advantages-

examples/#:~:text=Meta%2Dlearning%20describes%20machine%20learning,combine%20predictions

%20from%20ensemble%20members.

Few-shot Learning:

• https://blog.paperspace.com/few-shot-learning/

Feature Extraction:

• https://www.mathworks.com/discovery/feature-

extraction.html#:~:text=Feature%20extraction%20refers%20to%20the,directly%20to%20the%20raw%

20data

Feature Clustering

• https://www.ra.ethz.ch/CDstore/www6/Technical/Paper118/node8.html

Representation Learning

• https://pub.towardsai.net/a-gentle-introduction-to-representation-learning-e79e5ed6964
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