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“Gradient descent is an iterative algorithm, that starts from a random point on a 
function and travels down its slope in steps until it reaches the lowest point of that 

function.”

• Gradient Descent is a generic optimization algorithm capable of finding optimal solutions to a 
wide range of problems

• The general idea is to tweak parameters iteratively in order to minimize the cost function

GRADIENT 
DESCENT



STEPS OF THE GRADIENT DESCENT 
ALGORITHM IN MACHINE LEARNING

u Find the slope of the objective function with respect to each parameter/feature
OR
Compute the gradient of the function
u Pick a random initial value for the parameters. (E.g. In a parabola, differentiate “y” with respect 

to “x”. If we have more than one features like x1, x2 etc., we take the partial derivative of “y” with 
respect to each of the features.)

u Update the gradient function by plugging in the parameter values.
u Calculate the step sizes for each feature as : step size = gradient * learning rate. 
u Calculate the new parameters as : new params = old params -step size
u Repeat above 3 steps until gradient is almost 0.

Ideally learning rate should be small so that it doesn’t jump over the minima E.g. 0.01, but also not too large 
that convergence takes long



TYPES OF GRADIENT DESCENT

u Batch Gradient Descent
u Stochastic Gradient Descent
u Mini-batch Gradient Descent



STOCHASTIC GRADIENT DESCENT

u Gradient Descent can end up involving expensive amount of calculations

u ‘stochastic‘ : a system or process linked with a random probability.

u This problem is solved by Stochastic Gradient Descent

u SGD uses only a single sample, i.e., a batch size of one, to perform each iteration. The 
sample is randomly shuffled and selected for performing the iteration.

u We can induce randomness while selecting data points at each step to calculate the 
derivatives. SGD randomly picks one data point from the whole data set at each iteration to 
reduce the computations enormously.

u It is also common to sample a small number of data points instead of just one point at each 
step and that is called “mini-batch” gradient descent. Mini-batch tries to strike a balance 
between the goodness of gradient descent and speed of SGD.



Introduction
u Explores the issue of overfitting in machine learning 

u Proposes constant step size Stochastic Gradient Descent (SGD) for linear regression in 
overparameterized settings.

u While this phenomenon has been observed in many modern machine learning models, 
it is not well understood in the context of SGD. 

u The authors provide a sharp excess risk bound that reveals a bias-variance 
decomposition, characterizing when generalization is possible.

u They demonstrate the sharpness of the established bound by proving a matching lower 
bound for SGD with iterate averaging and show the advantage of SGD with tail 
averaging over iterate averaging.

u The authors also reflect on the differences between the algorithmic regularization 
afforded by SGD compared to ordinary least squares and ridge regression

u Provide experimental results on synthetic data to support their findings.



Introduction Continued

u The paper use constant stepsize SGD with iterate averaging to investigate this 
phenomenon and provide evidence that benign overfitting occurs in 
overparameterized linear regression, even with a constant stepsize. 

u They show that this occurs even for simple linear models and provide 
experimental results to support their claims. 



ITERATE AVERAGING

u A variant of the classic Polyak–Ruppert averaging scheme, broadly used in stochastic 
gradient methods. Rather than a uniform average of the iterates, considers a weighted 
average, with weights decaying in a geometric fashion. 

u In the context of linear least-squares regression, it shows that this averaging scheme 
has the same regularizing effect, and indeed is asymptotically equivalent, to ridge 
regression. 

u In particular, derives finite-sample bounds for the proposed approach that match the 
best known results for regularized stochastic gradient methods.



TAIL AVERAGING

u Tail averaging consists in averaging the last examples in a stream. 

u Common techniques either have a memory requirement which grows with the 
number of samples to average, are not available at every timestep or do not 
accommodate growing windows.



EXCESS RISK

u The difference between the risk of a given function and the minimum possible risk 
over a function class.



BIAS VARIANCE DECOMPOSITION

u The bias–variance decomposition is a way of analyzing a learning algorithm's expected 
generalization error with respect to a particular problem as a sum of three terms, the 
bias, variance, and a quantity called the irreducible error, resulting from noise in the 
problem itself.



