Communication-Efficient Learning of Deep Networks from Decentralized Data

Umar Ahmed

Agenda

- Introduction
- Federated Learning & Optimization
- Federated Algorithms
- Experiments

Introduction

- Phones, tablets, and other electronic devices generate a significant amount of data
 - How can we use this for building more intelligent models?
- What issues would we face?
 - Privacy/Storing data

Introduction: Federated Learning

- Rather than using a central server for both storage and computation of data, use 'federation' of clients (devices) controlled by central server
- Clients compute updates to the model and send to server this is the only thing communicated, and doesn't need to be stored

Advantages:

- No need for direct access to raw training data, it is decoupled from model training
- Reduction of privacy/security risks
- Real world data

Use cases: Image classification, Language models

Federated Learning: Key Properties

- Non-IID
- Unbalanced
- Massively distributed
- Limited communication

Federated Learning: Optimization

- Computation cost is reduced/free, Communication cost is high
 - Goal: add computation so that communication is lessened
- How do we add computation?
 - Increased Parallelism
 - Increased computation on each client

Federated Learning: Outline

- Fixed set of K clients
- Each round, random fraction of C clients selected
- The server sends the current global model to each client
- Each client performs a local computation on the given global state and produces an update
- Each update from each client is aggregated to the global model/updated to central server
- All steps are repeated

Federated Learning: Optimization

$$\min_{w\in \mathbb{R}^d} f(w)$$

w: model
fi = loss(xi, yi;w)
K: clients
n: total data
nk: data for client k
Pk: indexes of data points for client k

$$f(w) = \sum_{k=1}^{K} rac{n_k}{n} F_k(w) \quad ext{where} \quad F_k(w) = rac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w).$$

FederatedAveraging: SGD

The baseline algorithm: FedSGD

- C is set to 1 (C controls global batch size, so gradient descent on whole batch)
- Fixed learning rate
- Each client computes gradient on its local data on current model (one step)
- Central server aggregates these gradients and applies update

$$g_k = \nabla F_k(w_t)$$

$$\sum_{k=1}^{K} \frac{n_k}{n} g_k = \nabla f(w_t)$$

$$w_{t+1} \leftarrow w_t - \eta \sum_{k=1}^K \frac{n_k}{n} g_k$$

$$\forall k, \ w_{t+1}^k \leftarrow w_t - \eta g_k$$

$$w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$$

FederatedAveraging (FedAvg)

• Iterate local update multiple times before moving it to averaging step

$$w^k \leftarrow w^k - \eta
abla F_k(w^k)$$

- Manipulating computation:
 - B: local minibatch size
 - C: fraction of clients per round
 - E: number of training passes on local dataset

FederatedAveraging: Updates

$$u_k = E \frac{n_k}{B}$$

Number of local updates per round

• Manipulating computation:

- B: local minibatch size
- C: fraction of clients per round
- E: number of training passes on local dataset

FederatedAveraging: Algorithm

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0

for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

Experimentation: Overview

- MNIST digit recognition
 - 2NN
 - CNN
- 'The Complete Works of William Shakespeare'
 - LSTM
- CIFAR-10 Images
 - LSTM
- Large-Scale LSTM Social Media Posts

MNIST: Digit Recognition Task

- Multi-layer perceptron, 2 hidden layers, 200 units each using ReLu activation functions
- CNN, 5x5 convolution layers, fully connected layer with 512 units and ReLu activation, softmax output layer

- IID: data shuffled, 100 clients with 600 examples each
- Non-IID: data sorted first by digit, 200 shards of size 300, give 2 shards to each of 100 clients

2NN —— II		D	Non	-IID ———	
C	$B = \infty$	B = 10	$B = \infty$	B = 10	
0.0	1455	316	4278	3275	
0.1	$1474(1.0\times)$	87 (3.6×)	$1796(2.4\times)$	664 (4.9×)	
0.2	1658 (0.9×)	$77(4.1\times)$	$1528(2.8\times)$	619 (5.3×)	
0.5	— ` (—)	$75(4.2\times)$	— ` (—)́	$443(7.4\times)$	
1.0	— (—)	$70(4.5\times)$	— (—)	380 (8.6×)	
CN	N , $E = 5$				
0.0	387	50	1181	956	
0.1	339 (1.1×)	$18(2.8\times)$	$1100(1.1\times)$	206 (4.6×)	
0.2	337 (1.1×)	$18(2.8\times)$	978 (1.2×)	$200(4.8\times)$	
0.5	$164(2.4\times)$	$18(2.8\times)$	1067 (1.1×)	261 (3.7×)	
1.0	246 (1.6×)	16 (3.1×)	— ` (—́)	97 (9.9×)	

