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Introduction

In this presentation, we try and explain the findings of the ICML 2019 paper 
Stochastic Gradient Descent Optimizes Over-Parameterized Deep RELU 
Networks. The intent of this presentation is to focus on the key takeaways of 
this paper so that everyone can utilize the learnings from it. 
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Overview

● Why do Gradient Descent (GD) and Stochastic Gradient Descent (SGD) 
work for over-parameterized training deep neural networks with RELU 
activation?

● What’s overparameterization?
● How overparameterization helps?
● How does random weight initialization impact model convergence?



Relevant implementational findings:
Related Work

● SGD can recover underlying parameters of a 2-layer residual network in 
Polynomial time. [Li and Yuan (2017)]

● Deep linear residual networks have no spurious local minima [Hardt and 
Ma (2016)]

● Depth can accelerate the optimization of deep linear networks [Arora et al. 
(2018b)]

● Identity initialization and proper regularizer helps GD converge to the least 
square solution for deep linear network. [Arora et al. (2018a)]



Findings

● GD & SGD can find global minima of train loss for an over-parameterized 
deep RELU net under mild data assumption.

○ What Assumptions?
■ Data separation assumption

● Gaussian random initialization with (S)GD produces a sequence of 
iterations that stay in small perturbations around init weight. 

● Empirical loss of deep RELU has nice local curvature properties ensuring 
global convergence of (S)GD.



Implementational Take Away

● Gaussian random initialization can achieve zero training loss with (S)GD  
within O(poly(n, ɸ-1,L))  iterations if number of nodes per layer is atleast    
Ω(poly(n, ɸ-1,L)) 

○ This finding gives us the requirement of over-parameterization. 

Assumptions:

○ Only one: Data separation



SETUP

● L-hidden layer neural network:

● Empirical risk minimization problem:



Loss Function Assumptions

● Loss function l(.) is continuous and satisfies :

● Loss function is 𝝀-smooth

𝝀-smooth?

● Gaussian Initialization: each column of W is independently gaussian:
○ N(0, 2/m (Eye)) 



Input Assumptions

●

●



Gaussian Initialization Assumptions
● The following assumptions were taken to hold true under gaussian initialization



Perturbation Assumptions

● Given the gaussian initialization follows the above assumptions, the authors showed that the 
perturbations created would be bounded by the following rules:



Findings: asymptotic bounds

● || . ||2- perturbations on Gaussian initialization within a radius t has good local curvature properties.

○ This gradient lower bound gives that within perturbation region, empirical loss of deep NN has 
good local curvature properties.

● Assumption that all perturbations are within t radius from init gives a condition on iterations k * 
step-size η for convergence guarantee.

○ This gradient upper bound quantifies how much weights would change during (S)GD. This 
guarantees that weights won’t escape from the perturbation region during training. 



Findings: asymptotic bounds

● While k * η < T (constant), gradient descent with k iterations remains in pert. region around Gauss. Initialization:

● Lower bound on hidden nodes per layer:

Where p is an exponential factor on  loss  such that 



Findings: asymptotic bounds

● Similarly, we get a upper bound on the maximum number of iterations to be:



Findings: Stochastic Gradient Descent

● In case of stochastic gradient descent, we have number of hidden nodes per layer as:



● Number of iterations have an asymptotic upper limit of

Findings: Stochastic Gradient Descent



Conclusion

● This paper studied training deep neural networks by gradient descent and stochastic gradient 
descent. 

● The authors proved that both gradient descent and stochastic gradient descent can achieve 
global minima of over-parameterized deep ReLU networks with random initialization.

● This holds for a general class of loss functions, with only mild assumption on training data
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Q & A ?

Thank you