Introduction And Related Work

u The paper discusses the phenomenon of modern machine learning models achieving 
near-zero training error while still being able to generalize effectively. 

u This is observed even in overparameterized and under-regularized settings. The paper 
aims to understand this effect in the context of stochastic gradient descent (SGD) for 
least squares regression in the overparameterized regime. 

u While there is a growing amount of work studying generalization in basic linear 
models, the algorithmic aspects of generalization for SGD are not well understood. 

u In the under parameterized case, iterate averaged SGD has been shown to achieve the 
optimal rate, but there is very less work in the overparameterized case. 

u The paper seeks to fill this gap



SGD FOR LINEAR REGRESSION

Weight is updated according to SGD as follows

Weight initialized as

The final output is the average of 
the iterates

Some finite d-dimensional or infinite dimensional Hilbert space

Unknown distribution over x and y



THE OUTPUTS

u The bound is stated in a general manner, in terms of the full eigen spectrum of 
the data covariance matrix along with a functional dependency on the initial 
iterate

u The paper shows how the benign-overfitting phenomenon can be observed for 
SGD, provided certain spectrum conditions of decay on the data covariance are 
met



Introduction And Related Work 
Continued
u Stochastic gradient descent (SGD) is a popular optimization method for this problem, particularly in 

the overparameterized regime where the dimensionality of the weight vector is greater than the 
number of training samples. The step size of the update is a fixed constant, and the final weight 
vector is the average of the iterates.

u In the under parameterized case, where the dimensionality of the weight vector is less than or equal 
to the number of training samples, the optimal risk is achieved by SGD for sufficiently large training 
samples.

u In the overparameterized case, where the dimensionality of the weight vector is greater than the 
number of training samples, it has been observed that SGD can overfit the training data, achieving a 
training error smaller than the Bayes error, but still generalizing well to test data, which is known as 
the benign overfitting phenomenon.

u This is because in the overparameterized regime, there exist multiple solutions that achieve the 
same training error, and SGD can find a solution that generalizes well.

u Experimental results have shown that the regularization effect of SGD increases as the 
dimensionality of the weight vector increases. Hence, overparameterization can act as regularization 
for SGD.



Introduction And Related Work 
Continued
u The paper shows a sharp excess risk bound that shows how unregularized SGD can generalize in the infinite-

dimension case.

u The bound is stated in terms of the full eigen spectrum of the data covariance matrix, with a functional 
dependency on the initial iterate.

u The lower bound of the characterization is also shown to be tight.

u The paper also experiments with SGD and tail-averaging

u The paper says that benign overfitting occurs in SGD if certain spectrum decay conditions on the data covariance 
are met.

u It also shows that SGD with iterate averaging also gives good generalization in the overparameterized setting for 
linear regression



Introduction And Related Work 
Continued
u The sharpness of the bounds derived from SGD allows for comparisons with the minimum-norm interpolator 

ordinary least squares (OLS) and ridge regression.

u It shows that the inductive bias of SGD results in better generalization than  minimum-norm interpolator with no 
regularization.

u The variance in SGD contributes to the final excess risk bound.

u This defines a "bias process" in SGD and compares it with gradient descent.





MAIN
u The paper presents upper and lower bounds on the excess risk of iterate averaged 

stochastic gradient descent (SGD) for linear regression.

u The paper compares these rates to those of ordinary least squares (OLS) and ridge 
regression then compare similarities and differences.

u The paper introduces several assumptions, including mild regularity conditions on 
the moments of the data distribution, a fourth moment condition, and a noise 
condition

u It is observed that the assumptions are weaker than those commonly used for iterate 
averaged SGD in the under parameterized case.



ASSUMPTION 1 : REGULARITY 
CONDITIONS

u Assumption 2.1 : Certain mathematical properties (regularity conditions) hold 
for the variables x and y in a mathematical model.

u Assumes that certain statistical moments exist and are finite, and that the 
second moment of x satisfies certain conditions.

u Assumes that optimization problem has a unique global optimum.

u The assumption deals with the behaviour of the fourth moment as a linear 
operator on PSD matrices.

u Mild regularity conditions on the moments of the data distribution



ASSUMPTION 2 : FOURTH MOMENT 
CONDITION
u Assumption 2.2 in a regression analysis states that there is a positive constant α > 0 such that for any 

positive semidefinite matrix A,

u It is the behaviour of the fourth moment, when viewed as a linear operator on PSD (positive 
semidefinite) matrices

u For Gaussian distributions, α can be taken as 3. This assumption is weaker than assuming sub-
Gaussian tails over H−1/2x which is standard assumption in regression analysis. The assumption can 
be relaxed to only require that A is PSD and commutable with H.



