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INTRODUCTION

• What is the motive

• What optimization algorithm is being used for the neural network 

• What consideration or assumptions are made for proving non-convex and non 
smooth can achieve global minima
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BACKGROUND

• Neural Network Basics (Forward and Backward Propagation)
• Activation Function
• What is convex  & non-convex function
• Overfitting and how is it related to this paper ?
• What is objective function or loss function 
• How does gradient descent optimizer achieve global minima by adjusting weights
• Over parameterized neural network
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NEURAL NETWORK
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NEURAL NETWORK
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PREVIOUS RESULTS
Landscape Analysis

• Design of optimization algorithms
• Identify initialization methods that and hyperparameters that lead to faster convergence and 

better performance.

Analysis of Algorithm Dynamics 

• Convergence behavior of the algorithm
• Identify the factors that influence its performance

• Studied in terms of Trajectory of Model
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DYNAMICS OF PREDICTIONS

Neural Network :

Loss Function: 

Gradient Descent Optimizer:

Gradient Descent Weight Vector:  
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CONVERGENCE RATE OF GRADIENT FLOW
• Gradient flow with infinitesimal step size
• This theorem establishes that if m is large enough, the training error converges to 0 at a linear 

rate. m= (m→Hidden Nodes)
- n-> number of samples, Lambda-> regularization, Delta-> amount of noisy  data.

• Gram Matrix induced by activation function.
- (Objective)  To check the closeness of later iterations to that of the initialization phase. [EigenValue, EigenVector]

• Paper
• Regularization

https://arxiv.org/pdf/1810.02054.pdf&gt;%E3%80%81&lt;https://arxiv.org/abs/1705.04591.pdf
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CONVERGENCE RATE OF GRADIENT DESCENT
• Randomly initialized gradient descent with a constant positive step size converges to the 

global minimum at a linear rate?
• What is step function?
• Even though the objective function is non-smooth and non-convex, gradient descent with a 

constant step size still enjoys a linear convergence rate?
• Is that all? 
• Lipschitz continuous Regularizer : |f(x) - f(y)| ≤ K * |x - y|

- K is a measure of how fast the function can change.

• Bound on the rate at which the function can change.
• Matrix perturbation analysis tool to show most of the patterns do not change



10

FINALLY !

• Over-parameterization, Random initialization, and the Linear convergence jointly restrict 
every weight vector to be close to its initialization. 



11

EXPERIMENTS 
• Epoches =100  of  Gradient Descent
• Fixed Step Size 
• Uniform Generations of n=1000 data points

   

For all experiments, we run 100 epochs of gradient descent and use a fixed step size. 

Flat Directions explain everything 
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EXPERIMENTS 
• Epoches =100  of  Gradient Descent
• Fixed Step Size 
• Uniform Generations of n=1000 data points

The reason is as m becomes larger, H(t) matrix becomes more stable 

   

For all experiments, we run 100 epochs of gradient descent and use a fixed step size. 

Flat Directions explain everything 
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EXPERIMENTS 
• Epoches =100  of  Gradient Descent
• Fixed Step Size 
• Uniform Generations of n=1000 data points

Percentiles of pattern changes and the maximum distance from the initialization become smaller

   

For all experiments, we run 100 epochs of gradient descent and use a fixed step size. 

Flat Directions explain everything 
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CONCLUSION 

In this paper we show with over-parameterization, gradient descent provable converges to the 
global minimum of the empirical loss at a linear convergence rate. The key proof idea is to 
show the over-parameterization makes Gram matrix remain positive definite for all iterations, 
which in turn guarantees the linear convergence.
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FUTURE DISCUSSIONS

• Width Shrinking
• Check with other Loss Functions
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THANK YOU :)


