Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification

 $\bullet \bullet \bullet$

Zhuoning Yuan1, Yan Yan, Milan Sonka1, Tianbao Yang

Lipisha Chaudhary

Challenges

• Data Issues:

- Imbalanced Data
- Not enough data (Small Datasets)
- Hidden biases

• Data Imbalance:

- Is a common issue in real world examples
- Can cause serious problems like degradation of model performance.
- With sensitive data (especially medical) ethical issues can come into picture

Area Under the ROC Curve (AUC)

- Widely used metric for measuring classification performance
- AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the prediction score of any positive data higher than any negative data
- In medical classification tasks the AUC score is the default metric for evaluating

Area Under the ROC Curve (AUC)

Example 1		Exa	mple 2	Example 3		
Prediction	Ground Truth	Prediction	Ground Truth	Prediction	Ground Truth	
0.9	1	0.9	1	0.9	1	
0.8	1	0.41 (↓)	1	0.41 (↓)	1	
0.7	1	0.7	1	$0.40(\downarrow)$	1	
0.6	0	0.6	0	0.49 (↓)	0	
0.6	0	0.49 (↓)	0	$0.48(\downarrow)$	0	
0.47	0	0.47	0	0.47	0	
0.47	0	0.47	0	0.47	0	
0.45	0	0.45	0	0.45	0	
0.43	0	0.43	0	0.43	0	
0.42	0	0.42	0	0.42	0	
:	:	:	:	:	:	
0.1	0	0.1	0	0.1	0	
Acc=0.92		Acc=0.92 ()		Acc=0.92 ()		
AUC=1.00		AUC=0.89 (\downarrow)		AUC=0.78 (\downarrow)		

• An Example of Sensitivity of AUC

- Example 1: shows that all positive instances rank higher than negative instances and two negative instances are misclassified to positive class.
- Example 2: 1 positive and 1 negative instances are misclassified.
- Example 3: 2 positive instances are also misclassified as negative class.
- AUC drops dramatically as the ranks of positive instances drop but meanwhile Accuracy remains unchanged

Problem to be solved

- Make deep learning paradigms more practical and efficient for real-word applications (i.e. medical image classification)
- Previous works achieved great results on large-scale medical dataset for breast cancer screening
 - Used conventional Convolutional Neural Network to classify begin/malignant type of cancer
 - AUC was used to evaluate the performance
- "Can we design a generic method that can further improve the performance of DL on these medical datasets without relying on domain knowledge"?
 - In other words, can it provide good performance on large-scale medical dataset by maximizing AUC

Solution Proposed

- Instead of minimizing the cross-entropy loss, maximize the AUC score
- New margin-based min-max surrogate loss function for AUC score
 - \circ ~ More robust than the conventional AUC Square function
- Extensive empirical studies of proposed method on four difficult medical image classification tasks:
 - Classification of chest x-ray images for identifying many threatening diseases
 - Classification of images of skin lesions for identifying melanoma
 - Classification of mammogram for breast cancer screening,
 - Classification of microscopic images for identifying tumor tissue.

Solution Proposed

- **D**eep **A**UC **M**aximization (DAM):
 - A deep learning method by AUC maximization
 - DAM is used exclusively for medical image classification
 - AUC is a standard performance measure for medical image classification
 - Directly optimizing AUC could achieve a better performance for learning a deep neural network
- AUC maximization is much more challenging than minimizing misclassification error since AUC is much more sensitive to model change.

AUC Square Loss

- The foremost challenge for AUC maximization is to determine a surrogate loss for the AUC score.
- A naive way is to use a pairwise surrogate loss based on the definition of the AUC score
 - AUC maximization is that it needs to optimize the pairwise loss between two instances from different classes
- A generic pairwise loss on training data suffers from a severe scalability issue, which makes it not practical for DL on large-scale datasets
- But AUC square loss has adverse effect when trained with easy data and is sensitive to the noisy data.

- Addresses the two issues from AUC Square Loss:
 - Adverse effect:
 - Training affected by easy data
 - Sensitivity towards Noisy Data
- Example:
 - Top row: optimizing the AUC square loss
 - Bottom row: optimizing the new AUC margin loss (proposed loss)
 - First column: initial decision boundary
 - Middle column: easy examples to the training set
 - Last column: noisily labeled data

AUC Maximization

• Notations:

 $\circ \ \mathbb{I}(\cdot)$: Indicator function of a predicate

 \circ $S = \{(x_1,y_1),\ldots,(x_n,y_n)\}:$ set of training data

 $\circ x_i$: input training example (eg. image)

 $\circ y_i \in \{1,-1\}:$ corresponding label (e.g., the indicator of a certain disease)

 $\circ \; w \in \mathbb{R}^d$: parameters of the deep neural network to be learned

 $\circ h_w(x) = h(w, x)$: the prediction of the neural network on an input data x

 $_{\odot} L(w; x, y) = l(h_w(x), y)$: Loss function; where $l(\hat{y}, y)$ is a surrogate loss function of the

misclassification error (e.g., cross-entropy loss)

