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Gradient Descent Finds Global Minima of Deep Neural Networks

Abstract

▶ The paper proves that the gradient descent algorithm can achieve zero
training loss in polynomial time for deep over-parameterized neural
networks with residual connections (ResNet) and deep residual
convolutional neural networks.

▶ The analysis relies on the particular structure of the Gram matrix induced
by the neural network architecture, which allows showing the Gram matrix
is stable throughout the training process and this stability implies the
global optimality of the gradient descent algorithm.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Introduction

Introduction I

▶ The introduction of the paper discusses the mystery of how randomly
initialized first-order methods like gradient descent can achieve zero
training loss in deep learning, even if the labels are arbitrary.

▶ The paper explains that over-parameterization is believed to be the main
reason for this phenomenon, as only neural networks with sufficiently large
capacity can fit all the training data

▶ The paper also mentions that many neural network architectures are
highly over-parameterized in practice, such as Wide Residual Networks.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Introduction

Introduction II

Main Goal
▶ Explain the two mysterious phenomena related to the training of deep

neural networks:
▶ Deep learning is randomly initialized first-order methods like gradient

descent achieve zero training loss, even if the labels are arbitrary.
▶ The second mysterious phenomenon in training deep neural networks is

“deeper networks are harder to train.”
▶ Given, n data points, H layers and width of the network m, The main

contributions of the paper are as follows:
1. In terms of a fully connected feed-forward network, if

m = Ω
(

poly(n)2O(H)
)1, then randomly initialized gradient descent

converges to zero training loss at a linear rate.
2. For the ResNet Architecture, zero training loss is achieved at a linear rate if

m = Ω(poly(n, H)).
3. For p number of patches and m = (poly(n, p, H)), zero training loss at a

linear rate is achieved for Convolutional-ResNet.
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Related Works

Related Works I

1. Researchers are studying optimization problems in deep learning, and one
approach is to develop a theory for non-convex problems with specific
geometric properties.

2. A class of functions with all global minima and negative curvature for
every saddle point has been identified, and perturbed gradient descent can
find a global minimum for this class

6 / 42



Gradient Descent Finds Global Minima of Deep Neural Networks
Related Works

Related Works II

1. One approach to solving the problem is to study the dynamics of a specific
algorithm for a specific neural network architecture, as demonstrated in
the paper.

2. The paper focuses on minimizing the training loss and proving that
randomly initialized gradient descent can achieve zero training loss, rather
than recovering the underlying neural network.
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Related Works

Related Works III

The work extends the previous results in several ways
▶ Deep Networks
▶ Generalize to ResNet architecture
▶ Generalize to convolutional networks
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Problem Setup

Problem Setup I

▶ Empirical risk minimization problem with the quadratic loss function

min
θ

L(θ) = 1
2

n∑
i=1

(f (θ, xi) − yi)2

where {xi}n
i=1 are the training inputs, {yi}n

i=1 are the labels, θ is the model
parameter and f is the prediction function.

▶ For the prediction function, the neural network is used.
▶ Following three architectures are used.

1. Multilayer fully-connected neural networks
2. Resnet
3. Convolutional ResNet
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Problem Setup

Problem Setup II

▶ Multilayer fully-connected neural networks.

x(h) =
√cσ

m σ
(
W(h)x(h−1)) , 1 ≤ h ≤ H

f (x, θ) = a⊤x(H).

(1)

Here, m = The network width.
H = the number of layers.
Model input = x ∈ Rd .
First weight matrix = W(1) ∈ Rm×d

W(h) ∈ Rm×m is the weight at the h-th layer for 2 ≤ h ≤ H
Output layer = a ∈ Rm is the output layer.
Activation function = σ(·) (Lipschitz and Smooth) and is analytic and is
not a polynomial function.
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Problem Setup

Problem Setup III

▶ Resnet.

x(1) =
√cσ

m σ
(
W(1)x

)
x(h) = x(h−1) + cres

H
√

m
σ
(
W(h)x(h−1)) , for 2 ≤ h ≤ H

fres(x, θ) = a⊤x(H)

(2)
▶ Convolutional ResNet

x(1) =
√cσ

m σ
(
W(1)ϕ1(x)

)
∈ Rm×p ,

x(h) = x(h−1) + cres

H
√

m
σ
(
W(h)ϕh

(
x(h−1))) ∈ Rm×p

for 2 ≤ h ≤ H,

(3)

Here, operator ϕh(·) is used to divide x(h−1) into p patches.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Problem Setup

Problem Setup III

▶ Randomly initialized gradient descent algorithm to find the global
minimizer of the empirical loss is considered.

