
Communication-Efficient
Learning of Deep Networks
from Decentralized Data

Umar Ahmed

Agenda

● Introduction

● Federated Learning & Optimization

● Federated Algorithms

● Experiments

Introduction

● Phones, tablets, and other electronic devices generate a
significant amount of data
○ How can we use this for building more intelligent

models?
● What issues would we face?

○ Privacy/Storing data

Introduction: Federated Learning

● Rather than using a central server for both storage and computation of data, use

‘federation’ of clients (devices) controlled by central server

● Clients compute updates to the model and send to server - this is the only thing

communicated, and doesn’t need to be stored

Advantages:

● No need for direct access to raw training data, it is decoupled from model

training

● Reduction of privacy/security risks

● Real world data

Use cases: Image classification, Language models

Federated Learning: Key Properties

● Non-IID

● Unbalanced

● Massively distributed

● Limited communication

Federated Learning: Optimization

● Computation cost is reduced/free, Communication cost is high

○ Goal: add computation so that communication is lessened

● How do we add computation?

○ Increased Parallelism

○ Increased computation on each client

Federated Learning: Outline

● Fixed set of K clients

● Each round, random fraction of C clients selected

● The server sends the current global model to each client

● Each client performs a local computation on the given global

state and produces an update

● Each update from each client is aggregated to the global

model/updated to central server

● All steps are repeated

Federated Learning: Optimization

w: model
fi = loss(xi, yi;w)
K: clients
n: total data
nk: data for client k
Pk: indexes of data points for client k

FederatedAveraging: SGD

The baseline algorithm: FedSGD

● C is set to 1 (C controls global batch size, so gradient descent on whole batch)

● Fixed learning rate

● Each client computes gradient on its local data on current model (one step)

● Central server aggregates these gradients and applies update

FederatedAveraging (FedAvg)

● Iterate local update multiple times before moving it to averaging
step

● Manipulating computation:
○ B: local minibatch size
○ C: fraction of clients per round
○ E: number of training passes on local dataset

FederatedAveraging: Updates

● Manipulating computation:
○ B: local minibatch size

○ C: fraction of clients per round

○ E: number of training passes on local dataset

Number of local updates per round

FederatedAveraging: Algorithm

Experimentation: Overview

● MNIST digit recognition
○ 2NN
○ CNN

● ‘The Complete Works of William Shakespeare’
○ LSTM

● CIFAR-10 Images
○ LSTM

● Large-Scale LSTM - Social Media Posts

MNIST: Digit Recognition Task

● Multi-layer perceptron, 2 hidden

layers, 200 units each using ReLu

activation functions

● CNN, 5x5 convolution layers, fully

connected layer with 512 units and

ReLu activation, softmax output

layer

● IID: data shuffled, 100 clients with

600 examples each

● Non-IID: data sorted first by digit,

200 shards of size 300, give 2

shards to each of 100 clients

Shakespeare Dataset

● Non-IID: Client dataset for each speaking role
○ 1146 Clients
○ Train-test split of 80/20
○ Highly unbalanced/temporally separated

● IID
○ 1146 Clients
○ Balanced dataset

● LSTM language model
○ Reads a character, predicts the next character
○ 2 LSTM layers, 256 nodes each, softmax output layer - one node per character
○ Unroll length of 80 characters

Shakespeare & Digit: Fixed C Size

● C = 0.1

● Little to no cost for

computation

Shakespeare & Digit: Fixed C Size

Gray lines show target accuracies used

Observations

● Evidence for robustness for Federated approach:
○ Using more computation per client (FedAvg) -> less number of

rounds

○ Significant speedup in non-IID data

● Shakespeare data
○ Representative of real-world applications

○ Unbalanced, still converges relatively fast

● FedAvg converges faster than FedSGD
○ Manipulation of B and E

Shakespeare dataset, changing E value

Can we over-optimize on
the client datasets?

CIFAR-10 Experiment

● 10 classes of 32x32 images

● 100 clients
○ 500 training

○ 100 testing

● Balanced/IID data

● TensorFlow model
○ Two CNNs, two fully connected layers,

○ linear transformation layer

CIFAR-10 Experiment

Large Scale LSTM Experiment

● Large-scale next word prediction

● 10 million public posts
○ 500,000 clients

○ 5000 words per client

○ 100,000 posts test set

● Model:
○ LSTM, 256 nodes

○ 10,000 word vocabulary

○ Unroll of 10 words

● FedAvg: B = 8, E = 1

Conclusions/Takeaway

● FedAvg able to reduce communication rounds

significantly
○ Tested on a variety of different model architectures

● Positive results even in Non-IID and Unbalanced

cases

● Practical privacy benefits, more methods may be

interesting to explore later

Questions?

