# Federated Learning with Non-IID Data

Divya Sharvani Kandukuri (50442906)



## Contents

- Introduction
- FedAvg on Non- IID Data
- Weight Divergence due to Non IID Data
- Proposed Solution
- Conclusion



- Federated Learning is an ML technique that trains across multiple decentralized edge devices.
- It provides privacy, security, regulatory and economic benefits.



#### IID vs Non-IID

IID – Independent and Identically Distributed

• Each  $x^{(i)} \sim \mathcal{D}$  (Identically Distributed)

• 
$$orall i 
eq j \; p(x^{(i)},x^{(j)}) = p(x^{(i)})p(x^{(j)})$$
 (Independently Distributed)

Non-IID Data:

 Data is processed in an insufficiently random order or ordered by collection of devices and/oo. (not independent

#### **Research in Federated Learning**

- McMahan introduced the Federated Averaging (FedAvg) algorithm and demonstrated the robustness of FedAvg to train CNNs on benchmark image classification datasets, and LSTM on a language dataset.
- Two main challenges :
  - Communication cost
  - Statistical challenge
- In this paper, the authors show that accuracy of CNN trained with highly-skewed non-IID is significantly less. This happens because of weight divergence, and we use EMD to quantify it and propose a data-sharing strategy as a solution.





#### **Experimental Setup**

- Datasets used MNIST, CIFAR-10 and Speech commands dataset
- MNIST, CIFAR-10 image classification datasets, 10 classes
- Speech commands dataset 35 words each of 1 sec duration
- For consistency, we use subset of data with 10 keywords KWS dataset (keyword spotting)
- Training sets are divided equally among 10 clients.

Data distribution in different settings <u>IID</u> - each client is randomly assigned a uniform distribution over 10 classes

<u>Non- IID</u> – data is sorted by class; we consider two extreme cases after sorting the data by class: 1-class non-IID : each client receives data partition from one class

2-class non-IID : sorted data is divided into 20 partitions, and each client gets 2 randomly assigned partitions of two classes

#### Parameters for training

- B Batch size
- E total number of epochs
- For SGD, we use the same parameters, but B is 10 times larger.

| Parameters        | MNIST  | CIFAR-10 | KWS   |
|-------------------|--------|----------|-------|
| В                 | 10,100 | 10,100   | 10,50 |
| E                 | 1,5    | 1,5      | 1,5   |
| Learning rate (η) | 0.01   | 0.01     | 0.05  |
| Decay rate        | 0.995  | 0.992    | 0.992 |

Parameters for FedAvg

#### **Experiment Results**



Figure 1: Test accuracy over communication rounds of *FedAvg* compared to SGD with IID and non-IID data of (a) MNIST (b) CIFAR-10 and (c) KWS datasets. Non-IID(2) represents the 2-class non-IID and non-IID(1) represents the 1-class non-IID.

#### **Experiment Results**



Figure 8: Test accuracy over communication rounds of *FedAvg* compared to SGD with IID and non-IID data of (a) MNIST (b) CIFAR-10 and (c) KWS datasets. Non-IID(2) represents the 2-class non-IID and non-IID(1) represents the 1-class non-IID.

#### **Experiment Results**

| Training               | В     | E  | MNIST (%) | CIFAR-10 (%) | KWS (%) |
|------------------------|-------|----|-----------|--------------|---------|
| SGD                    | large | NA | 98.69     | 81.51        | 84.46   |
| FedAvg IID             | large | 1  | 98.69     | 80.83        | 84.82   |
| FedAvg non-IID(2)      | large | 1  | 96.29     | 67.00        | 72.30   |
| FedAvg non-IID(1)      | large | 1  | 92.17     | 43.85        | 40.82   |
| FedAvg non-IID(1)      | large | 5  | 91.92     | 44.40        | 40.84   |
| Pre-trained non-IID(1) | large | 1  | 96.19     | 61.72        | 63.58   |
| SGD                    | small | NA | 99.01     | 84.14        | 86.28   |
| FedAvg IID             | small | 1  | 99.12     | 82.62        | 86.64   |
| FedAvg non-IID(2)      | small | 1  | 97.24     | 68.53        | 71.21   |
| FedAvg non-IID(1)      | small | 1  | 87.70     | 32.83        | 31.78   |

Table 3: The test accuracy of SGD and FedAvg with IID or non-IID data.