▶ For every level h ∈ [H], each entry is sampled from a standard Gaussian
distribution, W(h)

ij ∼ N(0, 1) and each entry of the output layer a is also
sampled from N(0, 1).

▶ All layers are trained by gradient descent, for k = 1, 2, . . ., and h ∈ [H]
▶ Weight Initialization.

W(h)(k) = W(h)(k − 1) − η
∂L(θ(k − 1))
∂W(h)(k − 1) ,

a(k) = a(k − 1) − η
∂L(θ(k − 1))

∂a(k − 1)

(4)

here,η > 0 is the step size.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Analysis Techniques

Analysis Techniques I

▶ Global convergence of gradient descent proof is based on the study of the
dynamics of differences between labels and prediction:

ui(k) = f (θ(k), xi) (5)
▶ Above equation shows the individual prediction at the kth iteration. ui(k)

represents the output of a neuron in the kth layer of the network.
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Analysis Techniques

Analysis Techniques II

▶ Previous study showed that for a two-layer fully connected neural network,
the sequence {y − u(k)}∞

k=0 admits the following dynamics:

y − u(k + 1) = (I − ηH(k))(y − u(k))

where H(k) ∈ Rn×n is a Gram matrix with

Hij(k) =
〈

∂ui(k)
∂W(1)(k) ,

∂uj(k)
∂W(1)(k)

〉
.

▶ The key finding is that if m is sufficiently large, H(k) ≈ H∞ for all k
where H∞ is defined as H∞

ij = Ew∼N(0,I)
[
σ′ (w⊤xi

)
σ′ (w⊤xj

)
x⊤

i xj
]
.

▶ If the m is large, then the dynamics of {y − u(k)}∞
k=0 is approximately

linear
y − u(k + 1) ≈ (I − ηH∞) (y − u(k))
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Analysis Techniques

Analysis Techniques III

▶ Implementing power method, it can be shown that {y − u(k)}∞
k=0

converges to 0 where the rate is determined by the least eigenvalue of H∞

and the step size η.
▶ Adopting the above idea, it can be considered that the sequence

{y − u(k)}∞
k=0, which admits the dynamics

y − u(k + 1) = (I − ηG(k))(y − u(k)) (6)
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Gradient Descent Finds Global Minima of Deep Neural Networks
Analysis Techniques

Analysis Techniques IV
▶ In the previous equation,

Gij(k)

=
〈

∂ui(k)
∂θ(k) ,

∂uj(k)
∂θ(k)

〉
=

H∑
h=1

〈
∂ui(k)

∂W(h)(k) ,
∂uj(k)

∂W(h)(k)

〉
+
〈

∂ui(k)
∂a(k) ,

∂uj(k)
∂a(k)

〉

≜
H+1∑
h=1

G(h)
ij (k).

▶ Here we define, G(h) ∈ Rn×n with G(h)
ij (k) =

〈
∂ui (k)

∂W(h)(k) ,
∂uj (k)

∂W(h)(k)

〉
for

h = 1, . . . , H. G(H+1)
ij (k) =

〈
∂ui (k)
∂a(k) ,

∂uj (k)
∂a(k)

〉
.

For all h ∈ [H + 1], each entry of G(h)(k) is an inner product. Therefore,
G(h)(k) is a positive semi-definite (PSD) matrix for h ∈ [H + 1].
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Analysis Techniques

Analysis Techniques V

▶ Analysis of Random Initialization.
▶ First, K(H) is a recursively defined matrix. That makes perturbation (due

to randomness of initialization and finite m ) from lower layers propagate
to the H-th layer.

▶ Second, this perturbation propagation involves non-linear operations due
to the activation function.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Analysis Techniques

Analysis Techniques VI

▶ Analysis shows that ResNet architecture makes the ”perturbation
propagation” more stable.

