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INTRODUCTION

*  What is the motive
* What optimization algorithm is being used for the neural network

* What consideration or assumptions are made for proving non-convex and non
smooth can achieve global minima
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BACKGROUND

» Neural Network Basics (Forward and Backward Propagation)

« Activation Function

 What is convex & non-convex function

« Overfitting and how is it related to this paper ?

« What is objective function or loss function

« How does gradient descent optimizer achieve global minima by adjusting weights
» Over parameterized neural network

N
~
~
~
N
3 N

/’ b

’ (N
’ LY

’



-(é University at Buffalo The State University of New York

NEURAL NETWORK

Input Layer Hidden Layer Output Layer
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NEURAL NETWORK

Inputs Weights Weighted Activation Predicted
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PREVIOUS RESULTS

Landscape Analysis

* Design of optimization algorithms
+ Identify initialization methods that and hyperparameters that lead to faster convergence and
better performance.

Analysis of Algorithm Dynamics

» Convergence behavior of the algorithm
» Identify the factors that influence its performance

* Studied in terms of Trajectory of Model
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DYNAMICS OF PREDICTIONS
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Neural Network : f(W, a, x)
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CONVERGENCE RATE OF GRADIENT FLOW

* Gradient flow with infinitesimal step size
« This theorem establishes that if m is large enough, the training error converges to 0 at a linear
rate. m= Q (%3) (m—Hidden Nodes)
- n-> number of samples, Lambda-> regularization, Delta-> amount of noisy data.

« Gram Matrix induced by activation function.
- (Objective) To check the closeness of later iterations to that of the initialization phase. [EigenValue, EigenVector]
 Paper

* Regularization


https://arxiv.org/pdf/1810.02054.pdf&gt;%E3%80%81&lt;https://arxiv.org/abs/1705.04591.pdf
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CONVERGENCE RATE OF GRADIENT DESCENT

Randomly initialized gradient descent with a constant positive step size converges to the
global minimum at a linear rate?
What is step function?
Even though the objective function is non-smooth and non-convex, gradient descent with a
constant step size still enjoys a linear convergence rate?
Is that all?
Lipschitz continuous Regularizer : |f(x) - f(y)| < K * |x - y|
K is a measure of how fast the function can change.
Bound on the rate at which the function can change.

Matrix perturbation analysis tool to show most of the patterns do not change
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FINALLY !

« Over-parameterization, Random initialization, and the Linear convergence jointly restrict
every weight vector to be close to its initialization.
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EXPERIMENTS

 Epoches =100 of Gradient Descent %
« Fixed Step Size o
* Uniform Generations of n=1000 data points é;
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(a) Convergence rates.
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EXPERIMENTS

« Epoches =100 of Gradient Descent
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» Fixed Step Size
* Uniform Generations of n=1000 data points
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Activation Pattern Difference Ratios
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(b) Percentiles of pattern
changes.

The reason is as m becomes larger, H(t) matrix becomes more stable Q
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EXPERIMENTS
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(¢) Maximum distances from ini-
tialization.

Percentiles of pattern changes and the maximum distance from the initialization become smgaller
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CONCLUSION

In this paper we show with over-parameterization, gradient descent provable converges to the
global minimum of the empirical loss at a linear convergence rate. The key proof idea is to
show the over-parameterization makes Gram matrix remain positive definite for all iterations,
which in turn guarantees the linear convergence.
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FUTURE DISCUSSIONS

Width Shrinking
Check with other Loss Functions
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THANK YOU ;)



