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Stochastic Gradient Descent
● A method to find optimal parameter 

configuration
● Iteratively makes small adjustments to the 

network to decrease the error of the network
● Makes our model learn a lot faster even with 

large datasets



Overparameterization in Neural Networks
● Overparameterization: number of model parameters exceed the size of 

training dataset
● Usually these tend to overfit
● But, it is empirically observed that learning with stochastic gradient 

descent in the overparameterized setting does not lead to overfitting



Challenges with Existing work
● Recent studies use low complexity of the learned solution to explain the 

generalization 
● Usually do not explain how SGD favours low complexity solutions
● Observations:

○ Overparameterization and proper random initialization helps optimization
○ Not understood why a particular initialization can help the optimization
○ Unrealistic assumption about data

■ Eg: Gaussian-ness or linear separability



In this paper
● Learning a two-layer overparameterized neural network using SGD for 

classification
● More realistic structure of the data

○ Data in each class is mixture of several components
○ Components from different classes are well separated in distance
○ Components within each class can be close to each other
○ Eg: In MNIST dataset, each class corresponds to a digit and a class can have several                                             

components which correspond to different writing styles of the digit



Contd…
● Through this paper, it’s proved that when the network is sufficiently 

overparameterized, SGD probably learns a network close to random 
initialization with a small generalization error. 

● Also shows that in a overparameterized setting, though the network can 
overfit, SGD with random initialization leads to good generalization

● Results shows that learning time depends on the parameters but not on 
the dimension of the data

● Success of learning relies on overparameterization and random 
initialization



Related Work

● Generalization of Neural Networks:
○ Practical neural network have good generalization when trained on practical 

data
○ Good generalization of overparameterized network cannot be explained by 

traditional theory
○ Existing works do not address why there is low complexity



Contd
● Overparameterization and implicit regularization:

○ Learning a two-layer overparameterized network on linearly separable 
data shows that SGD converges to a global optimum with good 
generalization

● Theoretical analysis of learning neural networks:
○ There exists lot of work that analyses the optimization of learning 

neural networks, but they assume unrealistic assumptions about the 
data



Problem Setup
K-classes classification with two layer neural network with ReLU activation

Where wr are the weights for m neurons and ai,r are the weights of the top layer

ReLU(z) = max{0, z}



Assumptions about the Data
Data is generated from a Distribution D. There are kxl unknown distributions {D}

we allow an arbitrary l ≥ 1 distributions in each class



Illustration of the Separability Assumption

Data satisfies separability assumption with l=2, but not when l=1

This shows allowing l>=2 leads to more flexibility, the assumption captures non linear structure of 
practical data better than linear separability



Assumptions about Learning Process
We assume learning is from a random initialization

Cross entropy loss over softmax is defined as:



Contd
minibatch SGD of batch size B, number of iterations T = N/B and learning rate η

We randomly divide total training examples into T batches each of size B

Update at each iteration: 

where 



Result

● Total number of iterations can only be increased by factor of logm
● We can over parameterize the network without significantly increasing the 

complexity



Analysis of the Theorem
● We can treat each example as a single distribution, implying λ is always 

zero
● We use batch size B for T iterations, Hence l = N = BT
● Input data is actually structured,  SGD achieves a small generalization 

error, even when the network has enough capacity to fit arbitrary labels 
● SGD has a strong inductive bias on structured data: finds good 

generalization guarantees instead of finding bad global optima that can fit 
arbitrary labels



Questions need to be addressed
1. Why can SGD optimize the training loss? Or even find a critical point?
2. Why can the trained network generalize?



Observations
● When the network is overparameterized, it becomes more pseudo 

smooth, which makes easier for SGD to minimize the training loss.
● Observation: The more we overparameterize the network, the less likely 

the activation pattern for one neuron and one data point will change in a 
fixed number of iterations.
○ allows us to couple the gradient of the true neural network with a “pseudo gradient” 

where the activation pattern for each data point and each neuron is fixed



Pseudo Gradient
● pseudo gradient for fixed r, i whether the r-th hidden node is activated on 

the i-th data point xi will always be the same for different t
● But for fixed t, for different r or i, the sign can be different.
● To be proved: 

○ Unless the generalization error is small, the pseudo gradient will always be large 
○ As number m of hidden neurons increases, with a properly decreasing learning rate, the 

total number of iterations it takes to minimize the loss is roughly not changed
○ Number of iterations that we can couple the true gradient with the pseudo one increases. 

Hence, there is a polynomially large m so that we can couple these two gradients until the 
network reaches a small generalization error.



Simplified Case: No Variance
Assumption: Each Da,b is a single data point (xa,b, a), and also we are doing full 
batch gradient descent as opposite to the minibatch SGD.