▶ For a fully connected neural network, consider having perturbation∥∥G(1)(0) − K(1)
∥∥

2
≤ E1 in the first layer. This perturbation propagates to

the H-th layer and admits the form∥∥G(H)(0) − K(H)∥∥
2
≜ EH ≲ 2O(H)E1.

▶ Which requires E1 ≤ 1
2O(H) and this makes m have exponential dependency

on H.
▶ ResNet shows that the perturbation propagation admits the form

EH ≲
(

1 + O
( 1

H

))H
ϵ1 = O (ϵ1)

Therefore we do not have the exponential explosion problem for ResNet.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Analysis Techniques

Analysis Techniques VII

▶ Analysis of Perturbation During Training.
▶ The Following assumption is made and proved.

G(H)(k) is close to G(H)(0) for k = 0, 1, . . ..
Here, G(H) depends on weight matrices from all layers.

▶ The averaged Frobenious Norm is considered to show that
W(h)(k) − W(h)(0) is small for all h ∈ [H] and a(k) − a(0) is small to
establish the fact that G(H)(k) is close to G(H)(0)

1√
m
∥∥W(h)(k) − W(h)(0)

∥∥
F
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Result

Deep Fully-Connected Neural Network

Deep Fully-Connected Neural Network I
▶ Gradient descent with a constant positive step, size converges to the

global minimum at a linear rate.
▶ The convergence rate depends on the least eigenvalue of the Gram matrix

K(H).
▶ The Gram matrix K(H) is recursively defined as follows, for

(i , j) ∈ [n] × [n], and h = 1, . . . , H − 1

K(0)
ij = ⟨xi , xj⟩ ,

A(h)
ij =

(
K(h−1)

ii K(h−1)
ij

K(h−1)
ji K(h−1)

jj

)
,

K(h)
ij = cσE(u,v)⊤∼N

(
0,A(h)

ij

)[σ(u)σ(v)],

K(H)
ij = cσK(H−1)

ij E
(u,v)⊤∼N

(
0,A(H−1)

ij

) [σ′(u)σ′(v)
]

▶ The convergence rate and the amount of over- parameterization depends
on the least eigenvalue of this Gram matrix
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Gradient Descent Finds Global Minima of Deep Neural Networks
Result

Deep Fully-Connected Neural Network

Deep Fully-Connected Neural Network II
▶ Convergence Rate of Gradient Descent for Deep Fully-connected Neural

Networks. Assume for all i ∈ [n], ∥xi∥2 = 1, |yi | = O(1) and the number of
hidden nodes per layer

m = Ω

(
2O(H) max

{
n4

λ4
min (K(H)) ,

n
δ

,
n2 log

(Hn
δ

)
λ2

min (K(H))

})
▶ The formula implies that the number of hidden nodes per layer needs to

increase exponentially with the number of layers to ensure convergence.
▶ Setting the step size as the following:

η = O

(
λmin

(
K(H))

n22O(H)

)
▶ With probability at least 1 − δ over the random initialization the loss, for

k = 1, 2, . . ., the loss at each iteration satisfies

L(θ(k)) ≤

(
1 −

ηλmin
(
K(H))

2

)k

L(θ(0))
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Gradient Descent Finds Global Minima of Deep Neural Networks
Result

Deep Fully-Connected Neural Network

Deep Fully-Connected Neural Network III

▶ Above theorem states that if the width m is large enough and setting
appropriate step size then gradient descent converges to the global
minimum with zero loss at a linear rate.

▶ The main assumption of the theorem is that we need a large enough width
for each layer.

▶ The width m depends on n, H and 1/λmin
(
K(H)).

▶ The dependency on n is only polynomial, which is the same as previous
work on shallow neural networks.
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Gradient Descent Finds Global Minima of Deep Neural Networks
Result

ResNet

ResNet I

The author further provides the convergence result of GD for ResNet.
▶ How much over-parameterization is needed to ensure the global

convergence of gradient descent?
▶ The key Gram matrix is defined, whose least eigenvalue determines the

convergence rate.
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Result

ResNet

ResNet II: Definition

The Gram Matrix:
K(0)

ij = ⟨xi , xj⟩

To begin with,

K(1)
ij = E(u,v)⊤∼N

(
o,

(
K(0)

ii K(0)
ij

K(0)
ji K(0)

jj

))cσσ(u)σ(v)

▶ K(1)
ij : K(0)

ij = ⟨xi , xj⟩ is the initial covariance, 0 is the mean.
▶ cσ: a constant
▶ σ(u) and σ(V ): activation functions applied to u and v , respectively.
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Result

ResNet

ResNet III: Definition

b(1)
i =

√
cσEu∼N

(
0,K(0)

i

)[σ(u)]

▶ b(1)
i : initial bias term for each neuron i .

