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Introduction

In this presentation, we try and explain the findings of the ICML 2019 paper
Stochastic Gradient Descent Optimizes Over-Parameterized Deep RELU
Networks. The intent of this presentation is to focus on the key takeaways of
this paper so that everyone can utilize the learnings from it.
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Overview

e Why do Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
work for over-parameterized training deep neural networks with RELU
activation?

e What's overparameterization?
e How overparameterization helps?
e How does random weight initialization impact model convergence?



Relevant implementational findings:

Related Work

SGD can recover underlying parameters of a 2-layer residual network in
Polynomial time. [Li and Yuan (2017)]

Deep linear residual networks have no spurious local minima [Hardt and
Ma (2016)]

Depth can accelerate the optimization of deep linear networks [Arora et al.
(2018b)]

|dentity initialization and proper regularizer helps GD converge to the least
square solution for deep linear network. [Arora et al. (2018a)]



Findings

e GD & SGD can find global minima of train loss for an over-parameterized

deep RELU net under mild data assumption.
o  What Assumptions?
m Data separation assumption

e Gaussian random initialization with (S)GD produces a sequence of
iterations that stay in small perturbations around init weight.

e Empirical loss of deep RELU has nice local curvature properties ensuring
global convergence of (S)GD.



Implementational Take Away

e Gaussian random initialization can achieve zero training loss with (S)GD
within O(poly(n, ¢-1,L)) iterations if number of nodes per layer is atleast

Q(poly(n, ¢- 11"))

o This finding gives us the requirement of over-parameterization.

Assumptions:

o Only one: Data separation



SETUP

e L-hidden layer neural network:
fwx)=v'e(Wio(W) - -0(W]x)--))

e Empirical risk minimization problem:

. 1 ¢ -
win Ls(W) = - ;f(yiyi)



Loss Function Assumptions

e Loss function /(.) is continuous and satisfies :
U(z) <0, limz,0 £(z) =0
W evon £ (0 Y = D,
e Loss function is A-smooth
A-smooth?

e Gaussian Initialization: each column of W is independently gaussian:
o N(0, 2/m (Eye))



Input Assumptions

® |xil2 =1and (x;)g = p for all i € {1,...,n}, where u € (0,1) is a constant

® Foralliie{l,...,n},if y; # yir, then ||x; — xi|2 = ¢ for some ¢ > 0.



Gaussian Initialization Assumptions

e The following assumptions were taken to hold true under gaussian initialization
(1) [Ixzillz — 1] < C'L\/log(nL/8)/m,|Wi|a <C foralll=1...,Landi=1,...,n

(i) ||]|x1,,~||;1x1,,- — ||x1,,v[]2"1xl,,-: |12 =>¢/2foralll =1,...,L and i, € {1,...,n} such that y; # ys.
(iii) |gi| < C'\/log(n/d) foralli =1,...,n.
(iv) |{j € [mu] : KWy xi1a) < B} <2m}?Bforalli=1,....,Landi=1,...,n

(v) ||W;';(H12 b s AR ||2<E"Lfor all<lh<lpb<Landi=1,.

Tll

(vi) v (Hr IEHW ~ ¥ L./slog(M) foralll =1,...,L,i=1,...,n and all a € §™-1"1
with |afo <

(vii) bTW;g(]_[lr2 l} =W, )a < C'Ly/slog(M)/m foralll =1,...,L,i=1,....,nand all a €
Smu-1-1 h e §Mi2~1 with |alo, [blo < s

(viii) For any a = (a1,...,a,) € R?, there exist at least C'mr$/n nodes satisfying

> C"|a]lw/n.
2

1 n
HE Z aiU'(<WL,j, xL—l,i>)xL—1,i
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Perturbation Assumptions

e Given the gaussian initialization follows the above assumptions, the authors showed that the
perturbations created would be bounded by the following rules:
(i) |[Wl2 <C for all L € [L].
(ii) |Ri; — X1i]2 < CL - Z o ||{7\Vr — Wr||2 for all L € [L] and i € [n].
(iii) [, — Zpilo < CLY37%3m, for all L € [L] and i € [n].
(iv) |{j € [mL] : there exists i € [n] such that (BLi—Xr.)jj # 0}| < CnL*3*3m,.
V) |12, EiW] |, <CLforall1<h <la < L.

(vi) vT( L 3, :WT)a < T'L3713,/Mlog(M) for all a € R™-1 satisfying [al2 = 1, |a]o <
CLY37%3m; and any 1 <1< L.



Findings: asymptotic bounds

e |I.ll,- perturbations on Gaussian initialization within a radius t has good local curvature properties.

n 2
S mro 2
Vo, (LW > 22 (3 eudn)
i=1

o  This gradient lower bound gives that within perturbation region, empirical loss of deep NN has
good local curvature properties.
e Assumption that all perturbations are within t radius from init gives a condition on iterations k *
step-size n for convergence guarantee.

~ CL2MY2 & CL2MY
VW, [Ls(W)]|, < ———— > £(w:¥i) and |G, < — = Zf'(yzyz),

i=1 ieB

o  This gradient upper bound quantifies how much weights would change during (S)GD. This
guarantees that weights won't escape from the perturbation region during training.



Findings: asymptotic bounds

e While k * n < T (constant), gradient descent with k iterations remains in pert. region around Gauss. Initialization:
T = O(L™*n=372%¢) = O(L38n=21¢")

e Lower bound on hidden nodes per layer:

ﬁ(n26L38/¢8) 0<p< %
m = ﬁ(n26L38/¢8) + ﬁ(n25L38/¢8) . Q(log(l/e)) p= %
Q(n26—2pL38/¢8) j: Q(n26L38/¢8) . Q=) % <p<l1

Where p is an exponential factor on loss such that —¢(z) = min{cg, a17(z)}



Findings: asymptotic bounds

e Similarly, we get a upper bound on the maximum number of iterations to be:

5(n12—2pB—2L9¢—2) 0<p< %
K= 5(n“B‘2L9¢‘2) n 5(n1°B‘2L9¢‘2) .0 (log(1/e)) p=-d
5(n12—2pB—2L9¢—2) + 5(n12—4pB—2L9¢—2) ) O(el_zp) % 2 g



Findings: Stochastic Gradient Descent

e In case of stochastic gradient descent, we have number of hidden nodes per layer as:

Q(poly(n, ¢~1,L)) 0<p<3i
m =9 Q(poly(n,¢~",L)) - Q(log*(1/e)) p=3
Q(poly(n,¢, L)) - Q(e*~*) 1<p<l1



Findings: Stochastic Gradient Descent

e Number of iterations have an asymptotic upper limit of

A
b=

O(poly(n,¢™", L))
K =4 O(poly(n,¢~*, L)) - O(log(1/e))
O(poly(n,¢~', L)) - O(e'~?P)

=g O
A A
= =S
/AN
[



Conclusion

e This paper studied training deep neural networks by gradient descent and stochastic gradient
descent.

e The authors proved that both gradient descent and stochastic gradient descent can achieve
global minima of over-parameterized deep ReLU networks with random initialization.

e This holds for a general class of loss functions, with only mild assumption on training data
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