 $\circ \ \ [s]_+ = \max(s,0)$

AUC Maximization

- Background on Scalable AUC Maximization:
 - Existing works consider the following definition of AUC:

 $egin{aligned} AUC(h) &= Pr(h_w(x) \geq h_w(x') | y = 1, y' = -1) \ AUC(h) &= \mathbb{E}(\mathbb{I}(h_w(x) - h_w(x') \geq 0) | y = 1, y' = -1) \end{aligned}$

• Indicator function is replaced by a convex surrogate loss

$$AUC(h) = \mathbb{E}[l(h(x) - h(x'))|y = 1, y' = -1)$$

Surrogate Loss
Function

• Final AUC formulation used by the existing works:

$$\min_{w\in \mathbb{R}^d}rac{1}{N_+N_-}\sum_{x\in S_+}\sum_{x\in S_-}l(h_w(x)-h_w(x'))$$

- Where:
 - S_+, S_- : is the set of positive and negative examples
 - $\bullet \,\, N_+, N_-\!:\! {\rm Denotes}$ their size

AUC Maximization

- Issues with optimizing surrogate loss:
 - High cost; for large datasets the complexity worse as $O(n^2)$
 - Optimization focuses only on linear models
 - Not suitable for distributed optimization
- AUC Square Loss:
 - \sim To solve the scalability problem, we optimize the AUC square loss
 - Use the square loss instead of the surrogate loss

 $l l (h_w(x) - h_w(x')) = (1 - h_w(x) + h_w(x'))^2$

• Objective function:

 $\displaystyle \min_{\substack{w\in \mathbb{R}^d\ (a,b)\in \mathbb{R}^2}} \overline{\max_{lpha\in \mathbb{R}} f(w,a,b,lpha)} = \mathbb{E}_z[F(w,a,b,lpha,;z)]$

AUC Square Loss

- Is AUC Square Loss the answer for AUC maximization?
 - Sensitive to Noisy Data
 - Adverse Effect on easy data

- Reformulation of AUC Square loss:
 - AUC Square Loss: ^[1]

$$A_s(w) = \mathbb{E}[(1-h_w(w)+h_w(x'))^2|y=1,y'=-1]$$

$$= \underbrace{\mathbb{E}[(h_w(x)-a(w))^2|y=1]}_{A_1(w)} + \underbrace{\mathbb{E}[(h_w(x')-b(w))^2|y=1]}_{A_2(w)} + \underbrace{(1-a(w)+b(w)^2}_{A_3(w)})^2 = A_1(w) + A_2(w) + (1-a(w)+b(w))^2$$

• Where:

 $egin{aligned} a(w) &= \mathbb{E}[h_w(x)|y=1] \ b(w) &= \mathbb{E}[h_w(x')|y'=1] \end{aligned}$

Reference: $=A_1(w)+A_2(w)+(1-a(w)+b(w))^2$

- *A*₁(*w*), *A*₂(*w*) aims to minimize the variance of prediction scores on positive and negative data respectively
- *A*₃(*w*) aims to push the mean prediction scores of positive and negative examples to be far away
- Issue: the square term can cause the same adverse effect as the AUC square loss
- Solution: Replace $A_3(w)$ with a squared hinge function:

 $max_{lpha \geq 0}\{2lpha(m-a(w)+b(w))-lpha^2\}=(m-a(w)+b(w))_+^2$

- Where:
 - 'm' is a hyper-parameter that specifies desired margin between a(w) and b(w)

$$A(w)=A_1(w)+A_2(w)+\max_{lpha\geq 0}2lpha(m-a(w)+b(w))-lpha^2)$$

- Benefits:
 - Robust to easy data
 - \circ Robust to noisy data

DAM with the AUC margin Loss

• AUC margin loss is equivalent to the following min-max optimization:

 $rac{\min\limits_{w\in \mathbb{R}^d}}{(a,b)\in \mathbb{R}^2} \mathbb{E}_z[F_M(w,a,b,lpha;z)]$

- A Proximal Epoch Stochastic Method is used:
 - To update variables w, a, b, α
 - \circ v = (w, a, b) denotes all the primal variables
 - where:
 - a & b are the mean prediction score on positive data and negative data, respectively
 - $\alpha = 1 + b a$

DAM with AUC Margin Loss

- Algorithm:
 - For every iteration in $\,t=1,\ldots,T$
 - We compute gradients for each of the primal variable with parameter as *z*.
 - Update the primal variable: (w, a, b) and *α*
 - Update model parameters:
 - λ is the standard regularization parameter

Algorithm 1 PESG for optimizing the AUC margin loss

Require: η, γ, λ, T

- 1: Initialize $\mathbf{v}_1, \alpha_1 \geq 0$
- 2: for t = 1, ..., T do
- 3: Compute $\nabla_{\mathbf{v}} F_{\mathbf{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)$ and $\nabla_{\alpha} F_{\mathbf{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)$.
- 4: Update primal variables

$$\mathbf{v}_{t+1} = \mathbf{v}_t - \eta(\nabla_{\mathbf{v}} F_{\mathbf{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t) + \gamma(\mathbf{v}_t - \mathbf{v}_{\text{ref}})) - \lambda \eta \mathbf{v}_t$$

- 5: Update $\alpha_{t+1} = [\alpha_t + \eta \nabla_\alpha F_{\mathsf{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)]_+.$
- 6: Decrease η by a factor and update \mathbf{v}_{ref} periodically

7: end for

A Two-stage Framework for DAM

- Directly optimizing the AUC margin loss can easily handle the recognition tasks on simple datasets, e.g., CIFAR
- Can be difficult working with complex tasks in medical image classification
- They employ a two-stage framework on difficult medical image classification tasks
 - Includes a pre-training step that minimizes the standard cross-entropy loss
 - An AUC maximization step that maximizes an AUC surrogate loss of the pre-trained CNN for learning all layers with the last classifier layer randomly initialized.