A(h)
ij =

(
K(h−1)

ii K(h−1)
ij

K(h−1)
ji K(h−1)

jj

)
▶ It defines the matrix A(h)

ij for layer h, it is constructed using the Gram
matrix entries from the previous layer h − 1
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Result

ResNet

ResNet IV: Definition

K(h)
ij = K(h−1)

ij +E
(u,v)⊤∼N

(
0,A(h)

ij

) [cres b(h−1)
i σ(u)
H +

cres b(h−1)
j σ(v)
H + c2

res σ(u)σ(v)
H2

]

b(h)
i = b(h−1)

i + cres

H E
u∼N
(

0,K(h−1)
ii

)[σ(u)]

K(H)
ij = c2

res
H2 K(H−1)

ij E(u,v)⊤∼N

(
0, A(H−1)

ij

) [
σ′(u)σ′(v)

]
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Result

ResNet

Theorem 6.1 Overview

▶ Theorem 6.1 provides a convergence rate for gradient descent training in
ResNet

▶ Assumptions:
▶ For all i ∈ [n], ∥xi ∥2 = 1, and |yi | = O(1)
▶ Number of hidden nodes per layer (m) satisfies the over-parameterization

condition
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Result

ResNet

Over-parameterization Condition for ResNet

▶ m = Ω
(

max
{

n4

λ4
min(K(H))H6 , n2

λ2
min(K(H))H2 , n

δ
,

n2 log( Hn
δ )

λ2
min(K(H))

})
▶ The condition ensures sufficient capacity for learning and stability during

training and initialization
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Result

ResNet

Step Size and Convergence Rate

▶ Set the step size η = O
(

λmin(K(H))H2

n2

)
▶ With probability at least 1 − δ over random initialization:

▶ L(θ(k)) ≤
(

1 − ηλmin(K(H))
2

)k
L(θ(0))
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Result

ResNet

Convergence Rate Insights

▶ Convergence rate is polynomial in n and H
▶ Over-parameterization depends on λmin(K(H)), the smallest eigenvalue of

the H-th layer’s Gram matrix
▶ Skip connection block makes the architecture more stable in initialization

and training phases
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Result

ResNet

Terms in Over-parameterization Condition

m = Ω

(
max

{
n4

λ4
min(K(H))H6 ,

n2

λ2
min(K(H))H2 ,

n
δ

,
n2 log

(Hn
δ

)
λ2

min(K(H))

})
▶ term1 & term2: Ensure Gram matrix stability during training
▶ term3: Guarantee output in each layer is approximately normalized at

initialization
▶ term4: Bound the size of perturbation of the Gram matrix at initialization
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Result

Convolutional ResNet

Convolutional ResNet: Overview

▶ Generalize the convergence result of gradient descent for ResNet to
convolutional ResNet

▶ Determine the necessary over-parameterization to ensure global
convergence of gradient descent

▶ Define the Gram matrix K(H) for convolutional ResNet
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Result

Convolutional ResNet

Definition 7.1 - Part 1

▶ Definition 7.1 focuses on the Gram matrix K(H) for convolutional ResNet.
▶ The Gram matrix is recursively defined for

(i , j) ∈ [n] × [n], (l , r) ∈ [p] × [p] and h = 2, . . . , H − 1.
▶ The first part of the definition describes the base case for h = 0:

K(0)
ij = ϕ1 (xi)⊤ ϕ1 (xj) ∈ Rp×p

▶ K(0)
ij represents the Gram matrix with only the input layer considered.

33 / 42



Gradient Descent Finds Global Minima of Deep Neural Networks
Result

Convolutional ResNet

Definition 7.1 - Part 2

▶ The second part of the definition calculates K(1)
ij :

K(1)
ij = E(u, v) ∼ N

(
0,

(
K(0)

ii K(0)
ij

K(0)
ji K(0)

jj

))cσσ(u)⊤σ(v),

▶ This step calculates the Gram matrix for h = 1, considering the first layer
of hidden nodes.