Table 1: The reduction in the test accuracy of FedAvg for non-IID data.

| Non-IID    | В     | Ε | MNIST (%) | CIFAR-10 (%) | KWS (%) |
|------------|-------|---|-----------|--------------|---------|
| Non-IID(1) | large | 1 | 6.52      | 37.66        | 43.64   |
| Non-IID(1) | large | 5 | 6.77      | 37.11        | 43.62   |
| Non-IID(2) | large | 1 | 2.4       | 14.51        | 12.16   |
| Non-IID(1) | small | 1 | 11.31     | 51.31        | 54.5    |
| Non-IID(2) | small | 1 | 1.77      | 15.61        | 15.07   |



#### Weight Divergence

- Accuracy reduction is less for 2-class non-IID data than for 1-class non-IID data.
- Accuracy of FedAvg may be affected by exact data distribution.
- One way to compare FedAvg with SGD is to calculate difference of the weights relative to those of SGD, with same weight initialization.

$$weight \, divergence = || \boldsymbol{w}^{FedAvg} - \boldsymbol{w}^{SGD} || / || \boldsymbol{w}^{SGD} ||$$

 Root cause of the weight divergence is due to the distance between the data distribution on each client and the population distribution.

#### Weight Divergence



#### **Mathematical Demonstration**

C class classification problem compact space  $\mathcal{X}$ label space  $\mathcal{Y} = [C]$ , where  $[C] = \{1, \dots, C\}$ data point  $\{x, y\}$  distributes over  $\mathcal{X} \times \mathcal{Y}$ distribution p $f: \mathcal{X} \to \mathcal{S}$  $\mathcal{S} = \{ \mathbf{z} | \sum_{i=1}^{C} z_i = 1, z_i \ge 0, \forall i \in [C] \}$ 

#### **Mathematical Demonstration**

• Population loss is defined using cross entropy loss:

$$\ell(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{x}, y \sim p} [\sum_{i=1}^{C} \mathbb{1}_{y=i} \log f_i(\boldsymbol{x}, \boldsymbol{w})] = \sum_{i=1}^{C} p(y=i) \mathbb{E}_{\boldsymbol{x}|y=i} [\log f_i(\boldsymbol{x}, \boldsymbol{w})].$$
  
 $\min_{\boldsymbol{w}} \sum_{i=1}^{C} p(y=i) \mathbb{E}_{\boldsymbol{x}|y=i} [\log f_i(\boldsymbol{x}, \boldsymbol{w})].$ 

#### **Mathematical Demonstration**

- Weight after t-th update in the centralized setting --  $oldsymbol{w}_t^{(c)}$
- Centralized SGD performs following update:

$$\boldsymbol{w}_{t}^{(c)} = \boldsymbol{w}_{t-1}^{(c)} - \eta \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_{t-1}^{(c)}) = \boldsymbol{w}_{t-1}^{(c)} - \eta \sum_{i=1}^{C} p(y=i) \nabla_{\boldsymbol{w}} \mathbb{E}_{\boldsymbol{x}|y=i}[\log f_{i}(\boldsymbol{x}, \boldsymbol{w}_{t-1}^{(c)})].$$

- Federated learning assuming there are k clients,  $n^{(k)}$  amount of data,  $p^{(k)}$  be data distribution on client  $k \in [K]$
- At iteration t on client  $k \in [K]$ , local SGD performs:

$$m{w}_t^{(k)} = m{w}_{t-1}^{(k)} - \eta \sum_{i=1}^C p^{(k)}(y=i) 
abla_{m{w}} \mathbb{E}_{m{x}|y=i}[\log f_i(m{x},m{w}_{t-1}^{(k)})].$$

#### **Mathematical Demonstration**

• Assume the synchronization is conducted every T steps and let  $m{w}_{mT}^{(f)}$  denote the weight calculated after the m-th synchronization

$$m{w}_{mT}^{(f)} = \sum_{k=1}^{K} rac{n^{(k)}}{\sum_{k=1}^{K} n^{(k)}} m{w}_{mT}^{(k)}.$$

#### **Mathematical Demonstration**



Figure 3: Illustration of the weight divergence for federated learning with IID and non-IID data.