Loss Notation: 

Gradient: 

Pseudo Gradient: 



Contd…
● For pseudo gradient, the activation pattern is set to be that in the 

initialization
● the pseudo gradient is similar to the gradient for a pseudo network g 

defined as:                                                                                                                                                                                                                                           
● Coupling the gradients is similar to coupling the networks f and g



Lemma
1. At each iteration, the total number of hidden units whose gradient can be coupled with 

the pseudo one is quite large

2. Pseudo gradient is large unless the error is small

This paper illustrates how to use these two lemmas to show the convergence for a small enough 
learning rate 



Classification error
We define

Va,a,b  indicates the classification error



Proof of Coupling



Error, Gradient Proof
Pseudo gradient can be written as:

if pa,bvi,a,b is large, a good fraction of r ∈ [m] will have large pseudo gradient



Convergence Proof

This shows that eventually v(t) will be small that leads to small classification error



Coupling, Low Complexity
Coupling: how well components of a system depend on each other

● Benefits of Tight Coupling:
○ Components in the system are highly dependent on each other
○ Can lead to improve performance, as the system can be optimized as a whole 

instead of optimizing individual components separately

Low Complexity: refers to the models that have relatively small number of 
parameters and layers



Weight Compression
Weight Compression: 

● Technique used in Neural network to reduce the size of the model
● It decreases the computational cost
● Weights of the neurons which doesn’t have much significance is reduced



Insights from Analysis
● Generalization:

○ Our analysis partially explained how SGD on structured data leads to low complexity
○ SGD can reduce the error and reach a good solution
○ Closeness to the initialization means the weights can be easily compressed
○ Showed that there can be a solution not far from the initialization with high probability
○ When data is well clustered around few patterns, the accumulated updates (difference 

between the learned weights and the initialization) should be approximately low rank



Contd
● Implicit regularization v.s. structure of the data:

○ Existing work has analyzed the implicit regularization of SGD on linearly separable data
○ Our analysis shows that when the network size is fixed, learning over poorly structured 

data(large k and l) needs more iterations  and thus the solution can deviate more from the 
initialization and has higher complexity

○ An interesting case is if can fit the training data by viewing each point as a component, results 
show that it still learns a network with a small generalization error

● Effect of random initialization:
○ Analysis shows how proper random initializations helps the optimization and generalization
○ With high probability for weights close to the initialization, SGD makes progress when the loss is 

large and eventually learns a good solution
○ Our initialization has scale related to the number of hidden units, which is useful when network 

size is varying



Experiments
Experiments are performed on synthetic data and MNIST datasets to verify:

1. The activation patterns of the hidden units couple with those at initialization
2. The distance from the learned solution is relatively small compared to size of initialization
3. The accumulated updates have approximately low rank

Setup: Synthetic data is of 1000 dimension and contains 10 classes each with 2 components. Each 
component is of equal probability and is a gaussian distribution.

On Synthetic Data: SGD is run for T=400 steps with batch size B=16 and learning rate η = 10/m

On MNIST: SGD is run for T=2x10^4 steps with batch size B=64 and learning rate η = 400/m

m: number of hidden units



Evaluation metrics
1. Test accuracy
2. Coupling: fraction of hidden units whose activation pattern changed 

compared to the time at initialization
3. Distance: relative ratio ||ѡ(t) - ѡ(0)||F / ||ѡ(0)||F
4. Rank of accumulated updates: plot of the singular values of ѡ(T) - ѡ(0), 

where T is the final step



Results on Synthetic Data
1. Accuracy quickly converges to 100% which 

proving overparameterization helps 
optimization and generalization

2. Strong coupling as the activation pattern 
difference ratio is less than 0.1

3. Relative distance is less than 0.1 which 
shows final solution is close to 
initialization

4. The top 20 singular values of the 
accumulated updates are much larger 
than the rest



Results on MNIST dataset
Results on MNIST are similar to 
that of synthetic data.

We can observe that the trend 
becomes more evident with more 
overparameterization.



Proofs for General Case
Coupling:

Proof is similar to simplified case



Error, Gradient Proof



Convergence

At the end, We need

To keep coupling before convergence 



Additional Experimental Results
We discussed that for a learning rate decreasing with the number of hidden nodes m, 
the number of iterations to get the accuracy roughly remain the same



Contd
It is also observed that the relative distances scale roughly as O(1/ √ m)



Synthetic Data with larger Variances
● Test accuracy 

decreases with 
increase in variance

● No change in trends 
for activation 
patterns, distance, 
and the rank of the 
weight matrix 
(maybe because 
signal in updates 
remains small with 
increasing 
variances)



Synthetic Data with Large number of components in each class
● Test accuracy 

decreases with 
increase in number 
of components

● Larger l leads to 
more significant 
coupling and small 
relative distances 
(maybe because 
learning makes less 
progress due to 
more complicated 
structured data)



Conclusion
● We studied the problem of learning with two layer overparameterized 

neural network via SGD
● Our work is far from being conclusive
● We made a step towards theoretical understanding of SGD for training 

neural networks



Thank You!


