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Background

• What is bilevel optimization 



• Bilevel vs minimax

Background
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− f(x, y)

Minimax: 

Bilevel: 



• Application 

Background

Supply chain management: Bilevel optimization can be used to model 
the interactions between suppliers and manufacturers. The lower level 
problem represents the production decisions of the manufacturer, 
while the upper level problem represents the pricing decisions of the 
supplier.


• Related Machine Learning Fields

Meta-learning, federated-learning, continual learning




Strong convexity of lower-level function
• Why we need that?
Strong convexity assumption on the lower-level objective 
makes the feasible set S(x) a singleton, and the hyper-objective 
φ(x) a smooth, differentiable function. 



Solution with lower-level strong convexity
Implicit Differentiation Theorem.  
For example, approximate implicit differentiation (AID) based 
methods and iterative differentiation (ITD) based methods. 




Problem of Non-strong Convexity

Discontinuity of hyper-objective  



Problem of Non-strong Convexity
The failure of Regularization 

The feasible set will become a set to a unique point, so the original structure of the 
problem is broken. 

And the hyper-objective and the regulated hyper-objective will completely different. 



Problem of Non-strong Convexity
The failure of KKT condition

There is no (x, y) such that the inequality holds.


The failure of Slater’s condition! 
Strong Duality doesn’t hold! 



Problem of Non-strong Convexity
Slater’s condition can be satisfied for approximate KKT points. 

But approximate KKT points can be problematic in the bilevel setting



Continuity and Local Optimality of Hyper-Objective  

Theorem:
If for any given x the set S(x) is non-empty and compact, and f(x,y) and S(x) are locally 
Lipschitz continuous, then φ(x) is locally Lipschitz continuous.  
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Continuity and Local Optimality of Hyper-Objective  
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Continuity and Local Optimality of Hyper-Objective  

Locally Lipschitz continuity of S(x)

Theorem:
Under Lipschitz objective with weak sharp minimum assumptions or smooth objective 
with dominant gradient assumptions, S(x) is locally Lipschitz continuous.
Furthermore, when f(x,y) is locally Lipschitz continuous, then φ(x) is also locally 
Lipschitz continuous. 
 
Previous Theorem:
If for any given x the set S(x) is non-empty and compact, and f(x,y) and S(x) are locally 
Lipschitz continuous, then φ(x) is locally Lipschitz continuous.  



Goldstein Stationary Points  

Clarke subdifferential  

(δ, ε)-Goldstein stationary point  

A local minimum of φ must be a (0, δ)-Goldstein stationary point for any δ > 0.  



Goldstein Stationary Points  

Inexact Gradient-Free Method  



Goldstein Stationary Points  

Inexact Gradient-Free Method  

Just an idea, not a solution. Because the subroutine A is the real difficulty in 
practice.   

Line 4 use zeroth-order method to calculate the hyper-gradient, but skip the 
design of estimation of . ϕ



Conclusions
In this paper, the authors investigate the local optimality of bilevel optimization 

without lower-level strong convexity. They demonstrate that Goldstein 

stationary point can characterize the optimality for a general problem class, and 

propose the IGFM Algorithm for finding a Goldstein stationary point in 

polynomial time. 

In my opinion, the highlights of this paper are those counterexamples which 

shows the limits of traditional non-strongly convex methods in bilevel condition.
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