#### **Proposition**

To formally bound the weight divergence between  $w_{mT}^{(f)}$  and  $w_{mT}^{(c)}$  they proposed the following:

**Proposition 3.1.** Given K clients, each with  $n^{(k)}$  i.i.d samples following distribution  $p^{(k)}$  for client  $k \in [K]$ . If  $\nabla_{\boldsymbol{w}} \mathbb{E}_{\boldsymbol{x}|y=i} \log f_i(\boldsymbol{x}, \boldsymbol{w})$  is  $\lambda_{\boldsymbol{x}|y=i}$ -Lipschitz for each class  $i \in [C]$  and the synchronization is conducted every T steps, then, we have the following inequality for the weight divergence after the m-th synchronization,

$$||\boldsymbol{w}_{mT}^{(f)} - \boldsymbol{w}_{mT}^{(c)}|| \leq \sum_{k=1}^{K} \frac{n^{(k)}}{\sum_{k=1}^{K} n^{(k)}} (a^{(k)})^{T} ||\boldsymbol{w}_{(m-1)T}^{(f)} - \boldsymbol{w}_{(m-1)T}^{(c)}|| \\ + \eta \sum_{k=1}^{K} \frac{n^{(k)}}{\sum_{k=1}^{K} n^{(k)}} \sum_{i=1}^{C} ||p^{(k)}(y=i) - p(y=i)|| \sum_{j=1}^{T-1} (a^{(k)})^{j} g_{max}(\boldsymbol{w}_{mT-1-k}^{(c)}),$$

$$(2)$$

where  $g_{max}(w) = \max_{i=1}^{C} ||\nabla_w \mathbb{E}_{x|y=i} \log f_i(x, w)||$  and  $a^{(k)} = 1 + \eta \sum_{i=1}^{C} p^{(k)}(y=i) \lambda_{x|y=i}$ .

#### **Remarks**

- 1. Weight divergence after m-th synchronization comes from two parts:
  - 1. Weight divergence of (m-1) th synchronization  $||\boldsymbol{w}_{(m-1)T}^{(f)} \boldsymbol{w}_{(m-1)T}^{(c)}||_{F}$
  - 2. Weight divergence induced by probability distance for data distribution on client k compared with the whole population distribution  $\sum_{i=1}^{C} ||p^{(k)}(y=i) - p(y=i)||$ .

#### 2. Weight divergence after (m-1)th synchronization is amplified by $\sum_{k=1}^{K} \frac{n^{(k)}(a^{(k)})^T}{\sum_{k=1}^{K} n^{(k)}}$ As $a^{(k)} \ge 1$ , $\sum_{k=1}^{K} \frac{n^{(k)}(a^{(k)})^T}{\sum_{k=1}^{K} n^{(k)}} = 1$

3. EMD between data distribution on client k and the population distribution =

$$\sum_{i=1}^C ||p^{(k)}(y=i) - p(y=i)||$$
 It is affected by learning rate, number of steps and gradient  $g_{max}(m{w}_{mT-1-k}^{(c)})$ 

#### **Experimental Validation**

- Setup:
  - Training set is sorted and partitioned into 10 clients M examples per client
  - 8 values are chosen for EMD. As there may be many distributions for one EMD, we will generate 5 distributions.
  - Procedure:
    - 1. P one probability distribution over 10 classes is generated for one EMD. Number of examples can be computed based on M and P values over 10 classes for one client.
    - 2. P' shift the 10 probabilities of P by 1 element.
  - Repeat the above procedure for remaining 8 clients.
  - We will have 10 clients with distribution of M examples over 10 classes.
  - Above procedure is repeated 5 times to generate 5 distributions for each EMD.

#### **Experimental Validation**

- weight divergence is computed after 1 synchronization

| Key Parameters    | MNIST | CIFAR-10 | KWS   |
|-------------------|-------|----------|-------|
| В                 | 100   | 100      | 50    |
| E                 | 1     | 1        | 1     |
| Learning rate (η) | 0.01  | 0.01     | 0.05  |
| Decay rate        | 0.995 | 0.992    | 0.992 |

$$weight \, divergence = || oldsymbol{w}^{FedAvg} - oldsymbol{w}^{SGD} || / || oldsymbol{w}^{SGD} ||$$

#### Weight Divergence vs EMD



Figure 4: Weight divergence vs. EMD across CNN layers on (a) MNIST, (b) CIFAR-10 and (c) KWS datasets. The mean value and standard deviation are computed over 5 distributions for each EMD.

