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Adversarial Attack:

“panda” noise “gibbon”

57.7% confidence 99.3% confidence




University at Buffalo
School of Engineering and Applied Sciences

hs i

What this paper adds...

 defining an adversary attack or defensing the model

« guarantee on adversarial robustness
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Ensuring Network Defense Against Worst-Case Adversarial Attacks:

Guarantee comes from the fact that network can defend against worst case adversarial attack.

How to ensure this

1. How can we produce strong adversarial examples, i.e., adversarial examples that fool a model with
high confidence while requiring only a small perturbation?

2. How can we train a model so that there are no adversarial examples, or at least so that an
adversary cannot find them easily?
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Saddle Point:
minp(6), where p(6) = E(yy).p [maxL(0,x+,y)

* Inner maximization: (measure the strength of adversary)

« aims to find an adversarial version of a given data
point x that achieves a high loss.

* Non-concave (local maximum) local min local max saddle point

e  Quter minimization: (measure the strength of defense)

« goalis to find model parameters so that the
“adversarial loss” given by the inner attack probl
minimized. (by adjusting 6.)

* Non-convex (local minimum)

e |flossvalueisOil.e L(6,x+ 5,y)' = 0 then model is robust. N
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Adversarial Attacks:

Fast Gradient Sign Method (FGSM):  x +&sgn(V.L(6, x,v)).

* |t takes exactly one ¢-sized step.

* Less training time and fails to increase robustness.

* Tune according loss gradient

Projected Gradient Method (PGD):  x'*! =TI, s (x' + asgn(V.L(6,x,v))) .
*  One of the most effective attack.

* Itrequires too much training time as it takes multiple iterations(multi-step).

* Gives best possible adversary (within the constraint)
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Exploring the local maxima of PGD
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PGD optimizes noise to the local maxima loss value.

Randomly initialized value is with in the set S of allowed perturbations bounded by L,

For the given different starting points these are the graphs, and these all are consistenti.e
with similar loss value

PGD iterated 100 times and adversarial models have much lower losses.



University at Buffalo
School of Engineering and Applied Sciences

Exploring the local maxima of PGD
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Local maxima for random 5 images from each dataset

Blue = loss on a standard network

Red -> loss on an adversarial trained part

Loss significantly smaller for adversarial trained networks and they tend to be concentrated
as well as with very few outliers.

Even with many different start points, there is no global maxima, which is higher than other
maximas.
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Normal vs Adversarial Decision Boundaries
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» To reliably withstand strong adversarial attacks, networks require a larger capacity
than for correctly classifying 9 L« X
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Model Capacity’s Impact - MNIST:

Average loss
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Figure 1: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFAR10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the £-ball around the
same natural example (additional plots for different examples appear in Figure 11). The adversarial
loss plateaus after a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially
trained networks are significantly smaller than on their standard counterparts.
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Model Capacity’s Impact - CIFAR10:

CIFAR10
Simple|Wide  Simple| Wide Simple| Wide Simple| Wide
Natural 92.7% |95.2% 87.4% [90.3% 79.4% (87.3% 0.00357|0.00371
FGSM 27.5% |32.7% 90.9% |95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% | 3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 |0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 1: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFAR10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the £-ball around the
same natural example (additional plots for different examples appear in Figure 11). The adversarial
loss plateaus after a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially
trained networks are significantly smaller than on their standard counterparts.



hs i

University at Buffalo
School of Engineering and Applied Sciences

Outcomes of Expanded Capacity:

Improved robustness to one-step adversary through capacity expansion, especially for low
values of €.

For large ¢, Fast Gradient Sign Method (FGSM) adversaries result in overfitting.
The small models are too small to derive any significant learning from PGD.

Training on stronger adversaries and along with having a larger capacity results in lower
transferability of these adversarial examples, which is desirable.

12« ,
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Training on PGD Input:

o o 1.00
=2 =
¢1.00 g
@ ©0.10
o o
- —

0.10 0.01

Ok 25k 50k 75k 100k Ok 25k 50k 75k
lterations Ilterations
(a) MNIST (b) CIFAR10

Figure 5: Cross-entropy loss on adversarial examples during training. The plots show how the
adversarial loss on training examples evolves during training the MNIST and CIFAR10 networks
against a PGD adversary. The sharp drops in the CIFAR10 plot correspond to decreases in training
step size. These plots illustrate that we can consistently reduce the value of the inner problem of
the saddle point formulation (2.1), thus producing an increasingly robust classifier.
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Evaluation of Trained Models Against Various Adversarial Attacks:

The adversaries we consider are:;

White-box attacks with PGD for a different number of iterations and restarts, denoted by source
A.

White-box attacks with PGD using the Carlini-Wagner (CW) loss function. This is denoted as

CW, where the corresponding attack with a high confidence parameter (k = 50) is denoted as
CW+.

Black-box attacks from an independently trained copy of the network, denoted A'.

Black-box attacks from a version of the same network trained only on natural examples, denoted
Anat.
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Results on Different Adversaries:

A - white box attack

A" - Black box attack using
independently initialized and trained
network.

B -> Black box attack using similar
network.

O

Method Steps  |Restarts |Source ||Accuracy
Natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
Targeted |40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%
FGSM - - A 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A 95.7%
CW 40 1 A 97.0%
CW+ 40 1 A’ 96.4%
FGSM - - B 95.4%
PGD 40 1 B 96.4%
CW+ - - B 95.7%
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Results on Different Adversaries — C

A - white box attack

A" - Black box attack using
independently initialized and trained
network.

A,,+ 2 Black box attack using copy of
network trained on natural examples.

FAR 10:

Method Steps Source | Accuracy
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
FGSM - A 67.0%
PGD 7 A 64.2%
CW 30 A 78.7%
FGSM - Asat 85.6%
PGD 7 At 86.0%

Q
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Results on adversaries of Different Strength:
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Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ¢ = 0.3 and ¢ = 8 PGD /,,
adversaries respectively (the training ¢ is denoted with a red dashed lines in the {, plots). In the
case of the MNIST adversarially trained networks, we also evaluate the performance of the Decision
Boundary Attack (DBA) [4] with 2000 steps and PGD on standard and adversarially trained models.
We observe that for ¢ less or equal to the value used during training, the performance is equal or
better. For MNIST there is a sharp drop shortly after. Moreover, we observe that the performance
of PGD on the MNIST {>-trained networks is poor and significantly overestimates the robustness
of the model. This is potentially due to the threshold filters learned by the model masking the loss
gradients (the decision-based attack does not utilize gradients).
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Conclusion:

* Training larger capacity networks on PGD adversaries leads to resistance against various
attacks

* As the capacity increases, the value of the saddle point problem decreases for the given PGD
adversarial model

* MNIST models are very robust against a range of powerful adversaries

* CIFAR1O0 significant increase in performance but not as robust
*  Further exploration will likely lead to increased robustness
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