ASSUMPTION 3 : NOISE CONDITION

u Assumption 3 is a noise condition, where y - <w∗, x> is interpreted as additive 
noise

u It states that the covariance matrix of the gradient noise at w should exist and be 
finite.

u This assumption can be relaxed to permit model mis-specification

u Includes the eigen decomposition of the Hessian.



THEOREM 1 : BENIGN OVERFITTING OF 
SGD
u Providesa bound on the excess risk of constant-stepsize stochastic gradient descent for linear 

regression under certain conditions.

u The excess risk is bounded by the sum of the "effective bias" and the "effective variance" terms.
u ”Effective bias"  : Convergence rate of gradient descent on the true loss

u ”Effective variance" : The noise in the data and the difference between SGD and GD.
u The bound depends on the "effective dimension" which should be small relative to the sample size. 

The lower bound is based on lower bound on the fourth moment.

u Step size 

u Excess risk upper bound 



ASSUMPTION 4 : FOURTH MOMENT 
CONDITION, LOWER BOUND

u States that for any positive semi-definite matrix A, there exists a constant β≥0, 
such that the expected value of the fourth moment of a random variable x, 
which follows a distribution D, is greater than or equal to the product of the 
matrix A and β times the trace of the product of matrix A and H.

u In Gaussian distributions, β can be 2. It implies that the upper bound on the 
noise is not improvable except for absolute constants when the noise is well-
specified.



THEOREM 2 : EXCESS RISK LOWER BOUND
u Provides a lower bound for excess risk in supervised learning, where the data 

distribution is well-specified and meets certain assumptions. The excess risk 
lower bound is expressed in terms of the Effective Bias and Effective Variance

u Effective Variance is given by model noise and variance in stochastic gradient 
descent (SGD)

u Step size 



COROLLARY 1 : BENIGN OVERFITTING 
WITH LARGE STEP SIZES

u Corollary to Theorem 2.1 : Provides expressions for effective bias and effective 
variance, which decay at different rates in different subspaces

u In the "head" eigenspace, the bias error decays faster at a rate of O(1/N^2)
u In the "tail" eigenspace, the decay rate is slower at O(1/N)

u Provides a crude bias bound which means that bias never decays slower than 
O(1/N).

u Step size is large



COROLLARY 2 : CRUDE BIAS BOUND

u Provides an upper bound on the expected difference between the loss function 
of the learned model and optimal model under certain assumptions and a 
specific step size.

u The excess risk achieved by stochastic gradient descent (SGD) depends on the 
covariance matrix's spectrum.

u It provides a crude bias bound, showing that bias never decays ore slowly than O 
(1/N)

u Step Size 



COROLLARY 3 : EXAMPLE DATA 
DISTRIBUTIONS



COMPARISON WITH OLS (ORDINARY LEAST 
SQUARES) AND RIDGE REGRESSION

u The paper compares the rates of benign overfitting achieved by OLS, ridge 
regression, and constant-stepsize stochastic gradient descent (SGD) for linear 
regression. 

u The paper shows that while OLS and ridge regression require slow decaying 
rates of the data spectrum to achieve benign overfitting

u SGD can achieve vanishing excess risk for any decay rate including a fast 
decaying spectrum. 

u The effectiveness of SGD is attributed to its ability to control the tail summation 
of the data spectrum while achieving a small effective dimension.