#### Test Accuracy vs EMD

- Test accuracy decreases with EMD



Figure 5: (a) Test accuracy vs. EMD for FedAvg and (b) boxplots of weight divergence when EMD = 1.44 for MNIST, CIFAR-10 and KWS datasets. The mean and standard deviation are computed over 5 distributions for each EMD.

#### Test Accuracy vs EMD

Table 2: The mean and standard deviation of the test accuracy of FedAvg over 5 distributions. The standard deviation is very small compared to the scale of the mean value.

| Earth mo | ver's distance (EMD)     | 0      | 0.36   | 0.72   | 1.08   | 1.44   | 1.62   | 1.764  | 1.8    |
|----------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| MNIST    | mean                     | 0.9857 | 0.9860 | 0.9852 | 0.9835 | 0.9799 | 0.9756 | 0.962  | 0.922  |
|          | std (×10 <sup>-4</sup> ) | 6.431  | 2.939  | 4.604  | 4.308  | 4.716  | 8.085  | 8.232  | 1.939  |
| CIFAR-   | mean                     | 0.8099 | 0.8090 | 0.8017 | 0.7817 | 0.7379 | 0.6905 | 0.5438 | 0.4396 |
| 10       | std (× $10^{-3}$ )       | 2.06   | 2.694  | 2.645  | 3.622  | 3.383  | 2.048  | 9.655  | 1.068  |
|          | mean                     | 0.8496 | 0.8461 | 0.8413 | 0.8331 | 0.7979 | 0.7565 | 0.5827 | 0.4475 |
| KWS      | std (× $10^{-3}$ )       | 1.337  | 3.930  | 4.410  | 5.387  | 1.763  | 3.329  | 1.078  | 4.464  |



#### **Motivation**

- Test accuracy decreases with respect to EMD beyond a certain threshold.
- To increase the test accuracy, we have to reduce the EMD.
- We can do that by distributing a small subset of global data containing a uniform distribution over classes from cloud to the clients.
- We can also make a warm-up model train on globally shared data.
- As globally shared data can reduce EMD, the test accuracy is expected to improve.

#### Data Sharing Strategy

- G globally shared dataset
- $\alpha$  random portion of G distributed to client
- During initialization, warm-up model trained on G and α portion of G are distributed.
- The local model is trained on part of G shared and private data of client.
- The cloud aggregates the local models using FedAvg





#### Data Sharing Strategy

- Two tradeoffs:
  - Trade-off between test accuracy and size of G:
  - $\beta = ||G||$
- $\times$  100% , where D- data from client
- ||D||
- Trade-off between test accuracy and  $\boldsymbol{\alpha}$

#### **Experiment**

- The CIFAR-10 training set is partitioned into two parts:
  - the client part D with 40,000 examples
  - and the holdout part H with 10,000 examples.
- D is partitioned into 10 clients with 1-class non-IID data and H is used to create 10 random G's with  $\beta$  ranging from 2.5% to 25%.

Procedure:

1. G is merged with data of the each client and 10 CNNs are trained by FedAvg on the merged data from scratch

2. Pick two specific G's:

```
G10% when \beta = 10% and
```

```
G20% when \beta = 20%
```

3. For each G,

(a) a warm-up CNN model is trained on G to a test accuracy of ~60%

(b) only a random  $\alpha$  portion is merged with the data of each client and the warm-up model is trained on the merged data.

#### **Experiment**



Figure 7: (a) Test accuracy and EMD vs.  $\beta$  (b) Test accuracy vs. the distributed fraction  $\alpha$ 



# Conclusion

## Conclusion

- Federated learning will play a key role in distributed machine learning where data privacy is of paramount importance.
- The quality of model training degrades if each of the edge devices sees a unique distribution of data non IID.
- The accuracy of federated learning reduces significantly, by up to ~55% for NN trained on highly skewed non-IID data.
- Accuracy reduction can be explained by the weight divergence, which can be quantified by the earth movers distance (EMD)
- Strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices.
- Improving model training on non-IID data is key to make progress in this area.

