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Background

* What Is bilevel optimization

min x,y), OS(x)=argming(x,vy),
mERd,yES(x)f( y), S(z)=argming(z,y)



Background

e Bilevel vsS minimax

Minimax: min max f(x, y)
X oy
Bilevel: min f(x, y*(x)), y*(x) = argmin— f(x,y)
X Y



Background
* Application

Supply chain management: Bilevel optimization can be used to model
the interactions between suppliers and manufacturers. The lower level

problem represents the production decisions of the manufacturer,
while the upper level problem represents the pricing decisions of the

supplier.

* Related Machine Learning Fields

Meta-learning, federated-learning, continual learning



Strong convexity of lower-level function

* Why we need that?

Strong convexity assumption on the lower-level objective
makes the feasible set S(x) a singleton, and the hyper-objective
®(x) a smooth, differentiable function.

min x,y), S(x)=argming(x,vy),
meRd,yes(m)f( y), Slz)=argming(z,y)

= min_f(z,y).

£z
p(x) Jmin,



Solution with lower-level strong convexity

Implicit Differentiation Theorem.

For example, approximate implicit differentiation (AID) based
methods and iterative differentiation (ITD) based methods.

Vo(z) = Vaf(z,y*(2)) — Vi,9(z,y* (@) [V, 9(z,y* ()] 'V, f(z,y*(z)),

where y* (CE) = al'g minyERq 9(5’3» y)



Problem of Non-strong Convexity

Discontinuity of hyper-objective

Example 3.1. Consider the bilevel problem given by

: 2 :
min (z°4+ 1)y, S(x)=arg min —xy,
mER,yES(x)( )y ( ) gyE[—l,l] J

where the lower-level problem is convex in y. Then we know that
p(z) = (z° + 1) sign(z),

which s not continuous at the point x = 0.



Problem of Non-strong Convexity

The failure of Regularization

Proposition 3.1. Consider reqularizing the lower-level problem as gx(x,y) = g(x,y)+ %Hy—QHQ for some g €
R? and A > 0. There always exists a bilevel problem instance of form (1) , where g(x,y) is conver in y, p(x)
is a quadratic function with stationary points, but @ (r) = minges, () f(z,y),S(z) = arg mmyey gx(z,y) is

a linear function without any stationary points. Additionally, | min, o(x) — ming oy (2')| =

p(z) = —2

. 2 A 2
min — 2xyry, s.t. S(x) = arg min .
eatin v Y[ (z) = gyeR (Yi21 — Jp21)

ox(z) = §iyy — 22

The feasible set will become a set to a unique point, so the original structure of the
problem is broken.

And the hyper-objective and the regulated hyper-objective will completely different.



Problem of Non-strong Convexity

The failure of KKT condition

min x,y), s.t.glxr,y) <ming(x,y),
xERd’yEqu( Y) 9(z,y) yeyg( Y)

There is no (x, y) such that the inequality holds.

The failure of Slater’s condition!
Strong Duality doesn’t hold!

min —2x s.t. ¥y € argmin(z — 2)?
(pin  —gy, g gyeR( +y—2)°,



Problem of Non-strong Convexity

Slater’s condition can be satisfied for approximate KKT points.

A > 0; Non-negativity of multiplier
9(z,y) — g*(z) = O(e)
(Alg(z,y) — g7 (2))| =
dist(V f(z,y) + A(Vg(

Feasibility of constraint

O(e); Complementary slackness
z,y) — Vg*(z)), —N(z; Z2)) = O(¢); Stationary of Lagrange function,

But approximate KKT points can be problematic in the bilevel setting

min z? — 2exy, s.t. y € argmine’y?.
rzeR,yeR yeR

where the lower-level problem is strongly convex in y. There exists infinite O(e)-KKT points (Z, 9, 5\) such

that ||[Ve(z)| = Q(1).



Continuity and Local Optimality of Hyper-Objective

Definition 4.1 (Hausdorff distance, [60]). Let Si,S2 be two sets in R:. Define the Hausdorff distance of
diSt(Sl, Sz) by

dist(S1,52) = max{ sup inf ||z7 —x2]|, sup inf |z — :EQH}
r1E€S1 T2€52 T2ESo T1€S51

Based on the Hausdorff distance, we define the local Lipschitz continuity of the set-valued mapping S(z).

