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Introduction

e Phones, tablets, and other electronic devices generate a
significant amount of data
o How can we use this for building more intelligent
models?
e What issues would we face?
o Privacy/Storing data




Introduction: Federated Learning

e Rather thanusing a central server for both storage and computation of data, use
‘federation’ of clients (devices) controlled by central server

e Clients compute updates to the model and send to server - this is the only thing
communicated, and doesn’t need to be stored

Advantages:

e No need for direct access to raw training data, it is decoupled from model
training

e Reduction of privacy/security risks

e Realworld data

Use cases: Image classification, Language models



\ Federated Learning: Key Properties

e Non-IID
e Unbalanced
e Massively distributed

e Limited communication



Federated Learning: Optimization

e Computation cost is reduced/free, Communication cost is high
o Goal: add computation so that communication is lessened
e How do we add computation?

o Increased Parallelism

o Increased computation on each client



\ Federated Learning: Outline

Fixed set of K clients

Each round, random fraction of C clients selected

The server sends the current global model to each client
Each client performs a local computation on the given global
state and produces an update

Each update from each client is aggregated to the global
model/updated to central server

All steps are repeated



\ Federated Learning: Optimization

min f(w)
weRd
w: model
fi = loss(xi, yi;w)
K: clients
n: total data

nk: data for client k

K
nk 1
Pk: indexes of data points for client k f(w) = Z ?Fk (w) where Fi(w) = -

k=1




FederatedAveraging: SGD

The baseline algorithm: FedSGD

Cisset to 1 (C controls global batch size, so gradient descent on whole batch)
Fixed learning rate

Each client computes gradient on its local data on current model (one step)
Central server aggregates these gradients and applies update
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FederatedAveraging (FedAvg)

e |teratelocal update multiple times before moving it to averaging
step

wk — w* — NV F(w")

e Manipulating computation:
o B:local minibatch size
o C:fraction of clients per round
o E:number of training passes on local dataset



FederatedAveraging: Updates

Number of local updates per round

e Manipulating computation:
o B:local minibatch size
o C:fraction of clients per round
o E:number of training passes on local dataset



FederatedAveraging: Algorithm

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 is the learning rate.
Server executes:
initialize wq
for eachroundt =1,2,... do
m + max(C - K,1)
S; < (random set of m clients)
for each client k € S; in parallel do

wy,,  ClientUpdate(k, w;)

K o I
ng
Wil € Y pmy Wi

ClientUpdate(k,w): // Run on client k
B < (split Py, into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € B do
w 4+ w — Ve (w;b)
return w to server




\ Experimentation: Overview

e MNIST digit recognition
o 2NN
o CNN
e ‘The Complete Works of William Shakespeare’
o LSTM
e CIFAR-10Images
o LSTM
e Large-Scale LSTM - Social Media Posts



Multi-layer perceptron, 2 hidden
layers, 200 units each using ReLu
activation functions

CNN, 5x5 convolution layers, fully
connected layer with 512 units and
ReLu activation, softmax output
layer

[1D: data shuffled, 100 clients with
600 examples each

Non-IID: data sorted first by digit,
200 shards of size 300, give 2
shards to each of 100 clients

MNIST: Digit Recognition Task

2NN
C

0.0 1455
0.1 1474 (1.0x
0.2 1658§0.9x;
0.5 —  (—)
10 — (=)
CNN, E =5

0.0 387
0.1 339 (1.1x)
0.2 337 (1.1x)
0.5 164 (2.4x)

18 (2.8%)
18 (2.8%)
18 (2.8%)

1.0 246 (1.6x) 16 (3.1x) — (=) 97 (9.9x)

1100 (1.1x)
978 (1.2x)
1067 (1.1x)

206 (4.6x)
200 (4.8% )
261 (3.7x)



Shakespeare Dataset

e Non-IlID: Client dataset for each speaking role
o 1146 Clients
o Train-test split of 80/20
o Highly unbalanced/temporally separated

o 1146 Clients
o Balanced dataset

e |STM language model
o Readsacharacter, predicts the next character
o 2LSTMlayers, 256 nodes each, softmax output layer - one node per character
o  Unroll length of 80 characters



Shakespeare & Digit: Fixed C Size

Table 2: Number of communication rounds to reach a target
accuracy for FedAvg, versus FedSGD (first row, £ = 1
and B = o0). The u column gives u = En/(KB), the

expected number of updates per round.
e C=0.1 . peaEs e
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Shakespeare & Digit: Fixed C Size

MNIST CNN IID MNIST CNN Non-lID Non-IID by Play&Role
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Observations

e Evidence for robustness for Federated approach:
o Using more computation per client (FedAvg) -> less number of
rounds
o Significant speedup in non-11D data
e Shakespeare data
o Representative of real-world applications
o Unbalanced, still converges relatively fast
e FedAvg converges faster than FedSGD
o Manipulation of Band E



Shakespeare dataset, changing E value

n=1.471D n =1.47 Non-IID by Play&Role

Can we over-optimize on
the client datasets?
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Figure 3: The effect of training for many local epochs (large

E) between averaging steps, fixing B = 10 and C' = 0.1 for

the Shakespeare LSTM with a fixed learning rate n = 1.47.




CIFAR-10 Experiment

e 10classes of 32x32 images

100 clients Table 3: Number of rounds and speedup relative to baseline
o SOOI SGD to reach a target test-set accuracy on CIFAR10. SGD
o 100 testing used a minibatch size of 100. FedSGD and FedAvg used
e Balanced/IID data C = 0.1, with FedAvg using £ = 5 and B = 50.
Acc. 80% 82% 85%
SGD 18000 (—) 31000 (—) 99000 (—)
e TensorFlow model FEDSGD 3750 (4.8x) 6600 (4.7x) N/A  (—)
o T ENNG e erae cdl leyers, FEDAVG 280 (64.3x) 630 (49.2x) 2000 (49.5x)

o linear transformation layer



CIFAR-10 Experiment

Test Accuracy

CIFAR-10
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Figure 4: Test accuracy versus communication for the CI-
FARI10 experiments. FedSGD uses a learning-rate decay
of 0.9934 per round; FedAvg uses B = 50, learning-rate
decay of 0.99 per round, and £ = 5.



Large Scale LSTM Experiment

Next Word Prediction LSTM, Non-IID Data

e Large-scale next word prediction

|
©®
e 10 million public posts 9
o 500,000 clients >
o 5000 words per client i) FedAvg (E=1)
o 100,000 posts test set o : n=3.0
e Model: o Do — o
o LSTM, 256 nodes . ' — -7;=1é.0

o 10,000 word vocabulary
o Unroll of 10 words

e FedAvg:B=8E=1
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\ Conclusions/Takeaway

e FedAvg able to reduce communication rounds
significantly
o Tested on avariety of different model architectures
e Positive results evenin Non-IID and Unbalanced
cases
e Practical privacy benefits, more methods may be
interesting to explore later



Questions?



