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Introduction
Online meta learning is the process of a machine learning algorithm continuously adjusting to new data 
and using that knowledge to update its parameters and produce more accurate predictions. which means 
that the algorithm picks up new information and adjusts to it in real-time. In online meta learning, the 
algorithm continuously picks up new information from fresh data and applies that knowledge to adjust its 
parameters, allowing it to gradually improve its predictions.

For example, In reinforcement learning the agent interacts with the environment and gathers input in the 
form of rewards and punishments. It then uses this data to update its model and enhance its functionality. 
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Example
Sinusoid functions of naive training on prior tasks fails, Figure 
also shows colored MNIST digits with different backgrounds. 
Suppose we’ve seen MNIST digits with various colored 
backgrounds, and then observe a “7” on a new color. We might 
conclude from training on all of the data seen so far that all digits 
with that color must all be “7.” 

In fact, this is an optimal conclusion from a purely statistical 
standpoint. However, if we understand that the data is divided 
into different tasks and take note of the fact that each task has a 
different color, a better conclusion is that the color is irrelevant. 
Training on all of the data together, or only on the new data, 
does not achieve this goal.
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Foundations 
• Few-Shot Learning

• MAML

• Online Learning
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Few-Shot Learning
In the few-shot supervised learning setting, we are interested in a family of tasks, 
where each task T is associated with a notional and infinite-size population of input-
output pairs. In the few-shot learning, the goal is to learn a task while accessing only a 
small, finite-size labeled dataset Di := {xi , yi} corresponding to task Ti. If we have a 
predictive model, h(·; w), with parameters w, the population risk of the model is 
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Few-Shot Learning
where the expectation is defined over the task population and L is a loss function, 
such as the square loss or cross entropy between the model prediction and the 
correct label. An example of L corresponding to squared error loss is
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Meta-Learning and MAML

• Meta-learning or learning to learn aims to effectively bootstrap from a set of tasks to 
learn faster on a new task. It is assumed that tasks are drawn from a fixed 
distribution,

• Meta-learning algorithms attempt to find a model using the M training tasks, such that 
when Dj is revealed from the test task, the model can be quickly updated to minimize 
fj (w). 
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Meta-Learning and MAML
• Model-agnostic meta-learning (MAML) does this by learning an initial set of 

parameters w(MAML), such that at meta-test time, performing a few steps of gradient 
descent from w(MAML) using Dj minimizes fj (·). To get such an initialization, at meta-
training time, MAML solves the optimization problem.
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Online Learning 
• In the online learning setting, an agent faces a sequence of loss functions {ft}∞ t=1, one in each 

round t. These functions need not be drawn from a fixed distribution and could even be chosen 
adversarial over time. The goal for the learner is to sequentially decide on model parameters {wt}∞ 
t=1 that perform well on the loss sequence. In particular, the standard objective is to minimize 
some notion of regret defined as the difference between our learner’s loss. The most standard 
notion of regret is to compare to the cumulative loss of the best fixed model in hindsight:



11

Online Learning 
The goal in online learning is to design algorithms such that this regret grows with T as slowly as 
possible. In particular, an agent (algorithm) whose regret grows sub-linearly in T is non-trivially 
learning and adapting. One of the simplest algorithms in this setting is follow the leader (FTL) which 
updates the parameters as:
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The Online Meta-Learning Problem
The goal for the agent is to minimize regret over the rounds. A highly ambitious comparator is the 
best meta-learned model in hindsight. Let {wt} T t=1 be the sequence of models generated by the 
algorithm. Then, the regret we consider is:
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Algorithm and Analysis
The aim of our experimental evaluation is to study the following questions: 

1) can online meta-learning (and specifically FTML) be successfully applied to multiple non-
stationary learning problems 

2) does online meta-learning (FTML) provide empirical benefits over prior methods 

By compare to the following algorithms: (a) Train on everything (TOE) trains on all available data 
so far (including Dt at round t) and trains a single predictive model. This model is directly tested 
without any specific adaptation since it has already been trained on Dt. (b) Train from scratch, 
which initializes wt randomly, and finetunes it using Dt. (c) Joint training with fine-tuning, which at 
round t, trains on all the data jointly till round t − 1, and then finetunes it specifically to round t 
using only Dt. This corresponds to the standard online learning approach where FTL is used, 
followed by task-specific fine-tuning.
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Algorithm
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Five-Way CIFAR-100
Illustration of three tasks for Rainbow 
MNIST (top) and pose prediction (bottom). 
Rainbow MNIST includes different 
rotations, scaling factors, and background 
colors. For the pose prediction tasks, the 
goal is to predict the global position and 
orientation of the object on the table. 
Cross-task variation includes varying 50 
different object models within 9 object 
classes, varying object scales, and 
different camera viewpoints
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Rainbow MNIST Results
Left: amount of data needed to learn each 
new task. Center: task performance after 
100 datapoints on the current task. Right: 
The task performance after all 900 
datapoints for the current task have been 
received. Lower is better for all plots, while 
shaded regions show standard error 
computed using three random seeds. 
FTML can learn new tasks more and more 
efficiently as each new task is received, 
demonstrating effective forward transfer
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Online CIFAR-100 Results

evaluating task performance after 50, 250, and 2000 datapoints have been received for a given 
task. We see that FTML learns each task much more efficiently than models trained from scratch, 
while both achieve similar asymptotic performance after 2000 datapoints. We also observe that 
FTML benefits from adapting all layers rather than learning a shared feature space across tasks 
while adapting only the last layer.
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Object Pose Prediction Results

Left: we observe that online meta-learning generally leads to faster learning as more and more 
tasks are introduced, learning with only 10 datapoints for many of the tasks. Center & right, we see 
that meta-learning enables transfer not just for faster learning but also for more effective 
performance when 60 and 400 datapoints of each task are available. The order of tasks is 
randomized, leading to spikes when more difficult tasks are introduced. Shaded regions show 
standard error across three random seeds
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Conclusion
• We concentrated our analysis on the case where the update procedure Ut, inspired by MAML, 

corresponds to one step of gradient descent. However, in practice, many works with MAML 
(including our experimental evaluation) use multiple gradient steps in the update procedure, 
and backpropagate through the entire path taken by these multiple gradient steps. Analyzing 
this case, and potentially higher order update rules will also make for exciting future work

• Primarily aimed to discern if it is possible to meta-learn in a sequential setting. For this purpose, 
proposed the FTML template algorithm which draws inspiration from FTL in online learning. It is 
well known that FTL has poor computational properties, since the computational cost of FTL 
grows over time as new loss functions are accumulated. Further, in many practical online 
learning problems, it is challenging (and sometimes impossible) to store all datapoints from 
previous tasks. The method can effectively learn nearly 100 Online Meta-Learning tasks in 
sequence without significant burdens on compute or memory, scalability remains a concern.
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Thank You