▶ K(1)
ij captures the correlations between input data after passing through

the first hidden layer.
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Result

Convolutional ResNet

Definition 7.1 - Part 3

▶ The definition also calculates b(1)
i as follows:

b(1)
i =

√
cσEu∼N

(
0,K(0)

ii

)[σ(u)]

▶ b(1)
i represents the bias term for the i th data point at layer h = 1.
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Result

Convolutional ResNet

Definition 7.1 - Part 4

▶ For h = 2, . . . , H − 1, the definition calculates A(h)
ij , H(h)

ij , K(h)
ij,lr , and b(h)

i .

▶ A(h)
ij is calculated as follows:

A(h)
ij =

(
K(h−1)

ii K(h−1)
ij

K(h−1)
ji K(h−1)

jj

)
▶ A(h)

ij is used for calculating the expected value of random vectors u and v.
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Result

Convolutional ResNet

Definition 7.1 - Part 5

▶ The definition then calculates H(h)
ij :

H(h)
ij = K(h−1)

ij +

E
(u,v)∼N

(
0,A(h−1)

ij

) [cresb(h−1)⊤
i σ(u)

H

+
cresb(h−1)⊤

j σ(v)
H + c2

resσ(u)⊤σ(v)
H2

]
▶ H(h)

ij captures the interactions between input data after passing through
the hth layer of hidden nodes.

37 / 42



Gradient Descent Finds Global Minima of Deep Neural Networks
Result

Convolutional ResNet

Definition 7.1 - Part 6

▶ The definition then calculates K(h)
ij,lr and b(h)

i :

K(h)
ij,lr = tr

(
H(h)

ij,D(h)
l D(h)

r

)
b(h)

i = b(h−1)
i + cres

H E
u∼N
(

0,K(h−1)
ii

)[σ(u)]

▶ K(h)
ij,lr denotes the (l , r)-th entry of the Gram matrix for the hth layer.

▶ b(h)
i represents the bias term for the i th data point at layer h.
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Result

Convolutional ResNet

Definition 7.1 - Part 7

▶ Finally, the definition calculates M(H)
ij,lr and K(H)

ij for the last layer:

M(H)
ij,lr = K(H−1)

ij,lr E
(u,v)∼N

(
0,A(H−1)

ij

) [σ′ (ul) σ′ (vr )
]

K(H)
ij = tr

(
M(H)

ij

)
▶ K(H)

ij represents the Gram matrix for the final layer of the network.
▶ This definition allows us to analyze the convergence of gradient descent for

convolutional ResNet by considering the Gram matrix at different layers.
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Result

Convolutional ResNet

Theorem 7.1: Convergence Rate of Gradient Descent for Convolutional
ResNet

▶ Assume for all i ∈ [n], ∥xi∥F = 1, |yi | = O(1), and the number of hidden
nodes per layer:

m = Ω(max{ n4

λ4
0H6 ,

n4

λ4
0H2 ,

n
δ

,
n2 log

(Hn
δ

)
λ2

0
poly(p)})

▶ If we set the step size η = O
(

λ0H2

n2 poly (p)

)
, then with probability at least

1 − δ over the random initialization we have for k = 1, 2, . . .

L(θ(k)) ≤

(
1 −

ηλmin
(
K(H))

2

)k

L(θ(0))

40 / 42



Gradient Descent Finds Global Minima of Deep Neural Networks
Result

Convolutional ResNet

Theorem Insights

▶ Similar to the ResNet theorem.
▶ The number of neurons required per layer is polynomial in the depth and

the number of data points.
▶ Step size is polynomially small.
▶ The only extra term is poly(p) in the requirement of m and η.
▶ Analysis is similar to ResNet, refer to Section D for details.
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Conclusion

▶ This paper shows that gradient descent on deep over parametrized
networks can obtain zero training loss.

▶ Gram matrix is increasingly stable under over-parametrization.
▶ Future Research direction:

1. Addressing the problem of showing gradient descent can also find solutions
to low test loss.

2. Improving the analysis to cover commonly utilized networks is an important
open problem.

3. Extending the analysis to Stochastic Gradient Descent while maintaining
linear convergence rate.

4. Taking minimum eigenvalue values into account to improve the convergence
rate.
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