Definition 4.2. We call a set-valued mapping S(zx) locally Lipschitz continuous if for any x € R?, there exists
6 > 0 and L > 0 such that for any ' € R? satisfying ||z’ — z|| < 8, we have dist(S(z),S(z')) < L||z — 2’|

As mentioned before, we assume the following nonemptiness and compactness of S(x) to ensure that the
lower-level minimization is well defined.

Theorem:

If for any given x the set S(x) is non-empty and compact, and f(x,y) and S(x) are locally
Lipschitz continuous, then @(x) is locally Lipschitz continuous.



Continuity and Local Optimality of Hyper-Objective

Locally Lipschitz continuity of S(x)

Assumption 4.2 (Lipschitz objective with weak sharp minimum). Suppose for any x € R? the lower-level
problem g satisfies the following properties:

o Lipschitz in x for some constant L > O:

lg(z,y) — g(z’,v)|| < L||z — 2’|, Vz,2’ € R%ye€;

e the optimal set of g(x, -) is the set of weak sharp minimum for some positive continuous function a(x):

g(z,y) — gl,ﬂeir)l)g(w,y’) > 2a(z)|ly — yp(z)|l, VzeRYye,

where y,(x) is the projection of y onto the optimal set argmin, cy g(z,y’).



Continuity and Local Optimality of Hyper-Objective

Locally Lipschitz continuity of S(x)

Assumption 4.3 (smooth objective with dominant gradient). Suppose that the lower-level problem g satisfies
the following properties:

e gradient Lipschitz for some L > 0:

IVa(z,y) = Va(',y")| < L(llz — 2’| +lly = ¥/[), Vz,2" €R% g,y € 5

e gradient dominant in y for some positives continuous a(x):

1
Lly-Ps (v- V@) 2 a@ly - wl@)l, VaeRiyed

where Py () is the projection onto Y and y,(x) is the projection of y onto argmin,cy g(z,y).



Continuity and Local Optimality of Hyper-Objective

Locally Lipschitz continuity of S(x)

Theorem:

Under Lipschitz objective with weak sharp minimum assumptions or smooth objective
with dominant gradient assumptions, S(x) is locally Lipschitz continuous.

Furthermore, when f(x,y) is locally Lipschitz continuous, then ¢(x) is also locally
Lipschitz continuous.

Previous Theorem:

If for any given x the set S(x) is non-empty and compact, and f(x,y) and S(x) are locally
Lipschitz continuous, then ¢(x) is locally Lipschitz continuous.




Goldstein Stationary Points

Clarke subdifferential

L—2X

dOh(z) := Conv {g .g= lim Vh(a:k)}

(0, €)-Goldstein stationary point

min {||g|| : g € Conv {U, ep;)0h(z")}} <e,

A local minimum of ¢ must be a (0, 6)-Goldstein stationary point for any 6 > 0.



Goldstein Stationary Points

Inexact Gradient-Free Method

Algorithm 1 IGFM

1: fort=20,1,---, 1T —1

2. Sample u; € R? uniformly from the unit sphere in R?
3: Estimate ¢(z; + du¢) and @¢(x; — du;) by subroutine A
4: G(ZEt) — % (gé(vxt + 5Ut) — QB(CEt — 5’(1,15)) U+

3 Tiy1 = Tt — T]G(il?t)

6: end for

7: return T uniformly chosen from {xt};r:_ol




Goldstein Stationary Points

Inexact Gradient-Free Method

(¢ + duz) and @(xz; — duy) by subroutine A
(@t + our) — @ — dur)) uy

3:  Estimate ¢
4: G(iBt) — %

Line 4 use zeroth-order method to calculate the hyper-gradient, but skip the
design of estimation of ¢.

Just an idea, not a solution. Because the subroutine A is the real difficulty in
practice.



Conclusions

In this paper, the authors investigate the local optimality of bilevel optimization
without lower-level strong convexity. They demonstrate that Goldstein
stationary point can characterize the optimality for a general problem class, and

propose the IGFM Algorithm for finding a Goldstein stationary point in

polynomial time.

In my opinion, the highlights of this paper are those counterexamples which

shows the limits of traditional non-strongly convex methods in bilevel condition.
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