ADAPTIVE FEDERATED OPTIMIZATION

Presented by Mingxi Lei, 03/01/2022

Reddi, Sashank J., et al. "Adaptive Federated Optimization." International Conference on Learning Representations, 2021.

List of Contents

- Introduction
- Motivation
- Problem
- Algorithm
- Theory
- Experiments

*

Motivation (Challenge)

- Heterogeneous data, i.e., non-identically distributed (non i.i.d.) data
 - E.g. natural language processing
- Both theoretically and empirically proven

Karimireddy, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for federated learning." International Conference on Machine Learning. PMLR, 2020.

.#

Problem Formulation

$$\min_{w} f(w) = \sum_{k=1}^{N} p_k F_k(w) = \mathbb{E}_k \left[F_k(w) \right]$$

f(w): Global objective

 $F_k(w)$: Local objective for device k

 p_k : Weights for device k

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

Algorithm 1 FEDOPT

 $x_{t+1} = rac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_i^t = x_t - rac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \left(x_t - x_i^t
ight).$

1: Input: x_0 , CLIENTOPT, SERVEROPT 2: for $t = 0, \dots, T - 1$ do Sample a subset S of clients 3: 4: $x_{i,0}^{t} = x_{t}$ for each client $i \in S$ in parallel do 5: for $k = 0, \dots, K - 1$ do 6: Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ $x_{i,k+1}^t = \text{CLIENTOPT}(x_{i,k}^t, g_{i,k}^t, \eta_l, t)$ 7: 8: 9: $\Delta_i^{\iota} = x_{i,K}^{\iota} - x_t$ $\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \frac{\Lambda t}{i}$ 10: $x_{t+1} = \text{SERVEROPT}(x_t, -\Delta_t, \eta, t)$ 11:

Adaptive optimization

Algor	ithm 2 FEDADAGRAD, FEDYOGI, and FEDADAM				
1: Initialization: $x_0, v_{-1} \ge \tau^2$, decay parameters $\beta_1, \beta_2 \in [0, 1)$					
2: for $t = 0, \dots, T - 1$ do					
3:	Sample subset S of clients				
4:	$x_{i,0}^t = x_t$				
5:	5: for each client $i \in S$ in parallel do				
6:	for $k=0,\cdots,K-1$ do				
7:	Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$				
8:	$x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$				
9:	$\Delta_i^t = x_{i,K}^t - x_t$				
10:	$\Delta_t = rac{1}{ \mathcal{S} } \sum_{i \in \mathcal{S}} \Delta_i^t$				
11:	$m_t=eta_1m_{t-1}+(1-eta_1)\Delta_t$				
12:	$v_t = v_{t-1} + \Delta_t^2$ (FEDADAGRAD)				
13:	$v_t = v_{t-1} - (1-eta_2)\Delta_t^2 \operatorname{sign}(v_{t-1}-\Delta_t^2)$ (FEDYOGI)				
14:	$v_t = eta_2 v_{t-1} + (1-eta_2) \Delta_t^2$ (FEDADAM)				
15:	$x_{t+1} = x_t + \eta rac{m_t}{\sqrt{v_t} + au}$				

Theoretical analysis

Corollary 1. Suppose η_l is such that the conditions in Theorem 1 are satisfied and $\eta_l = \Theta(1/(KL\sqrt{T}))$. Also suppose $\eta = \Theta(\sqrt{Km})$ and $\tau = G/L$. Then, for sufficiently large T, the iterates of Algorithm 2 for FEDADAGRAD satisfy

$$\min_{0 \le t \le T-1} \mathbb{E} \|\nabla f(x_t)\|^2 = \mathcal{O}\left(\frac{f(x_0) - f(x^*)}{\sqrt{mKT}} + \frac{2\sigma_l^2 L}{G^2 \sqrt{mKT}} + \frac{\sigma^2}{GKT} + \frac{\sigma^2 L\sqrt{m}}{G^2 \sqrt{KT^{3/2}}}\right).$$