- Extensive empirical studies on the proposed robust DAM method with the AUC margin loss
- Performance on Benchmark datasets:
 - Construct imbalanced dataset from Cat&Dog, CIFAR-10, CIFAR-100, STL-10
 - Randomly split the training data by class ID into two even portions as the positive and negative classes
 - \circ ~ To make it imbalance remove some samples from the positive class
 - Two popular network used: DesneNet121 and ResNet20
 - ELU activation functions
 - 100 epochs with a stagewise learning rate: initial value of 0.1
 - decaying at 50% and 75% of the total number of training epochs for all experiments
 - $\blacksquare \quad \lambda = 1e^{-4}$
 - Different batch size for datasets

• DAM with AUC margin loss (AUC-M) vs. DAM with AUC square loss (AUC-S) DL with two other popular loss functions i.e., cross-entropy loss (CE) and focal loss (Focal) trained by SGD

Dataset	CE	Focal	AUC-S	AUC-M
C2 (D)	0.718 ± 0.018	$0.713 {\pm} 0.009$	0.803 ± 0.018	0.809 ± 0.016
C10 (D)	$0.698 {\pm} 0.017$	$0.700 {\pm} 0.007$	0.745 ± 0.010	$0.760 {\pm} 0.006$
S10 (D)	0.641±0.032	0.660 ± 0.027	$0.669 {\pm} 0.070$	$0.703 {\pm} 0.030$
C100 (D)	$0.588 {\pm} 0.011$	0.591 ± 0.017	0.607 ± 0.010	$0.614 {\pm} 0.016$
C2 (R)	0.730 ± 0.028	0.724 ± 0.020	0.748 ± 0.007	0.756±0.017
C10 (R)	0.690 ± 0.011	$0.681 {\pm} 0.011$	0.702 ± 0.015	$0.715 {\pm} 0.008$
S10 (R)	0.641 ± 0.021	0.634 ± 0.024	0.645 ± 0.029	0.659 ± 0.020
C100 (R)	$0.563 {\pm} 0.015$	0.565 ± 0.022	$0.587 {\pm} 0.017$	$0.596 {\pm} 0.016$

D = DenseNet121 R = ResNet20 C2 = Imbalance Cat&Dog C10 = CIFAR-10 C100 = CIFAR-100 SLT-10 = S10

- Medical Image Classification Tasks
 - CheXpert Competition:
 - CheXpert competition is a medical AI competition organized by Stanford ML group
 - Chest X-Ray dataset for detecting chest and lung disease
 - Stats:
 - Train: 224,316 high quality X-ray images from 65,240 patients
 - Validation: 234 images from 200 patients
 - Test: images for 500 patients
 - Only 5 selected diseases for evaluation
 - Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion

Model	AUC	NRBC	Rank
Stanford Baseline [22]	0.9065	1.8	85
YWW [40]	0.9289	2.8	5
Hierarchical Learning [31]	0.9299	2.6	2
DAM (Ours)	0.9305	2.8	1

- Medical Image Classification Tasks
 - Kaggle Melanoma Classification Competition:
 - Stats:
 - 33,126 training images with 584 malignant melanoma images (imbalance ratio=1.76%)
 - 10,892 testing images with an unknown number of melanoma images
 - Testing set is split into public testing set and private testing set at 30%/70% ratio by patient ID

Loss	Public	Private	Public	Private
CE	0.9391	0.9285	0.9447	0.9345
Focal	0.9412	0.9266	0.9424	0.9303
AUC-S	0.9482	0.9332	0.9502	0.9364
AUC-M	0.9497	0.9357	0.9503	0.9393
AUC-S (Meta)	0.9495	0.9358	0.9501	0.9409
AUC-M (Meta)	0.9522	0.9380	0.9520	0.9423
Our Submission	-	-	0.9685	0.9438

• Medical Image Classification Tasks

Data (imratio)	CE	Focal	AUC-S	AUC-M
DDSM+(13%)	0.9392	0.9495	0.9469	0.9544
PatchCamelyon (1%)	0.8394	0.8556	0.8703	0.8896

- The DDSM+ data is a combination of two datasets namely DDSM and CBIS-DDSM
 - Training: 55,000 mammographic images
 - Test: 13,900 mammographic images
- PathCamelyon dataset:
 - Training: 294, 912 color images from histopathologic scans of lymph node section
 - Test: 32, 768 color images from histopathologic scans of lymph node section