Shakespeare Dataset

- Non-IID: Client dataset for each speaking role
 - 1146 Clients
 - Train-test split of 80/20
 - Highly unbalanced/temporally separated
- IID
 - 1146 Clients
 - Balanced dataset

- LSTM language model
 - Reads a character, predicts the next character
 - 2 LSTM layers, 256 nodes each, softmax output layer one node per character
 - Unroll length of 80 characters

Shakespeare & Digit: Fixed C Size

• C = 0.1

• Little to no cost for computation

$$u = (\mathbb{E}[n_k]/B)E$$

 $nE/(KB)$

Table 2: Number of communication rounds to reach a target accuracy for FedAvg, versus FedSGD (first row, E = 1 and $B = \infty$). The *u* column gives u = En/(KB), the expected number of updates per round.

	MNIS	T CN	N, 99% A	CCURACY		
CNN	E	B	\boldsymbol{u}	IID	Non-IID	
FedSGD	1	∞	1	626	483	
FEDAVG	5	∞	5	$179 (3.5 \times)$	$1000 (0.5 \times)$	
FEDAVG	1	50	12	65 (9.6×)	$(0.8\times)$	
FEDAVG	20	∞	20	234 $(2.7\times)$	672 (0.7×)	
FEDAVG	1	10	60	$34(18.4\times)$	$350 (1.4 \times)$	
FEDAVG	5	50	60	29 (21.6×)	334 (1.4×)	
FEDAVG	20	50	240	32 (19.6×)	426 (1.1×)	
FEDAVG	5	10	300	20 (31.3×)	229 $(2.1\times)$	
FedAvg	20	10	1200	18 (34.8×)	173 (2.8×)	
SHAKESPEARE LSTM, 54% ACCURACY						
LSTM	E	B	\boldsymbol{u}	IID	Non-IID	
FEDSGD	1	∞	1.0	2488	3906	
FEDAVG	1	50	1.5	1635 (1.5×)	549 (7.1×)	
FEDAVG	5	∞	5.0	613 $(4.1\times)$	597 $(6.5\times)$	
FEDAVG	1	10	7.4	$460 (5.4 \times)$	164 (23.8×)	
FEDAVG	5	50	7.4	$401 (6.2 \times)$	$152(25.7\times)$	
FEDAVG	5	10	37.1	192 (13.0×)	41 (95.3×)	

Shakespeare & Digit: Fixed C Size

Gray lines show target accuracies used

Observations

- Evidence for robustness for Federated approach:
 - Using more computation per client (FedAvg) -> less number of rounds
 - Significant speedup in non-IID data
- Shakespeare data
 - Representative of real-world applications
 - Unbalanced, still converges relatively fast
- FedAvg converges faster than FedSGD
 - $\circ \quad \text{Manipulation of B and E}$

Shakespeare dataset, changing E value

Can we over-optimize on the client datasets?

Figure 3: The effect of training for many local epochs (large E) between averaging steps, fixing B = 10 and C = 0.1 for the Shakespeare LSTM with a fixed learning rate $\eta = 1.47$.

CIFAR-10 Experiment

- 10 classes of 32x32 images
- 100 clients
 - 500 training
 - \circ 100 testing
- Balanced/IID data

- TensorFlow model
 - Two CNNs, two fully connected layers,
 - linear transformation layer

Table 3: Number of rounds and speedup relative to baseline SGD to reach a target test-set accuracy on CIFAR10. SGD used a minibatch size of 100. FedSGD and FedAvg used C = 0.1, with FedAvg using E = 5 and B = 50.

ACC.	80%		82%		85%	
SGD	18000	(—)	31000	(—)	99000	(—)
FEDSGD	3750	$(4.8 \times)$	6600	$(4.7 \times)$	N/A	(—)
FEDAVG 280 (64.3×)		630 (49.2×)		2000 (49.5×)		

CIFAR-10 Experiment

Figure 4: Test accuracy versus communication for the CI-FAR10 experiments. FedSGD uses a learning-rate decay of 0.9934 per round; FedAvg uses B = 50, learning-rate decay of 0.99 per round, and E = 5.

Large Scale LSTM Experiment

• Large-scale next word prediction

- 10 million public posts
 - **500,000 clients**
 - \circ 5000 words per client
 - 100,000 posts test set
- Model:
 - $\circ \quad \text{LSTM, 256 nodes}$
 - 10,000 word vocabulary
 - Unroll of 10 words
- FedAvg: B = 8, E = 1

Conclusions/Takeaway

- FedAvg able to reduce communication rounds significantly
 - Tested on a variety of different model architectures
- Positive results even in Non-IID and Unbalanced cases
- Practical privacy benefits, more methods may be interesting to explore later

Questions?