SGD VS MINIMUM-NORM SOLUTION OF 
OLS

u Previous papers show that the minimum l2 norm interpolator for the linear 
regression can reach vanishing excess risk when the data spectrum decays in a 
specific rate and under certain conditions. 

u SGD can achieve vanishing excess risk for any alpha > 1 and beta >= 0, as well 
as when alpha = 1 and beta >= 1. 

u It is due to the fact that fast decaying spectrum can have both small effective 
dimension and small tail summation



SGD VS RIDGE REGRESSION

u Previous papers show that lower bound and upper bound on the excess risk for ridge 
regression and compares it with the excess risk for stochastic gradient descent (SGD). 

u The lower bound for ridge regression closely matches the upper bound
u It implies that SGD with a constant step size and iterate averaging can perform similarly 

to ridge regression with a constant regularization parameter

u However, further study is needed



MORE RELATED WORK

u The paper discusses previous research on iterate averaging in both under 
parameterized and overparameterized cases.

u In the finite dimension case constant step size SGD with iterate or tail average has 
been studied properly. 

u In the overparameterized case previous work only covered specific data covariance 
spectrum.

u However, this paper's bounds apply to least square instances with any data 
covariance spectrum

u Previous papers discuss dimension-independent bounds for averaged SGD, but their 
excess risk bounds for linear regression are not as sharp as those provided in this 
paper.

u The bias error rate can be improved by considering tail averaging
u The variance error rate has a convergence rate of O(d/N)



PRELIMINARIES : SOME TECHNICAL 
PROPERTIES



BIAS VARIANCE DECOMPOSITION

u The bias-variance decomposition is a tool for analysing averaged SGD in the 
under parameterized regime. 

u The bias error is captured by the "bias iterates," which is stochastic process of 
SGD on a consistent linear system

u The variance error is give n by the "variance iterates," which is stochastic 
process of SGD initialized from the optimum. 

u The excess risk can be decomposed into a bias error term and a variance error 
term

u Upper bounds on these terms can be obtained using the Kronecker product and 
the Cauchy-Schwarz inequality

u The analysis uses finite summations instead of taking the inner summation to 
infinity



BOUNDING THE VARIANCE ERROR

u In the analysis of the variance error, a weaker assumption can be used instead of 
Assumption 2.2

u The paper gives a proof under the original assumption, shows that the crude 
upper bound on Ct obtained from Lemma 5 cannot give a sharp rate in the 
overparameterized setting.

u The paper refines the upper bound of Ct

u It plugs this refined upper bound into the equation for variance

u It contributes to part of Effective Variance in Theorem 2.1



BOUNDING THE BIAS ERROR

u A similar bound to variance error cannot be applied to the bias error as the 
sequence of bias is contracting

u The sequence of partial sum of bias is increasing in the PSD sense
u A recursive form is derived to express it

u A tight upper bound for the bias sequence is obtained in the same way as 
variance error 

u The upper bound for the bias sequence consists of two terms

u The first contributing to the Effective Bias

u The second is merged with the variance error to contribute to the Effective 
Variance term in Theorem 2.1



EFFECT OF TAIL AVERAGING

u The paper discusses the effect of tail-averaging on benign overfitting of SGD.

u They present a theorem as a counterpart to Theorem 2.1



THEORM 1 : BENIGN OVERFITTING OF 
SGD WITH TAIL AVERAGING
It states that SGD with tail-averaging and a specific step size can upper bound the 
excess risk as the sum of effective bias and effective variance.

It also shows that tail-averaging is better than iterate-averaging, especially for 
under parameterized and strongly convex cases.

The paper also provides a corresponding lower bound on the excess risk for SGD 
with tail-averaging, This implies that upper bound is nearly tight.



THEOREM 2 : EXCESS RISK LOWER 
BOUND, TAIL AVERAGING
u It states that SGD with tail-averaging under certain assumptions and suitable 

step size

u The upper and lower bounds match for most terms, except for the first effective 
variance term.

u Proper matching upper and lower bounds needs more research





EXPERIMENTS
u Experiments are conducted to observe the benign overfitting phenomenon of SGD 

(Stochastic Gradient Descent) in Gaussian least square problems and to verify the 
generalization performance of SGD. 

u Three over-parameterized linear regression problem instances with different spectral 
properties of H are considered

u The ground truth is fixed to be w∗[i] = i-1. 

u The experiments show that benign overfitting of SGD can happen when the spectrum of H 
decays neither fast nor slow. 

u The results show that SGD with iterate averaging and SGD with tail averaging achieve a 
smaller excess risk compared to ordinary least square and ridge regression when the step 
size and regularization parameter are fine-tuned. 

u The experiments suggest that the benign overfitting of SGD can happen in practice and 
that SGD can achieve better generalization performance than traditional methods.



Thank You!