Theoretical analysis

Corollary 2. Suppose η_l is chosen such that the conditions in Theorem 2 are satisfied and that $\eta_l = \Theta(1/(KL\sqrt{T}))$. Also, suppose $\eta = \Theta(\sqrt{Km})$ and $\tau = G/L$. Then, for sufficiently large T, the iterates of Algorithm 2 for FEDADAM satisfy

$$\min_{0 \le t \le T-1} \mathbb{E} \|\nabla f(x_t)\|^2 = \mathcal{O}\left(\frac{f(x_0) - f(x^*)}{\sqrt{mKT}} + \frac{2\sigma_l^2 L}{G^2 \sqrt{mKT}} + \frac{\sigma^2}{GKT} + \frac{\sigma^2 L\sqrt{m}}{G^2 \sqrt{KT^{3/2}}}\right).$$

Theoretical analysis - takeaway

- Best known convergence rate: $O(1/\sqrt{mKT})$
 - m: total number of clients
 - K: number of local updates
 - T: number of global updates
- learning rate decay can improve empirical performance
- the effect of client heterogeneity can be reduced by carefully choosing client and server learning rates (on convergence can be reduced by choosing sufficiently ηl and a reasonably large η)

Experiment

Dataset	Model	Task Summary	
CIFAR-100	ResNet-18 (with GroupNorm layers)	Image classification	
EMNIST	Bottleneck network	Autoencoder	
EMNIST	CNN (with dropout)	Character recognition	
Shakespeare	RNN with 2 LSTM layers	Next-character prediction	
Stack Overflow	RNN with 1 LSTM layer	Next-word prediction	
Stack Overflow	Logistic regression classifier	Tag prediction	

13 🎾

 \frown

Fed	Adagrad	Adam	Yogi	AVGM	AVG
CIFAR-10	72.1	77.4	78.0	77.4	72.8
EMNIST C	CR 85.1	52.5 85.6	52.4 85.5	52.4 85.2	44.7 84.9
SHAKESPEA	ARE 57.5	57.0 25.2	57.2 25.2	57.3	56.9 19 5
SO LR	67.1	65.8	65.9	36.9	30.0
EMNIST A	E 4.20	1.01	0.98	1.65	6.47

Table 1: Average validation performance over the last 100 rounds: % accuracy for rows 1–5; Recall@5 (\times 100) for Stack Overflow LR; and MSE (\times 1000) for EMNIST AE. Performance within 0.5% of the best result for each task are shown in bold.

Ease of tuning

Figure 2: Validation accuracy (averaged over the last 100 rounds) of FEDADAM, FEDYOGI, and FEDAVGM for various client/server learning rates combination on the SO NWP task. For FEDADAM and FEDYOGI, we set $\tau = 10^{-3}$.

11

Figure 6: Validation accuracy (averaged over the last 100 rounds) of FEDADAGRAD, FEDADAM, FEDYOGI, FEDAVGM, and FEDAVG for various client/server learning rates combination on the CIFAR-100 task. For FEDADAGRAD, FEDADAM, and FEDYOGI, we set $\tau = 10^{-3}$.

Ease of tuning

Learning rate decay

Table 11: (Top) Test accuracy (%) of a model trained centrally with various optimizers. (Bottom) Average test accuracy (%) over the last 100 rounds of various federated optimizers on the EMNIST CR task, using constant learning rates or the EXPDECAY schedule for η_l . Accuracies (for the federated tasks) within 0.5% of the best result are shown in bold.

A	DAGRAD	Adam	Yogi	SGDM	SGD
CENTRALIZE	ED 88.0	87.9	88.0	87.7	87.7
Fed A	DAGRAD	Adam	Yogi	AVGM	AVG
Constant r	η 85.1	85.6	85.5	85.2	84.9
ExpDecay	85.3	86.2	86.2	85.8	85.2

Summary

- Adaptive optimization in federated learning
- Faster convergence
- Easy to tune

Reference

Karimireddy, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for federated learning." *International Conference on Machine Learning*. PMLR, 2020.

